
Dordis: Efficient Federated Learning with
Dropout-Resilient Differential Privacy

Zhifeng Jiang
HKUST

zjiangaj@cse.ust.hk

Wei Wang
HKUST

weiwa@cse.ust.hk

Ruichuan Chen
Nokia Bell Labs

ruichuan.chen@gmail.com

Abstract
Federated learning (FL) is increasingly deployed among mul-
tiple clients to train a shared model over decentralized data.
To address privacy concerns, FL systems need to safeguard
the clients’ data from disclosure during training and control
data leakage through trained models when exposed to un-
trusted domains. Distributed differential privacy (DP) offers
an appealing solution in this regard as it achieves a balanced
tradeoff between privacy and utility without a trusted server.
However, existing distributed DP mechanisms are impracti-
cal in the presence of client dropout, resulting in poor privacy
guarantees or degraded training accuracy. In addition, these
mechanisms suffer from severe efficiency issues.
We present Dordis, a distributed differentially private FL

framework that is highly efficient and resilient to client
dropout. Specifically, we develop a novel ‘add-then-remove’
scheme that enforces a required noise level precisely in each
training round, even if some sampled clients drop out. This
ensures that the privacy budget is utilized prudently, despite
unpredictable client dynamics. To boost performance, Dordis
operates as a distributed parallel architecture via encapsu-
lating the communication and computation operations into
stages. It automatically divides the global model aggregation
into several chunk-aggregation tasks and pipelines them
for optimal speedup. Large-scale deployment evaluations
demonstrate that Dordis efficiently handles client dropout in
various realistic FL scenarios, achieving the optimal privacy-
utility tradeoff and accelerating training by up to 2.4× com-
pared to existing solutions.

CCS Concepts: • Computing methodologies→ Super-
vised learning; • Security and privacy→ Database and
storage security.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
https://doi.org/10.1145/3627703.3629559

Keywords: Federated Learning, Distributed Differential Pri-
vacy, Client Dropout, Secure Aggregation, Pipeline

ACM Reference Format:
Zhifeng Jiang, Wei Wang, and Ruichuan Chen. 2024. Dordis: Effi-
cient Federated Learning with Dropout-Resilient Differential Pri-
vacy. In Nineteenth European Conference on Computer Systems (Eu-
roSys ’24), April 22–25, 2024, Athens, Greece. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3627703.3629559

1 Introduction
Federated learning (FL) [42, 53] enables collaborative train-
ing of a sharedmodel amongmultiple clients (e.g., mobile and
edge devices) under the orchestration of a central server. In
scenarios where the number of clients is large (e.g., millions
of mobile devices), the server dynamically samples a small
subset of clients to participate in each training round [14].
These clients download the global model from the server,
compute local updates using private data, and upload these
updates to the server for global aggregation. Throughout
the training, no client’s data is exposed directly. FL has been
deployed in various domains, enabling amultitude of privacy-
sensitive AI applications [28, 47, 51, 59, 62, 82].

However, solely keeping client data on the device is inad-
equate for preserving data privacy. Recent work has shown
that sensitive data can still be exposed through message ex-
changes in FL training [27, 81, 85, 86]. It is also possible to
infer a client’s data from the trained models [17, 57, 70, 74]
by exploiting their ability to memorize information [17, 74].

Current FL systems often use differential privacy (DP) [24]
to perturb the aggregatemodel update in each round, limiting
the disclosure of individual clients’ data throughout training.
Among the three typical DP models (i.e., central [54, 65],
local [63], and distributed DP [5, 40, 75]), distributed DP is
the most appealing for FL as it: 1) assumes no trusted server
(in contrast to central DP), and 2) imposes minimum noise
given a privacy budget (unlike local DP), causing little utility
loss to the trained models. Specifically, given a global privacy
budget that must not be exceeded, the system first calculates
the minimum random noise required in each round. Then, in
each round, every sampled client adds a small portion of the
required noise to its local update. The aggregate update at
the server is thus perturbed by exactly the minimum required
noise. In distributed DP, local updates are aggregated using
secure aggregation, which ensures that the (untrusted) server
learns only the aggregate result, not individual updates.

https://doi.org/10.1145/3627703.3629559
https://doi.org/10.1145/3627703.3629559

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhifeng Jiang, Wei Wang, and Ruichuan Chen

Existing distributed DP mechanisms, however, face two
practical challenges when deployed in real-world FL systems.
First, the privacy guarantee of distributed DP can be com-
promised in the presence of client dropout, which can occur
at any time due to network errors, low battery, or changes in
eligibility, as frequently observed in production [14, 44, 83].
For dropped clients, their noise contributions are missing in
the aggregate update, leading to insufficient DP protection
and consuming more privacy budget than initially allocated
in each round [40]. This exhausts the privacy budget quickly,
resulting in early termination of training and significant
model utility loss (§2.3.1). As a quick solution, proactively
increasing the amount of noise used may not achieve the
optimal privacy-utility tradeoff without strong expertise in
client dynamics and learning tasks.
Second, aside from the privacy issue caused by client

dropout, the secure aggregation protocols (e.g., SecAgg [15])
employed in distributed DP present severe efficiency chal-
lenges. This is due to the multi-round communications and
heavy cryptographic computations involved, which can con-
sume up to 97% of the time of each training round, as ob-
served in real deployments (§2.3.2). Recent attempts [12,
39, 72, 73] to improve the asymptotic complexity sacrifice
desired properties (e.g., malicious security or dropout toler-
ance), and/or have limited practical gains.
In this paper, we present Dordis, an efficient FL frame-

work that enables dropout-resilient distributed DP in FL.
Dordis addresses both the privacy and efficiency issues of
distributed DP in FL systems with two key contributions.
First, to ensure that the aggregate model update is perturbed
with exactly the minimum required noise regardless of client
dropout, we devise a novel add-then-remove scheme named
XNoise (§3). XNoise initially lets each selected client to add
excessive noise to its local update. After aggregation, the
server removes part of the excessive noise that exceeds the
minimum noise requirement, based on the actual client par-
ticipation. To cope with the potential failures in executing
XNoise, we consolidate its security using efficient crypto-
graphic primitives. XNoise is proven to preserve the privacy
of honest clients, even in the presence of a malicious server
colluding with a small subset of other clients.
Second, to expedite the execution of distributed DP, we

run Dordis as a distributed parallel architecture to overlap
computation- and communication-intensive operations (e.g.,
data encoding and transmission) (§4). To enable a generic
design, Dordis first abstracts the distributed DP workflow
into a sequence of stages with different dominant system re-
sources. By dividing the global aggregation task into several
chunk-aggregation task, Dordis allows pipeline parallelism
by scheduling them to run different stages concurrently.
With a realistic performance model and profiling technique,
Dordis can identify the optimal pipeline configuration by
solving an optimization problem for maximum speedup.

We implemented Dordis as an end-to-end system with
generic designs that support a wide range of distributed DP
protocols (§5).1 We deployed Dordis in a real distributed
environment that features data and hardware heterogene-
ity of client devices (§6). Our evaluations across various FL
training tasks show that the necessary noise for aggregated
updates in Dordis can be enforced without impairing model
utility in the presence of client dropout. Moreover, Dordis’s
pipeline execution speeds up the baseline systems with dif-
ferent secure aggregation protocols by up to 2.4×, without
reducing their security properties.

2 Background and Motivation
2.1 Scenario
Federated Learning. Federated learning (FL) enables a
large number of clients (e.g., millions of mobile and edge
devices) to collaboratively build a global model without shar-
ing local data [42, 53]. In FL, a (logically) centralized server
maintains the global model and orchestrates the iterative
training. At the beginning of each training round, the server
randomly samples a subset of available clients as partici-
pants [14]. The sampled clients perform local training to the
downloaded global model using their private data and report
only the model updates to the server. The server collects
the updates from participants until a certain deadline, and
aggregates these updates. It then uses the aggregate update
(e.g., FedAvg [53]) to refine the global model.
Threat Model. Although client data is not directly exposed
in the FL process, a large body of research has shown that
it is still possible to reveal sensitive client data from indi-
vidual updates or trained models via data reconstruction or
membership inference attacks. For example, an adversary can
accurately reconstruct a client’s training data from its gradi-
ent updates [27, 81, 85, 86]; an adversary can also infer from
a trained language model whether a client’s private text is
in the training set [17, 57, 70, 74].
We aim to control the exposure of honest clients’ data

against the above-mentioned attacks. Following the Secure
Multi-Party Computation (SMPC) literature [26], we target
both the semi-honest setting (where all parties faithfully fol-
low the protocol) and the malicious setting (where the ad-
versary can deviate arbitrarily from the protocol). In both
settings, the adversary is eager to pry on honest clients’ data,
and may collude with the server and a fraction of sampled
clients to boost its advantages. We assume mild client col-
lusion because, in real deployments, the number of clients
is usually large, making it hard for an adversary to corrupt
a large fraction of them. For example, at the scale of the
Apple ecosystem (over 2 billion active devices [8]), even com-
promising 1% would mean about 20 million nodes. Conse-
quently, the chance of having many colluded clients sampled
by the server is tiny, if it follows the agreed-upon sampling
1Dordis is available at https://github.com/SamuelGong/Dordis.

https://github.com/SamuelGong/Dordis

Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy EuroSys ’24, April 22–25, 2024, Athens, Greece

algorithm. Even if the server behaves maliciously in client
sampling, it can still be refrained from impersonating or sim-
ulating arbitrarily many clients given the use of a public-key
infrastructure and a signature scheme, with which honest
clients can verify the source of their received messages and
detect such behaviors (§3.3). In addition, we can also pre-
vent the server from cherry-picking colluded clients when
verifiable random functions (VRFs) [22, 56] are deployed to
ensure the correctness of random client sampling (§7).

2.2 Differential Privacy
The reconstruction and membership attacks work by finding
clients’ data that make the observed messages (e.g., indi-
vidual updates or trained models) more likely. Differential
privacy (DP) [21, 23, 24] effectively prevents these attacks by
ensuring that no specific client participation can noticeably
increase the likelihood of such observed messages. This guar-
antee is captured by two parameters, 𝜖 and 𝛿 [24]. Given any
neighboring training sets 𝐷 and 𝐷

′ that differ only in the
inclusion of a single client’s data, the aggregation procedure
𝑓 is (𝜖 , 𝛿)-differentially private if, for any set of output 𝑅, we
have Pr[𝑓 (𝐷) ∈ 𝑅] ≤ 𝑒𝜖 · Pr[𝑓 (𝐷 ′) ∈ 𝑅] + 𝛿.

In other words, a change in a client’s participation yields
at most a multiplicative change of 𝑒𝜖 in the probability of any
output, except with a probability 𝛿 . Intuitively, smaller 𝜖 and
𝛿 indicate a stronger privacy guarantee. A key property of DP
is composition which states that the process of running (𝜖1,
𝛿1)-DP and (𝜖2, 𝛿2)-DP computations on the same dataset is
(𝜖1+𝜖2, 𝛿1+𝛿2)-DP. This allows one to account for the privacy
loss resulting from a sequence of DP-computed outputs, such
as the release of multiple aggregate updates in FL.
Central DP and Local DP. One way to apply DP in FL
is to let the server add DP-compliant noise to the aggre-
gate update, i.e., the central DP scheme [42]. However, the
server must be trusted as it has access to the (unprotected)
aggregate update. While the server may establish a trusted
execution environment (TEE) [9, 31] with hardware support,
it is still vulnerable to various attacks, e.g., side-channel at-
tacks [18, 78]. An alternative DP scheme is local DP, in which
each sampled client adds DP noise to perturb its local update.
As long as the noise added by a client is sufficient for a DP
guarantee on its own, its privacy is preserved regardless of
the behavior of other clients or the server. This, however, re-
sults in excessive accumulated noise in the aggregate update,
significantly harming the model utility [40].
Distributed DP. Compared to central and local DP, dis-
tributed DP offers an appealing solution in FL scenarios as it:
1) requires no trusted server, and 2) imposes minimum noise
given a privacy budget. In distributed DP, a privacy goal is
specified as a global privacy budget (𝜖𝐺 , 𝛿𝐺), which can be
viewed as a non-replenishable resource that is consumed
by each release of an aggregate update. Ideally, by the time
when the training completes, the remaining privacy budget

should be zero, so as to meet the privacy goal at the expense
of minimum DP noise and model utility loss.

This requires the system to perform offline noise planning
ahead of time to determine the minimum required noise that
should be added to the aggregate update in each training
round to control the privacy loss. The system then proceeds
to online noise enforcement. In each training round, it evenly
splits the noise adding task to all sampled clients. Each of
them slightly perturbs its update by adding an even share
of the minimum required noise. The clients then mask their
updates and send them to the server using the secure ag-
gregation (SecAgg) protocol [15], which ensures that the
server learns nothing but the aggregate update that is per-
turbed with exactly the minimum required noise. Note that,
besides the commonly-used SecAgg, distributed DP can also
be implemented using alternative approaches such as se-
cure shuffling [13, 19, 25]. In this paper, we focus on the
approaches using SecAgg, given their popularity in FL.

2.3 Practical Issues of Distributed DP
While distributedDP can achieve an appealing privacy-utility
tradeoff, its deployment in real world has significant issues.

2.3.1 Privacy Issue Caused by Client Dropout. In FL
training, client dropout can occur anytime, e.g., due to low
battery, poor connection, or switching to a metered network.
The prevalence of client dropout, which has been widely
observed in real-world systems [14, 44, 83], raises a severe
privacy issue in distributed DP. Specifically, if clients drop
out after being sampled, without their noise contributions,
the total noise added to the aggregate update falls below
the minimum required level. This leads to increased data
exposure that forces the system to consume more privacy
budget than planned for each round. Without the ability to
deterministically enforce the consumption of privacy budget,
the system may fail to incentivize clients to join or comply
with privacy regulations [60, 64, 79].

To illustrate this issue, we analyze a realistic FL task. We
run two FL testbeds in which 100 clients jointly train a
ResNet-18 [3] model over the CIFAR-10 dataset and CIFAR-
100 dataset [43] for 150 and 300 rounds, respectively. To
emulate the dynamics of clients, we use a large-scale user
behavior dataset spanning 136k mobile devices [83] and ex-
tract 100 volatile users. We sample 16 clients to train in each
round and observe great dynamics in their availability, as
shown in Figure 1a. In this case, the original distributed DP
training over CIFAR10 (resp. CIFAR100) with a global privacy
budget 𝜖𝐺 = 6 ends up consuming an 𝜖 of 8.6 (resp. 7.9) at
the 150th (resp. 300th) round due to the missing noise from
the dropped clients (see Orig in Figure 1b and 1c).
Naive Solutions and Limitations. One solution to this is-
sue is to stop the training early when the privacy budget runs
out (Early). However, this inevitably harms the model utility.
As shown in Figure 1b and 1c, Early reduces themodel utility

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhifeng Jiang, Wei Wang, and Ruichuan Chen

0 1
Client Dropout Rate

0

50

100

Pe
rc

en
ta

ge
 o

f R
ou

nd
s (

%
)

(a) Client dynamics.

Orig Early Con8 Con5 Con2
Distributed DP Variants

0
3
6
9

Pr
iv

ac
y

C
os

t 8.6
6.0

2.3

5.1
7.2

privacy cost accuracy

0
20
40
60

A
cc

ur
ac

y
(%

)60.7

41.0
56.3 60.3 60.7

(b) Privacy v.s. utility in CIFAR-10.

Orig Early Con8 Con5 Con2
Distributed DP Variants

0

3

6

9

Pr
iv

ac
y

C
os

t 7.9
6.0

2.1
4.6

6.4

privacy cost accuracy

0

20

40

60

A
cc

ur
ac

y
(%

)

32.7 26.5

5.9

27.5 30.4

(c) Privacy v.s. utility in CIFAR-100.

0 10 20 30 40
Client Dropout Rate (%)

10

20

Pr
iv

ac
y

C
os

t

6.0

11.8

19.3budget ε = 3
budget ε = 6
budget ε = 9

(d) Privacy impact under vari-
ous client dropout rates.

Figure 1. Privacy impact of client dropout.

agg (w/o DP) other (w/o DP) agg (w/ DP) other (w/ DP)

32 48 64
Number of Sampled Clients

0.0

0.5

1.0

R
ou

nd
 T

im
e

(h
)

91%

0.47
95%

0.61

94%

0.73
96%

1.03

95%

0.95

97%

1.28

(a) SecAgg with per-round
dropout rate being 10%.

32 48 64
Number of Sampled Clients

0.0

0.5

1.0

R
ou

nd
 T

im
e

(h
)

91%

0.37
93%

0.52

93%

0.53
95%

0.85

94%

0.71

96%

1.01

(b) SecAgg+ with per-round
dropout rate being 10%.

Figure 2. Impact of secure aggregation on training efficiency.

by 19-29% compared to non-private training. Another solu-
tion is to make a conservative estimation on the per-round
dropout rate during offline noise planning. However, a good
estimation that balances the privacy-utility tradeoff requires
accurate information on client dynamics and learning tasks.
For instance, without accurate information on client dynam-
ics (e.g., Figure 1a), one common practice is to overestimate
the dropout severity (e.g., 80% as in Con8) which leads to
suboptimal model utility, while underestimating it (e.g., 20%
as in Con2) results in excessive privacy budget consump-
tion. Even given a priori knowledge of client dynamics, the
trade-off is still hard to navigate without trial-and-error ex-
periments due to its task-specific nature. For example, while
guessing 50% as the per-round dropout rate (Con5) yields a
near-optimal privacy-utility tradeoff for CIFAR-10, it causes
noticeable utility degradation (16%) for CIFAR-100.
Impact of Client Dropout Rate. To further relate privacy
violation to dropout severity, we let the clients randomly
drop with a configurable rate after being sampled. Figure 1d
shows that, for the CIFAR-10 testbed, as the dropout rate
increases, more clients’ data gets exposed during training,
leading to a larger privacy deficit regardless of the budget.

2.3.2 Performance Issue Caused by Secure Aggrega-
tion. Besides the privacy issue caused by client dropout,
the SecAgg algorithm [15] used in distributed DP creates a
severe performance issue. Specifically, to ensure the server
learns no individual update from any client but the aggregate

update only, SecAgg lets clients synchronize secret keys and
use them to generate zero-sum masks (a detailed description
of SecAgg is embedded in Figure 5). This involves extensive
use of pairwise masking and secret sharing, incurring high
complexity in computation and communication.
To quantify the performance impact of SecAgg, we refer

to Figure 2a which shows the breakdown of the average
runtime of one training round in the previous experiments
with varying numbers of sampled clients. For comparison, we
also run the experiment with SecAgg but add no DP noise to
the aggregate update. In all experiments, the cost of SecAgg
dominates, accounting for 86-91% of the training time, while
SecAgg with DP features a slightly more serious bottleneck
than that without DP. Furthermore, the dominance of SecAgg
is accentuated at scale.
Existing Solutions and Limitations. There have been
active studies on improving the performance of secure aggre-
gation, but they all have significant limitations. For example,
one guarantee provided by SecAgg is input privacy against
malicious adversaries, while TurboAgg [72], FastSecAgg [39],
and LightSecAgg [73] only handle a semi-honest adversary.
Moreover, their improved complexity comes at the cost of de-
graded dropout tolerance [32, 49], with their communication
cost still being high in FL practice [52]. Among the follow-up
works of SecAgg, SecAgg+ [12] is the state-of-the-art which
improves the asymptotic complexity with a slight compro-
mise on security and robustness. Yet, as Figure 2b implies,
a further improvement is still desired given the consistent
dominance of SecAgg+ on the training time.

3 Dropout-Resilient Noise Enforcement
To tackle the privacy issue mentioned in §2.3.1, we first for-
malize the noise enforcement problem under client dropout,
and present the technical intuition to address this problem
(§3.1). We then describe a novel ‘add-then-remove’ noise
enforcement approach that realizes this intuition (§3.2) with
security consolidation in real deployments (§3.3), followed
by a security analysis (§3.4). Without loss of generality, we
assume that the random noise distribution 𝜒 (𝜎2) used in
DP is closed under summation w.r.t. the variance 𝜎2. That is,
given two independent noises 𝑋1 ∼ 𝜒 (𝜎2

1) and 𝑋2 ∼ 𝜒 (𝜎2
2),

Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy EuroSys ’24, April 22–25, 2024, Athens, Greece

Noise
Addition

Noise
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>}

C
ou

pl
ed

Excessive Level

Necessary Level

(a) Rebasing.

Excessive Level

Necessary Level

Noise

Negation
of Noise

(b) Decomposition.

Figure 3. Two ‘add-then-remove’ approaches.

we have 𝑋1 ± 𝑋2 ∼ 𝜒 (𝜎2
1 + 𝜎2

2). For example, both Gaussian
and Skellam [5] distributions exhibit this property.

3.1 Technical Intuition

We start with a formal description of the original noise
addition process used in distributed DP, denoted as Orig.

Definition 1 (Orig). Given the set of sampled clients𝑈 and
the target noise level 𝜎2

∗ in a certain round, Orig lets each client
𝑐 𝑗 ∈ 𝑈 perturb its update 𝚫 𝑗 by adding noise 𝒏 𝑗 ∼ 𝜒 (𝜎2

∗/|𝑈 |)
and upload the result �̃� 𝑗 = 𝚫 𝑗+𝒏 𝑗 to the server for aggregation.

As described in §2.3.1, the problem with Orig is that when
some clients drop after being sampled, their noise contribu-
tions are missing; thus, the eventual noise aggregated at
the server will be insufficient. One potential fix is to let the
server add back themissing noise contributed by the dropped
clients [40]. However, this is not viable under our threat
model (§2.1) in which the server can be part of the adversary
who can infer clients’ data from the insufficiently perturbed
aggregate result with unbounded advantages (semi-honest)
and/or even omit the noise addition task (malicious).
Add-Then-Remove Noise Enforcement. To ensure that
the aggregate noise never goes inefficient and always lands at
the minimum required level, we design an ‘add-then-remove’
noise enforcement scheme: 1) each sampled client first adds
a higher-than-required amount of noise to its model up-
date, rendering an overly perturbed aggregate update despite
client dropout, and 2) the server removes the excessive part
of the aggregate noise based on the actual dropout outcome.
This scheme can be realized by two possible approaches:
• Rebasing: During noise addition, each sampled client adds
its noise share 𝒏𝑜 to the local update, and sends the noisy
update as a whole to the server. To facilitate noise removal,
each surviving client computes the newly-required noise
𝒏𝑢 based on the actual client dropout outcome, and sub-
tracts the original noise share 𝒏𝑜 . To ensure that the noise
removal is privacy-preserving, only ‘𝒏𝑢−𝒏𝑜 ’ is transmitted
to the server and added to the aggregate update (Figure 3a).
This approach was adopted by [10].

• Decomposition: Instead of adding noise as a whole, each
sampled client decomposes its noise share into multiple
additive components that can be added separately to the
client’s local update. For privacy-preserving noise removal,
each surviving client only sends the noise components
that are over the newly-required amount to the server for
subtracting them from the aggregate (Figure 3b).

Comparison. One difference between the two approaches
lies in their communication efficiency. In FL, a DP noise is
a sequence of pseudo-random numbers (PRNs) of the same
length (e.g., millions to billions) as the model, and can be
uniquely generated via feeding a seed (e.g., 20 bytes) into
a PRN generator. During noise removal, ‘decomposition’
allows each surviving client to send the relevant seeds to the
server for it to generate each noise component that needs
to be removed. However, ‘rebasing’ requires each surviving
client to generate and send the updated noise 𝒏𝑢 − 𝒏𝑜 as a
whole to conceal the two individual noises. Otherwise, the
server can use them to reconstruct the noise-free aggregated
update. This results in poor efficiency as the communication
cost of noise removal increases prohibitively with the ever-
growingmodel size. In Section 6.3, we compare the scalability
of the two approaches in communication.
Another difference lies in their robustness. In reality, sur-

viving clients can also drop out in the middle of noise re-
moval. Missing their noise seeds, the server cannot fully re-
move the excessive noise added to the aggregate update. To
tackle this issue, ‘decomposition’ can efficiently back up each
noise component beforemodel aggregation by secret-sharing
its seed across clients (e.g., via the Shamir’s scheme [69]).
Such a scheme, however, does not apply to ‘rebasing’ as the
updated noise to transmit can neither be generated with a
seed nor determined before aggregation.
Challenges. Due to the poor efficiency and robustness of
the ‘rebasing’ approach, we opt to instantiate the ‘add-then-
remove’ noise enforcement scheme with ‘decomposition’
and tackle two technical challenges in its design:

• Given various dropout outcomes of a training round, how
to decompose a client’s noise share to accommodate every
possible requirement during noise removal (§3.2)?
• In real deployments, how to make the noise enforcement
approach secure, preferably in an efficient way (§3.3)?

3.2 Add-Then-Remove with Noise Decomposition
We start with how much noise a sampled client should add.
Without loss of generality, we assume that the system’s toler-
ance to client dropout is a configurable parameter. Let𝑈 be
the set of sampled clients in a certain training round, among
which the system can tolerate up to 𝑇 dropouts.
Noise Addition and Removal. Let 𝜎2

∗ be the target noise
level in each round. To meet this noise level even in the
worst case, each client in Dordis adds an excessive noise at

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhifeng Jiang, Wei Wang, and Ruichuan Chen

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)
Clients

(a) Noise decomposition.

Achieve target noise σ2
∗ = 1σ2
∗ = 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

T
o
 rem

o
v
e

(b) No client drops.

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

T
o
 rem

o
v
e

Achieve target noise σ2
∗ = 1σ2
∗ = 1

(c) One client drops.

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

Achieve target noise σ2
∗ = 1σ2
∗ = 1

(d) Two clients drop.

Figure 4. An illustration of how the ‘add-then-remove’ approach with noise decomposition deals with client dropout precisely.

the level of 𝜎2
∗

|𝑈 |−𝑇 . In doing so, even if there are 𝑇 clients
dropped after being sampled, the total noise contributed by
the surviving |𝑈 | − 𝑇 clients is still sufficient at the target
level.
On the other hand, when fewer than 𝑇 clients dropped

after being sampled, the aggregate noise exceeds the target
level and part of it needs to be removed for model utility. Let
𝐷 ⊂ 𝑈 denote the set of clients dropped after being sampled,
where |𝐷 | ≤ 𝑇 . The amount of excessive noise that should
be removed by the server is:

𝑙ex = (|𝑈 | − |𝐷 |)
𝜎2
∗

|𝑈 | −𝑇︸ ︷︷ ︸
Actual noise level

−𝜎2
∗ =

𝑇 − |𝐷 |
|𝑈 | −𝑇 𝜎2

∗ . (1)

Dordis evenly distributes the noise removal task across
surviving clients, therefore, each of them needs to help the
server remove the noise of level:

𝑙 ′ex =
𝑙ex

|𝑈 | − |𝐷 | = 𝜎2
∗

(1
|𝑈 | −𝑇 −

1
|𝑈 | − |𝐷 |

)
. (2)

Noise Decomposition for Precise Control. Equation (2)
indicates that the noise to be removed by a surviving client
decreases when the number of dropped clients increases.
Given this monotonicity, each client in Dordis can carefully
decompose its added noise share into multiple additive com-
ponents, and remove some of such noise components when
needed for the precise control of noise level.
For example, consider a scenario where the number of

sampled clients |𝑈 | = 4, the dropout tolerance 𝑇 = 2, and
the target noise level 𝜎2

∗ = 1. To enforce this target even if
2 clients drop out, the noise added to each client’s update
should be of the level 1/2. Moreover, as shown in Figure 4a,
such a noise can be added as 3 separate components of level
1/4, 1/12, and 1/6, respectively, then one can accommodate all
possible dropout outcomes within the tolerance by subtract-
ing a subset of the added components to precisely remove the
excessive noise. To be exact, if no client drops, i.e., |𝐷 | = 0,
each surviving client removes 𝑙 ′𝑒𝑥 = 1/12 + 1/6 (Figure 4b); if
one client drops, i.e., |𝐷 | = 1, each surviving client removes
𝑙 ′𝑒𝑥 = 1/6 (Figure 4c); if two clients drop, i.e., |𝐷 | = 2, each
surviving client removes 𝑙 ′𝑒𝑥 = 0 (Figure 4d).

To be general, Dordis lets each client 𝑐𝑖 ∈ 𝑈 decompose the
added noise 𝒏𝑖 ∼ 𝜒 (𝜎2

∗
|𝑈 |−𝑇) into 𝑇 + 1 components, i.e., 𝒏𝑖 =∑𝑇

𝑘=0 𝒏𝑖,𝑘 where 𝒏𝑖,0 ∼ 𝜒 (𝜎
2
∗
|𝑈 |) and 𝒏𝑖,𝑘 ∼ 𝜒 (𝜎2

∗
(|𝑈 |−𝑘+1) (|𝑈 |−𝑘))

for 𝑘 = 1, 2, · · · ,𝑇 . These noise components are constructed
in a way that when there are |𝐷 | clients dropped after be-
ing sampled, the noise components 𝒏𝑖,𝑘 contributed by the
surviving clients 𝑐𝑖 ∈ 𝑈 \ 𝐷 with the index 𝑘 > |𝐷 | be-
come excessive and should be removed. One can verify that
the aggregate of these removed components is exactly 𝑙ex,
i.e.,

∑
𝑐𝑖 ∈𝑈 \𝐷

∑𝑇
𝑘= |𝐷 |+1 𝒏𝑖,𝑘 ∼ 𝜒 (𝑙ex). We formalize the noise

enforcement process for precise noise control as XNoise.

Definition 2 (XNoise). In each training round, a sampled
client 𝑐𝑖 ∈ 𝑈 adds the intended excessive noise to its up-
date 𝚫𝑖 and sends the perturbed result �̃�𝑖 = 𝚫𝑖 +

∑𝑇
𝑘=0 𝒏𝑖,𝑘

to the server. Among these sampled clients, a subset 𝐷 has
dropped where |𝐷 | ≤ 𝑇 . The server calculates the aggregate
update �̃� =

∑
𝑐𝑖 ∈𝑈 \𝐷 �̃�𝑖 , and then removes some excessive

noise components contributed by the surviving clients (known
as survivals) to precisely enforce the target noise level, i.e.,
�̃� −∑𝑐𝑖 ∈𝑈 \𝐷

∑𝑇
𝑘= |𝐷 |+1 𝒏𝑖,𝑘 .

Dropout-Resilient Noise Removal with Secret Sharing.
As described in §3.1, our noise decomposition design allows
clients to transmit the seeds that are used to generate the
requested noise components instead of those components
in noise removal, greatly reducing the communication over-
head. To further make this process dropout-resilient, we use
Shamir’s secret sharing scheme [69] for seed bookkeeping:
each sampled client secretly shares with others the seeds it
uses to generate local noise components before the secure
aggregation takes place.

As such, to recover a local noise component during noise
removal, the server first directly consults the related client
on the corresponding seed. If the client drops out before
reporting the seed, the server then initiates one additional
communication round to collect the secret shares of the
seed from all available clients. The server can recover the
seed provided that the number of responding clients in this
communication round exceeds a certain threshold 𝜏 specified
by the secret sharing scheme [69].

Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy EuroSys ’24, April 22–25, 2024, Athens, Greece

Given all the above, a faithful execution of XNoise strictly
enforces the target noise level, as established by Theorem 1.
The proof is given in the full version of this paper [37].

Theorem 1 (Correctness). XNoise ensures the noise level in
the aggregate update is exactly 𝜎2

∗ , regardless of the dropout
outcome as long as |𝐷 | ≤ 𝑇 , i.e., the number of dropped clients
does not exceed the dropout tolerance.

3.3 Security Consolidation with Optimized Practice
We next describe how we deploy XNoise in unsecure envi-
ronments with optimized implementation.
Establishment of Secure Channels across Clients. For
a client to be able to share a secret with another client as de-
sired in §3.2, they first establish a secure channel. To achieve
this over a server-mediated network, Dordis has them con-
duct key agreement via the Diffie-Hellman protocol [55] to
establish the shared secret key for encrypting the subsequent
communication. Furthermore, when a channel needs to be
authenticated (under the malicious threat model), either end
of the channel has to sign its messages for the other end to
verify its identity with a public key infrastructure (PKI).
Prevention from Understating Dropout. As character-
ized by Equation (1), the less severe the client dropout is, the
more noise the server removes. While a semi-honest server
faithfully runs the protocol and never reports a smaller num-
ber of dropped clients than the actual one, a malicious server
may understate the dropout severity for removingmore noise
than needed and obtaining an insufficiently perturbed ag-
gregate. In the worst case, the malicious server can reduce
the aggregate noise level to (1 −𝑇 /|𝑈 |)𝜎∗, e.g., only 40% of
the target noise remains given the dropout tolerance set as
60% of the sampled clients. To detect whether a malicious
server understates client dropout, Dordis lets clients verify
the broadcasted dropout outcome with the use of a PKI and
a standard UF-CMA2 signature scheme SIG:
• Before uploading its perturbed local update Δ̃𝑖 , each client
𝑖 signs the current round number 𝑅 with its signing key
𝑑𝑆𝐾𝑖 and produces a signature 𝜔 ′𝑖 ← SIG.sign(𝑑𝑆𝐾𝑖 , 𝑅). 𝜔 ′𝑖
is sent along with Δ̃𝑖 to the server.
• When broadcasting the dropout outcome 𝐷 , the server
also broadcasts the set { 𝑗, 𝜔 ′𝑗 } 𝑗∈𝑃 , which contains all the
signatures it has received (𝑃 denoted as the related clients).
• After receiving 𝐷 and { 𝑗, 𝜔 ′𝑗 } 𝑗∈𝑃 , each client 𝑖 verifies that:
1) all signatures are correct, i.e., SIG.ver(𝑑𝑃𝐾𝑗 , 𝑅, 𝜔 ′𝑗) =

1 for all 𝑗 ∈ 𝑃 , and 2) they agree with the broadcasted
dropout outcome, i.e., 𝑃 = 𝑈 \ 𝐷 (otherwise aborts).

Intuitively, for the server to pretend that a client 𝑗 survives,
it has to forge that client’s signature on the current round
number, which is computationally infeasible if the client in
fact dropped out, given the security of the signature scheme.

2Unforgability against Chosen-Message Attacks.

Optimization via Integration with Secure Aggregation.
The aforementioned security-related secure channel estab-
lishment and the dropout outcome verification both induce
𝑂 (|𝑈 |) cost to each sampled client in computation and com-
munication, and𝑂 (|𝑈 |2) cost to the server in communication.
On the other hand, secure aggregation, the other indispens-
able component in the distributed DP workflow, often has
instantiated similar primitives for correctness and security
of its execution [12, 15]. We thus repurpose the existing secu-
rity infrastructure to reduce the implementation complexity
and improve the runtime efficiency.
To exemplify, Figure 5 details how we integrate XNoise

with SecAgg [15] for reusing the secure channels across
clients and correct broadcast on dropout outcome. SecAgg is
instantiated with a public key infrastructure (PKI), the Diffie-
Hellman key agreement [55] KA protocol composed with a
secure hash function, the Shamir’s 𝑡-out-of-𝑛 secret sharing
scheme [69] SS, an IND-CPA (Indistinguishability against
Chosen-Plaintext Attacks) and INT-CTXT (Integrity of Ci-
phertext) authenticated encryption scheme AE, a UF-CMA
signature scheme SIG, and a secure pseudorandom gener-
ator PRG. For a detailed explanation of the cryptographic
primitives employed by SecAgg, we refer the reader to the
original paper [15]. While we opted to implement XNoise
by resuing SecAgg’s infrastructure for improved complexity
and efficiency, we emphasize that XNoise is self-contained
and complementary to secure aggregation protocols.
Handling Mild Collusion. The server can collude with
a subset of clients under semi-honest and malicious threat
models. In its strongest form, they collude from the very
beginning of the protocol and pool their views all the time.
As the collusion scale is presumably mild (justified in §2.1),
honest clients can use a slightly increased amount of local
noise to handle such collusion without utility loss. For ex-
ample, given a collusion tolerance 𝑇𝐶 ≈ 0.01|𝑈 |, instead of
adding noise of level 𝜎2

∗
|𝑈 |−𝑇 , each honest client adds noise of

level 𝜎2
∗

|𝑈 |−𝑇 ·
𝑡

𝑡−𝑇𝐶 where 𝑡 is the threshold as used in SecAgg.
In doing so, a collusion within the tolerance𝑇𝐶 will not yield
an insufficiently perturbed aggregate (§3.4).
It is important to mention that in the malicious setting

with mild collusion, Dordis no longer enforces the minimum
necessary noise but instead introduces a noise inflation factor
of 𝑡

𝑡−𝑇𝐶 . Fortunately, given that 𝑡 is intentionally much larger
than 𝑇𝐶 ,3, the inflation factor is only slightly greater than
1. It should be noted, however, that this approach alone is
insufficient to address the privacy leakage caused by dropout
without any loss in utility. We anticipate that dropout could
be on amuch larger scale than collusion, potentially reaching
the same magnitude as 𝑡 (§2.3.1).

3The feasible range of 𝑡 is (0.5 |𝑈 |, |𝑈 |] in the malicious setting [15].

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhifeng Jiang, Wei Wang, and Ruichuan Chen

The SecAgg Protocol integrated with XNoise

• Setup:
– All parties are given the current round index 𝑟 , the security parameter 𝜂, the number of users |𝑈 | and a threshold for SecAgg 𝑡 , honestly gen-

erated 𝑝𝑝 ← KA.gen(𝜂) , parameters 𝑚 and 𝑅 such that Z𝑚
𝑅

is the space from which inputs are sampled, and a field F to be used for secret
sharing and noise samping, a noise distribution 𝜒 , the target central noise level 𝜎2

∗ , a dropout tolerance𝑇 and a collusion tolerance𝑇𝐶 for XNoise.
All users also have a private authenticated channel with the server.

User 𝑢

– Have an input vector 𝚫𝑢 , noises 𝒏𝑢,0

𝑔𝑢,0∼ 𝜒

(
𝜎2
∗
|𝑈 | ·

𝑡
𝑡−𝑇𝐶

)
, 𝒏𝑢,𝑘

𝑔𝑢,𝑘∼ 𝜒

(
𝜎2
∗

(|𝑈 |−𝑘+1) (|𝑈 |−𝑘) ·
𝑡

𝑡−𝑇𝐶

)
(𝑘 ∈ [1,𝑇]) where 𝑔𝑢,𝑘 ← F for all 𝑘 .

– Add to 𝚫𝑢 a series of noises and produce �̃�𝑢 : �̃�𝑢 = 𝚫𝑢 +
∑

0≤𝑘≤𝑇 𝒏𝑢,𝑘 .
– [Receive signing key 𝑑𝑆𝐾𝑢 from the trusted third party, together with verification keys 𝑑𝑃𝐾𝑣 bound to each identity 𝑣.]

• Stage 0 (AdvertiseKeys):

User 𝑢
{
– Generate key pairs (𝑐𝑃𝐾𝑢 , 𝑐𝑆𝐾𝑢) ← KA.gen(𝑝𝑝) , (𝑠𝑃𝐾𝑢 , 𝑠𝑆𝐾𝑢) ← KA.gen(𝑝𝑝) , [and generate 𝜔𝑢 ← SIG.sign(𝑑𝑆𝐾𝑢 , 𝑐𝑃𝐾𝑢 ∥𝑠𝑃𝐾𝑢) = 1].
– Send (𝑐𝑃𝐾𝑢 ∥𝑠𝑃𝐾𝑢 [∥𝜔𝑢]) to the server (through the private authenticated channel) and move to next round.

Server
{
– Collect at least 𝑡 messages from individual users in the previous round (denote with𝑈1 this set of users). Otherwise, abort.
– Broadcast to all users in𝑈1 the list { (𝑣, 𝑐𝑃𝐾𝑣 , 𝑠𝑃𝐾𝑣 [, 𝜔𝑣]}𝑣∈𝑈1 .

• Stage 1 (ShareKeys):

User 𝑢

– Receive the list { (𝑣, 𝑐𝑃𝐾𝑣 , 𝑠𝑃𝐾𝑣 [, 𝜔𝑣]}𝑣∈𝑈1 broadcasted by the server. Assert that |𝑈1 | > 𝑡 , that all the public keys pairs are different,
[and that ∀𝑣 ∈ 𝑈1, SIG.ver(𝑑𝑃𝐾𝑣 , 𝑐𝑃𝐾𝑣 ∥𝑠𝑃𝐾𝑣 , 𝜔𝑣) = 1].

– Sample a random element 𝑏𝑢 ← F (to be used as a seed for a PRG).
– Generate 𝑡 -out-of- |𝑈1 | shares of 𝑠𝑆𝐾𝑢 : { (𝑣, 𝑠𝑆𝐾𝑢,𝑣) }𝑣∈𝑈1 ← SS.share(𝑠𝑆𝐾𝑢 , 𝑡,𝑈1) and of 𝑏𝑢 : { (𝑣,𝑏𝑢,𝑣) }𝑣∈𝑈1 ← SS.share(𝑏𝑢 , 𝑡,𝑈1) .
– Generate 𝑡 -out-of- |𝑈1 | shares for each of 𝑔𝑢,𝑘 where 𝑘 > 0: { (𝑣, 𝑔𝑢,𝑘,𝑣) }𝑣∈𝑈1 ← SS.share(𝑔𝑢,𝑘 , 𝑡,𝑈1) for 𝑘 = [1,𝑇].
– For each other user 𝑣 ∈ 𝑈1 \ {𝑢}, compute 𝑒𝑢,𝑣 ← AE.enc(KA.agree(𝑐𝑆𝐾𝑢 , 𝑐𝑃𝐾𝑣),𝑢 ∥𝑣 ∥𝑠𝑆𝐾𝑢,𝑣 ∥𝑏𝑢,𝑣 ∥ {𝑔𝑢,𝑘,𝑣 }1≤𝑘≤𝑇) .
– If any of the above operations (assertion, signature verification, key agreement, encryption) fails, abort.
– Send all the ciphertexts 𝑒𝑢,𝑣 to the server (each implicitly containing addressing information, 𝑢, 𝑣 as metadata).

Server
{
– Collect lists of ciphertexts from at least 𝑡 users (denote with𝑈2 ⊆ 𝑈1 this set of users).
– Sends to each user 𝑢 ∈ 𝑈2 all ciphertexts encrypted for it: {𝑒𝑢,𝑣 }𝑣∈𝑈2 .

• Stage 2 (MaskedInputCollection):

User 𝑢

– Receive (and store) from the server the list of ciphertexts {𝑒𝑢,𝑣 }𝑣∈𝑈2 (and infer the set𝑈2). If the list is of size < 𝑡 , abort.
– For each other user 𝑣 ∈ 𝑈2 \ {𝑢}, compute 𝑠𝑢,𝑣 ← KA.agree(𝑠𝑆𝐾𝑢 , 𝑠𝑃𝐾𝑣) and expand this value using a PRG into a random vector

𝒑𝑢,𝑣 = 𝛾𝑢,𝑣 · PRG(𝑠𝑢,𝑣) , where 𝛾𝑢,𝑣 = 1 when 𝑢 > 𝑣, and 𝛾𝑢,𝑣 = −1 when 𝑢 < 𝑣 (note that 𝒑𝑢,𝑣 + 𝒑𝑣,𝑢 = 0∀𝑢 ≠ 𝑣). Define 𝒑𝑢,𝑢 = 0.
– Compute the user’s own private mask vector 𝒑𝑢 = PRG(𝑏𝑢) and the masked perturbed input 𝒚𝑢 ← �̃�𝑢 + 𝒑𝑢 +

∑
𝑣∈𝑈2 𝒑𝑢,𝑣 (mod 𝑅) .

– If any of the above operations (key agreement, PRG) fails, abort. Otherwise, send 𝒚𝑢 to the server and move to the next round.
Server : Collect 𝒚𝑢 from at least 𝑡 users (denote with𝑈3 ⊆ 𝑈2 this set of users). Send to each user in𝑈3 the list𝑈3.
• [Stage 3 (ConsistencyCheck)]:

User 𝑢: [Receive from the server a list𝑈3 ⊆ 𝑈2 containing at least 𝑡 users (𝑢 included). Abort if |𝑈3 | < 𝑡 . Send to the server 𝜔 ′𝑢 ← SIG.sign(𝑑𝑆𝐾𝑢 ,𝑟 ∥𝑈3) .]
Server : [Collect 𝜔 ′𝑢 from at least 𝑡 users (denote with𝑈4 ⊆ 𝑈3 this set of users). Send to each user in𝑈4 the set {𝑣,𝜔 ′𝑣 }𝑣∈𝑈4 .]
• Stage 4 (Unmasking):

User 𝑢

– Receive from the server a list {𝑣[, 𝜔 ′𝑣]}𝑣∈𝑈4 . Verify that 𝑈4 ⊆ 𝑈3, that |𝑈4 | ≥ 𝑡 [, that SIG.ver(𝑑𝑃𝐾𝑣 ,𝑟 ∥𝑈3, 𝜔
′
𝑣) = 1 for all 𝑣 ∈ 𝑈4,

(otherwise abort).]
– For each other user 𝑣 ∈ 𝑈2 ⊆ {𝑢}, decrypt the ciphertext 𝑣′ ∥𝑢′ ∥𝑠𝑆𝐾𝑣,𝑢 ∥𝑏𝑣,𝑢 ∥ {𝑔𝑣,𝑘,𝑢 }1≤𝑘≤𝑇← AE.dec(KA.agree(𝑐𝑆𝐾𝑢 , 𝑐𝑃𝐾𝑣), 𝑒𝑣,𝑢)

received in the MaskedInputCollection round and assert that 𝑢 = 𝑢′ ∧ 𝑣 = 𝑣′ .
– If any of the decryption operations fail (in particular, the ciphertext does not correctly authenticate), abort.
– Send a list of shares to the server: 𝑠𝑆𝐾𝑣,𝑢 for users 𝑣 ∈ 𝑈2 \𝑈3 and 𝑏𝑣,𝑢 in 𝑣 ∈ 𝑈3; and a list of seeds 𝑔𝑢,𝑘 for |𝑈 \𝑈3 | + 1 ≤ 𝑘 ≤ 𝑇 .

Server

– Collect responses from at least 𝑡 users (denote with𝑈5 ⊆ 𝑈4 this set of users).
– For each user𝑢 ∈ 𝑈2 \𝑈3, reconstruct 𝑠𝑆𝐾𝑢 ← SS.recon({𝑠𝑆𝐾𝑢,𝑣 }𝑣∈𝑈5 , 𝑡) and use it (with the public keys received in theAdvertiseKeys

round) to recompute 𝒑𝑢,𝑣 for all 𝑣 ∈ 𝑈3 using the PRG. For each user𝑢 ∈ 𝑈3, reconstruct𝑏𝑢 ← SS.recon({𝑏𝑢,𝑣 }𝑣∈𝑈5 , 𝑡) to recompute
𝒑𝑢 using the PRG.

– Compute 𝒛 =
∑
𝑢∈𝑈3 �̃�𝑢 as

∑
𝑢∈𝑈3 �̃�𝑢 =

∑
𝑢∈𝑈3 𝒚𝒖 −

∑
𝑢∈𝑈3 𝒑𝒖 +

∑
𝑢∈𝑈3,𝑣∈𝑈2\𝑈3 𝒑𝑣,𝑢 .

– Sends to each user 𝑢 ∈ 𝑈5 the set𝑈5, if𝑈3 \𝑈5 ≠ ∅.
• Stage 5 (ExcessiveNoiseRemoval):

User 𝑢
{– Receive from the server the set𝑈5. Verify that𝑈5 ⊆ 𝑈4 and that𝑈5 ≥ 𝑡 (otherwise abort).
– Send a list of shares to the server, which consists of 𝑔𝑣,𝑘,𝑢 for users 𝑣 ∈ 𝑈3 \𝑈5 and |𝑈 \𝑈3 | + 1 ≤ 𝑘 ≤ 𝑇 .

Server

– Collect responses from at least 𝑡 users (denote with𝑈6 ⊆ 𝑈5 this set of users).
– For each user 𝑢 ∈ 𝑈3 \𝑈5, reconstruct 𝑔𝑢,𝑘 ← SS.recon({𝑔𝑢,𝑘,𝑣 }𝑣∈𝑈6 , 𝑡) for |𝑈 \𝑈3 | + 1 ≤ 𝑘 ≤ 𝑇 .

– Generate random noises 𝒏𝑢,𝑘
𝑔𝑢,𝑘∼ 𝜒

(
𝜎2
∗

(|𝑈 |−𝑘+1) (|𝑈 |−𝑘) ·
𝑡

𝑡−𝑇𝐶

)
for 𝑢 ∈ 𝑈3 and |𝑈 \𝑈3 | + 1 ≤ 𝑘 ≤ 𝑇 and subtracts them from 𝒛.

Figure 5. Detailed description of the SecAgg protocol [15] integrated with XNoise (§3.2). [Italicized parts inside square
brackets are required to guarantee security in the malicious threat model.] Red, underlined parts are specific for XNoise. Green,
highlighted parts are secure results of SecAgg reused by XNoise. The symbol ∥ denotes concatenation.

Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy EuroSys ’24, April 22–25, 2024, Athens, Greece

3.4 Security Analysis
We consider the strongest adversary in our threat model
(§2.1), i.e., a malicious server colluding with a subset of sam-
pled clients, as it subsumes weaker adversaries. By being
malicious, we mean arbitrary deviation from the protocol,
e.g., sending incorrect and/or chosen messages to honest
clients, aborting, or omitting messages. In this case, we aim
to provide the target level of differential privacy for hon-
est clients (i.e., the adversary never sees an insufficiently
perturbed update). We regard the protocol illustrated in Fig-
ure 5 (denoted by 𝜋) as the target implementation of XNoise
without loss of generality.

Let 𝜂 be security parameter; 𝑡 be the threshold of SecAgg;
𝑇 and𝑇𝐶 be the tolerated number of clients dropping out and
colluding in XNoise, respectively; 𝑈 be the set of sampled
clients;𝐶 ⊂ 𝑈 ∪{𝑆} be the set of colluding parties (where 𝑆 is
the server); 𝚫𝑈 ′ = {𝚫𝑢}𝑢∈𝑈 ′ and 𝑔𝑈 ′ = {𝑔𝑢,𝑘 }𝑢∈𝑈 ′,𝑘∈[0,𝑇] be
the input vectors and sampling seeds used in noise addition
of any subset of users𝑈 ′ ⊆ 𝑈 , respectively; 𝜎2

∗ be the target
level of aggregate noise for each round. Theorem 2 shows
that a computationally bounded adversary cannot recover
an insufficiently perturbed aggregate during the execution
of 𝜋 . We give the proof in the full version of this paper [37].

Theorem 2 (Privacy against Malicious Adversaries). For
all 𝜂, 𝑡 , 𝑈 , 𝑇 , 𝑇𝐶 , 𝐶 ⊆ 𝑈 ∪ {𝑆}, 𝚫𝑈 \𝐶 and 𝑔𝑈 \𝐶 . If 2𝑡 >

|𝑈 | + |𝐶 ∩𝑈 | and𝑇𝐶 ≥ |𝐶 ∩𝑈 |, probabilistic polynomial-time
(PPT) adversary, given its view of an execution of 𝜋 , cannot
recover an aggregate update perturbed with noise less than the
target level 𝜎2

∗ with non-negligible probability.

4 Optimal Pipeline Acceleration
As described in §2.3.2, secure aggregation protocols used for
distributed DP in FL create a severe performance bottleneck
in the round latency. Additionally, integrating our dropout-
resilient noise enforcement scheme may further exacerbate
its inefficiency. To address this performance issue, we target
system-level solutions that preserve all the existing merits
of a specific secure aggregation protocol.
Technical Intuition. We first identified three types of op-
erations in distributed DP that use different system resources:
1) s-comp that uses the compute resources (e.g., CPU and
memory) of the server, 2) c-comp that uses the compute re-
sources of clients, and 3) comm that relies on server-client
communications. As observed in FL practice, plain execution
of distributed DP leads to low utilization of these resources
over time: s-comp, c-comp, and comm can be idle for up to
53%, 63%, and 93% of the round time, respectively. This in-
dicates that pipelining, which enables overlapping resource
usage, is viable for improving the utilization. However, de-
signing and automating pipelined execution for distributed
DP in FL leads to two novel system challenges:

Table 1. Abstracting the workflow of dropout-resilient dis-
tributed DP into multiple stages for pipelined execution.

Step Operation Stage (Resource)

1 Clients encode updates.

1 (c-comp)2 Clients generate security keys.
3 Clients establish shared secrets.
4 Clients mask encoded updates.

5 Clients upload masked updates. 2 (comm)

6 Server deals with dropout.
3 (s-comp)7 Server computes aggregate update.

8 Server updates the global model.

9 Server dispatches the aggregate. 4 (comm)

10 Clients decode the aggregate. 5 (c-comp)11 Clients use the aggregate.

• Given the large variety in secure aggregation protocols,
how to represent their workflows to facilitate generic so-
lutions to the pipelined execution problem (§4.1)?
• Given the complexity of FL environments, how to correctly
model them for generating an optimal pipelining plan for
maximum acceleration (§4.2)?

4.1 Staging Workflow for Pipelined Execution
To allow for a generic solution, we first abstract away the
specifics of secure aggregation protocols.
AbstractingWorkflow for Generality. Unlike traditional
ML workflows, which involve a computation graph of neural
network with general consensus established on their rep-
resentation [2, 33], secure aggregation protocols combine
both computation and communication, with no standardized
approach. Nonetheless, we notice that secure aggregation
protocols are often designed as multi-round server-client
interactions. We thus propose to represent the workflow
of a secure aggregation protocol as a sequence of ‘round-
trip steps’, each of which starts with the server’s request
for some data and ends with the related clients’ responses.
Furthermore, we associate each step with its dominant sys-
tem resource and group consecutive steps that use the same
resource into a stage which corresponds to the minimum
scheduling unit in pipelining. For example, Table 1 illus-
trates our representation of a distributed DP protocol using
SecAgg [15], where all 11 steps are grouped into 5 stages.
Pipelining via Task Partitioning. By construction, any
two adjacent stages consume different system resources,
enabling overlapped execution among independent aggre-
gation workflows. Leveraging the coordinate-wise nature
of aggregation, Dordis partitions each client’s update Δ𝑖
into 𝑚 chunks Δ𝑖,1, · · · ,Δ𝑖,𝑚 . This divides the original ag-
gregation task into𝑚 independent sub-tasks, where the 𝑗-
th sub-task aggregates the 𝑗-th chunks of all clients, i.e.,

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhifeng Jiang, Wei Wang, and Ruichuan Chen

Time

Chunk 1

Chunk 2

Chunk 3

1 (c-comp)Stage 2 (comm) 3 (s-comp) 4 (comm) 5 (c-comp)

Figure 6. Pipeline scheduling of 3 chunk-aggregation tasks
for distributed DP in 5 stages, as specified in Table 1.

∑
𝑖 Δ𝑖 = (

∑
𝑖 Δ𝑖,1)∥ · · · ∥ (

∑
𝑖 Δ𝑖,𝑚), where ∥ denotes concate-

nation. As such, Dordis can enable pipeline parallelism by
scheduling the processing stages of the𝑚 sub-tasks.
Reducing Design Space. Note that each partition configu-
ration is associated with a completion time that is achieved
by executing that configuration. Hence, deriving an opti-
mal pipelined execution plan essentially requires searching
for the configuration with the shortest completion time. To
avoid a complex combinatorial problem, we focus on evenly
partitioning model updates, which reduces the problem to de-
ciding only𝑚, i.e., the number of chunks. Figure 6 illustrates
a pipeline execution result with 3 equally-sized aggregation
sub-tasks. In Section 6.4, we show that such a reduced con-
sideration suffices to gain a remarkable speedup in practice.

4.2 Determining Optimal Number of Chunks
While a formal description of the optimization problem for
pipelined execution is deferred to the full version of this pa-
per [37], it is clear that the key to solving an optimal pipelin-
ing plan lies in accurately determining the completion time
for each possible choice of𝑚. This requires a performance
model and a profiling approach that both fit the FL practice.
Performance Model with Intervention Accounted. To
compute the completion time associated with a specific𝑚,
Dordis relies on the following performance model that em-
pirically characterizes how the processing time for a sub-task
at a stage 𝑠 , denoted by 𝜏𝑠 , is related to𝑚:

𝜏𝑠 = 𝛽𝑠,1
𝑑

𝑚
+ 𝛽𝑠,2𝑚 + 𝛽𝑠,3, (3)

where 𝑑 is the update size; 𝛽𝑠,1, 𝛽𝑠,2 and 𝛽𝑠,3 are the profiled
parameters used to weigh the impact of partition size, inter-
task intervention, and constant cost, respectively. The first
and third terms are intuitive, while the second term is specifi-
cally designed for FL. Unlike traditional ML where each node
can be dedicated to one task, resources in FL are scarce, less
capable, and do not provide strong isolation across tasks. As
the only device contributed by the owner client, a mobile
device is seldom fully committed to pipeline stages that use
c-comp. Instead, some of its CPU cycles will be spent on net-
work IO to facilitate stages that use comm. Such distraction
can be accentuated as the pipeline goes deeper. Dordis thus
respects this intervention effect across pipelined tasks.

Parameter Profiling. 𝛽1, 𝛽2, and 𝛽3 in Equation 3 depend
only on the hardware capabilities of the server and the par-
ticipating clients, especially the slowest one. As the sampled
clients’ tail latency does not vary vastly across rounds in prac-
tice, we let Dordis profile these constants by linear regression
with offline micro-benchmarking, which executes the proto-
col with small-scale proxy data for certain rounds. Note that
such lightweight profiling can also be conducted online by
interleaving it with the training workflow if needed.

5 Implementation
We have implemented Dordis with 10.3k lines of Python
code. It leverages PyTorch [61] to instantiate FL applications
and employs the distributed DP protocol with DSkellam [5].
System Architecture. Figure 7 shows how Dordis fits in
the existing FL workflow, with yellow boxes being Dordis-
introduced components. 1○ Client sampling and training: at
the beginning of each round, the server randomly samples
a subset of available clients as participants. The sampled
clients then fetch the global model from the server and com-
pute local updates using private data. 2○ Pipeline preparation:
based on the optimal pipeline execution plan provided by
the server, each client chunks the local update for pipelined
aggregation. 3○ Client processing: for each update chunk, the
client perturbs it with DSkellam’s encoding scheme and our
XNoise noise enforcement approach. The perturbed chunk
is further masked following the secure aggregation protocol.
4○ Server aggregation: the server aggregates and unmasks the
received update chunks, removes the excessive parts of their
DP noises to ensure that the residual noise remains at the
minimum required level, and uses each aggregated update
chunk to refine the respective part of the global model.
Programming Interface. Despite our prototype choice,
Dordis is proactively designed to be complementary to ex-
isting differentially private FL (DPFL) frameworks. In par-
ticular, Dordis offers a user-friendly programming interface
for developers to implement a variety of privacy and secu-
rity building blocks. Further details are provided in the full
version of this paper [37]. To the best of our knowledge,
Dordis is the first generic and end-to-end implementation of
distributed DP with pipeline acceleration.

6 Evaluation
We evaluate Dordis’s effectiveness on three CV and NLP
FL tasks in the semi-honest setting. The highlights of our
evaluation are listed below.
1. Our noise enforcement scheme, XNoise, ensures that the

target privacy level is consistently attained, even when
client dropout occurs, without impairing model utility
(§6.2). The runtime overhead is deemed acceptable even
without pipeline acceleration, and the network overhead
remains constant despite the model’s expanding size (§6.3).

Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy EuroSys ’24, April 22–25, 2024, Athens, Greece

Aggregation

and unmasking

Masking

Secure

aggregation

Adding

excessive noise

Removing

unnecessary noise DP Decoding

DP Encoding

Chunking
DP-related operations

Combining
Model

training

Client

sampling
D

is
tr

ib
u
te

d
 D

P

FL Application

Server

Client

Scheduling

Pipelining

Profiling
Aggregated update

Local model update

Dordis-introduced

component

Bold Supporting various

instantiations

1○2○

3○

4○

Each step in the

DPFL workflow

Figure 7. An overview of Dordis’ system architecture and how it fits in the existing FL workflow.

2. The pipeline-parallel aggregation design in Dordis signifi-
cantly enhances the training speed, resulting in up to 2.4×
improvement in the round time (§6.4).

6.1 Methodology
Datasets and Models. We run two categories of applica-
tions with three real-world datasets of different scales.

• Image Classification: the first dataset, CIFAR-10 [43], con-
sists of 60k colored images categorized into 10 classes. We
train a ResNet-18 [29] model with 11M parameters over
100 clients using a non-IID data distribution, generated
by applying latent Dirichlet allocation (LDA) [4, 6, 30, 67]
with concentration parameters set to 1.0 (i.e., label distri-
butions highly skewed across clients). The second dataset,
FEMNIST [16], consists of 805k greyscale images classified
into 62 classes. The dataset was partitioned by the original
data owners, and we merge every three owners’ data to
form a client’s dataset. We train a CNN model [5, 40] with
1M parameters over 1000 clients.
• Language Modeling: the large-scale Reddit dataset [1]. We
train an Albert [45] model with 15M parameters over 200
clients for next-word prediction.

Experiment Setup. We launch an AWS EC2 r5.4xlarge
instance (16 vCPUs and 128 GB memory) for the server and
one c5.xlarge (4 vCPUs and 8 GB memory) instance for
each client, aiming to match the computing power of mobile
devices. To emulate hardware heterogeneity, we set the re-
sponse latencies of clients to follow the Zipf distribution [34–
36, 46, 76] with 𝑎 = 1.2 (moderately skewed) such that the
end-to-end latency of the 𝑖-th slowest client is proportional
to 𝑖−𝑎 . We also emulate network heterogeneity by throt-
tling clients’ bandwidth to fall within the range [21Mbps,
210Mbps] to match the typical mobile bandwidth [20] and
meanwhile follow another independent Zipf distribution
with 𝑎 = 1.2.
Hyperparameters. For FL training, we use the mini-batch
SGD for FEMNIST and CNN and AdamW [50] for Reddit, all
with momentum set to 0.9. The number of training rounds
and local epochs are 50 and 2 for both FEMNIST and Reddit,
and 150 and 1 for CIFAR-10, respectively. The batch size and

Orig XNoise

0 20 40
Dropout Rate (%)

6

8

Pr
iv

ac
y

ε
(δ

=
0.

00
1)

(a) FEMNIST.

0 20 40
Dropout Rate (%)

6

8

Pr
iv

ac
y

ε
(δ

=
0.

01
)

(b) CIFAR-10.

0 20 40
Dropout Rate (%)

6

8

Pr
iv

ac
y

ε
(δ

=
0.

00
5)

(c) Reddit.

Figure 8. Privacy budget consumption. A larger 𝜖 corre-
sponds to worse privacy preservation.

learning rate are 20 and 0.01 for FEMNIST, 128 and 0.005 for
CIFAR-10, and 20 and 8e-5 for Reddit, respectively.

For distributed DP, we set the privacy budget 𝜖 to 6 and 𝛿
the reciprocal of the total number of clients as they represent
standard privacy in the DPFL literature [5, 40, 75]. We fix the
signal bound multiplier 𝑘 = 3, bias 𝛽 = 𝑒−0.5, and bit-width
𝑏 = 20 for the configuration of DSkellam [5] as specified
in the original paper. The L2-norm clipping bounds [5] for
FEMNIST and CIFAR-10 is set to 1 and 3, respectively. Also,
there are 100 and 16 clients being sampled in each round
for FEMNIST and CIFAR-10, respectively. While we base
the implementation of secure aggregation on SecAgg [15]
when evaluating our noise enforcement approach, XNoise,
we also implement SecAgg+ [12] in Section 6.4 to highlight
the generality of our distributed pipeline architecture.
Dropout Model. We assume that when clients drop out of
the protocol, they drop out after being sampled but before
sending their masked and perturbed update to the server. To
study the impact of various severities, we let clients randomly
drop with a configurable rate in each training round. The
dropout rate is consistent within a training process, while
varying from 0 to 40% across different processes.
Baseline. We compare Dordis against Orig, the original,
commonly-used distributed DP protocol that lacks the ability
to enforce the target noise level (Definition 1 in §3) and
support pipeline execution.

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhifeng Jiang, Wei Wang, and Ruichuan Chen

Table 2. Final testing accuracy (for FEMNIST and CIFAR-10)
or perplexity (for Reddit, the lower, the better) of Orig and
XNoise across various dropout rates 𝑑 .

𝑑 0 10% 20% 30% 40%
Ori XNo Ori XNo Ori XNo Ori XNo Ori XNo

F 61.3 61.4 61.4 61.4 61.2 61.4 61.2 61.2 61.4 61.5
C 66.5 66.3 66.7 66.9 66.6 65.7 64.3 65.7 63.8 64.2
R 2169 2142 2158 2179 2286 2285 2294 2317 2299 2329

Orig XNoise

15 30 45
Round

20

40

60

A
cc

ur
ac

y
(%

)

(a) FEMNIST.

50 100 150
Round

30

50

70

A
cc

ur
ac

y
(%

)

(b) CIFAR-10.

15 30 45
Round

1

2

Pe
rp

le
xi

ty
 (1

e4
)

(c) Reddit.

Figure 9. Round-to-accuracy performance (20% dropout).

6.2 Effectiveness of Noise Enforcement

XNoise Ensures Privacywithout SacrificingUtility. Fig-
ure 8 displays the end-to-end privacy budget consumption.
As expected, XNoise achieves the target privacy (𝜖 = 6) in all
cases by accurately enforcing the target noise (Theorem 1).
On the other hand, due to the missing noise contributions
from dropped clients, the overall privacy budget consumed
by Orig dramatically grows as the severity of client dropout
increases. For example, when the dropout rate is 40%, train-
ing FEMNIST, CIFAR-10, and Reddit to the preset number of
rounds ends up consuming an 𝜖 of 8.3, 8.2, and 8.7, respec-
tively.
We also report the final model accuracy in Table 2. Com-

pared to Orig, which fails to achieve the target privacy in
the presence of client dropout, our XNoise converges at the
same speed (as exemplified by the learning curves in Fig-
ure 9 where the per-round dropout rate is 20%) and induces
no more than 0.9% accuracy loss as it uses the minimum
noise required to maintain the desired level of privacy. It
should be noted that the accuracies obtained with Dordis
are similar to those in other FL studies that use distributed
DP [5, 40, 75]. This is because FL clients have limited and
non-IID data, and model updates are discretized for secure
aggregation. Additionally, in some cases, XNoise achieves
higher accuracy than Orig, even though the latter uses less
noise. This is because the stochasticity introduced by slight
additional random noise can act as a regularizer to reduce
overfitting [48, 58].

6.3 Efficiency of Noise Enforcement

Table 3. Additional per-round network footprint in MB for a
surviving client in ‘rebasing’ and XNoise, compared to Orig,
across various dropout rate 𝑑 .

Model size (# parameters) 5M 50M 500M
𝑑 # sampled clients r X r X r X

0%
100

11.9

0.6

119.2

0.6

1192.1

0.6
200 2.4 2.4 2.4
300 5.5 5.5 5.5

10%
100 0.6 0.6 0.6
200 2.4 2.4 2.4
300 5.3 5.3 5.3

20%
100 0.6 0.6 0.6
200 2.3 2.3 2.3
300 5.2 5.2 5.2

30%
100 0.6 0.6 0.6
200 2.3 2.3 2.3
300 5.2 5.2 5.2

XNoise InducesAcceptableOverhead inTime. Figure 10
shows the average round time, broken down into two compo-
nents: ‘agg’, related to distributed DP operations, and ‘other’,
related to remaining workflow operations such as model
training. In a plain execution without pipeline acceleration
(yellow bars for Orig and XNoise in Figure 10a to 10d and
Figure 10i to 10l), XNoise extends the round time by up to
34% given no dropout, and by up to 19%, 13%, and 12% when
the per-round dropout rate is 10%, 20%, and 30%, respec-
tively. This implies a negative relationship between the time
cost and dropout severity, as the more clients that drop out,
the less noise the server needs to remove in XNoise (Def-
inition 2). Such a relationship also implies an acceptable
overhead in practice, as Dordis targets scenarios with client
dropout. Moreover, the overhead can be further reduced by
Dordis’s pipeline acceleration (§6.4).
XNoise’s Network Overhead is Invariant of Model Size.
The noise decomposition in XNoise allows for the transmis-
sion of noise seeds (§3.1). To examine its practical advantage
over ‘rebasing’, we benchmark their additional network foot-
print induced to a surviving client compared to Orig. As
specified in real deployments, the size of a model weight,
noise seed, Shamir share of seed, ciphertext of a share (the
latter three are configured for XNoise only) are set to 2.5,
32, 16, and 120 in bytes, respectively. As seen in Table 3, as
the model size increases, the network overhead of XNoise
remains constant and low, while that of ‘rebasing’ grows
linearly. The communication time of ‘rebasing’ can thus be
prohibitive when the model is large in size (e.g., >500M)
and/or the client’s bandwidth is low (e.g., <1Mbps). Addi-
tionally, a large overhead makes client failures in the middle
of noise removal more likely, which ‘rebasing’ cannot handle
without the loss of model utility (§3.1).

It is important to highlight that the cost of Dordis is de-
pendent on the number of sampled clients rather than the

Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy EuroSys ’24, April 22–25, 2024, Athens, Greece

plain-agg plain-other pipe-agg pipe-other

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

5

Ti
m

e
(m

in
)

93%

4.49

91%

4.35
95%

6.0

93%

5.84

91%

3.72

89%

3.76
93%

4.52

91%

4.39

(a) FEMNIST, CNN, 𝑑 = 0%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

5

Ti
m

e
(m

in
)

95%

6.63

94%

6.59

96%

7.94

95%

7.79

93%

5.02

92%

4.97
94%

5.67

93%

5.54

(b) FEMNIST, CNN, 𝑑 = 10%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

5

Ti
m

e
(m

in
)

96%

8.31

95%

8.37

96%

9.34

96%

9.19

94%

5.98

93%

6.0
95%

6.44

93%

6.23

(c) FEMNIST, CNN, 𝑑 = 20%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

10

Ti
m

e
(m

in
)

96%

8.72

95%

8.66

97%

9.57

96%

9.48

95%

6.2

93%

6.23
95%

6.55

94%

6.43

(d) FEMNIST, CNN, 𝑑 = 30%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

50

Ti
m

e
(m

in
)

98%

48.46

91%
27.87 99%

61.71

93%

32.41
98%

39.61

96%
20.55 98%

47.64

90%
25.44

(e) FEMNIST, ResNet-18, 𝑑 = 0%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

50

Ti
m

e
(m

in
)

99%

72.06

94%
36.96 99%

82.87

94%

43.35
99%

51.36

91%
29.09 99%

59.76

92%
32.79

(f) FEMNIST, ResNet-18, 𝑑 = 10%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

50

Ti
m

e
(m

in
)

99%

76.8

94%
41.14 99%

87.09

95%

46.17
99%

55.63

98%
32.68 99%

56.99

98%
33.3

(g) FEMNIST, ResNet-18, 𝑑 = 20%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

50

Ti
m

e
(m

in
)

99%

78.74

94%

42.97 99%

86.98

95%

47.02
99%

55.77

98%
33.27 99%

58.47

98%
33.77

(h) FEMNIST, ResNet-18, 𝑑 = 30%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

10

Ti
m

e
(m

in
)

90%

13.35

81%

9.78
92%

16.08

82%

10.95
89%

12.8

80%

9.48
91%

15.22

82%

10.5

(i) CIFAR-10, ResNet-18, 𝑑 = 0%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

20

Ti
m

e
(m

in
)

92%

16.74

82%

12.92
93%

19.14

83%

14.34

92%

15.83

78%

12.49
92%

17.93

82%

13.74

(j) CIFAR-10, ResNet-18, 𝑑 = 10%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

10

Ti
m

e
(m

in
)

92%

16.23

80%

12.6
92%

18.32

84%

11.98
91%

15.24

79%

12.04
92%

17.1

81%

13.24

(k) CIFAR-10, ResNet-18, 𝑑 = 20%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

10

Ti
m

e
(m

in
)

91%

15.76

80%

12.59
92%

17.43

82%

13.54

91%

14.73

81%

10.14
91%

16.52

81%

12.84

(l) CIFAR-10, ResNet-18, 𝑑 = 30%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

20

Ti
m

e
(m

in
)

93%

30.52

86%
14.52 94%

36.68

87%
15.98 92%

29.05

85%
13.86 94%

34.42

87%
15.28

(m) CIFAR-10, VGG-19, 𝑑 = 0%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

25

Ti
m

e
(m

in
)

94%

37.53

88%
16.56 95%

42.93

87%

21.83
93%

35.23

85%
18.45 94%

40.24

89%
17.35

(n) CIFAR-10, VGG-19, 𝑑 = 10%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

25
Ti

m
e

(m
in

)
94%

36.26

87%
15.72 95%

41.01

88%
17.38 93%

33.8

86%
15.05 94%

38.26

88%
16.59

(o) CIFAR-10, VGG-19, 𝑑 = 20%.

Orig XNoise Orig+ XNoise+
Aggregation Protocol

0

25

Ti
m

e
(m

in
)

94%

35.46

87%
15.68 94%

39.79

89%
17.3 93%

33.15

86%
14.76 94%

37.25

88%
16.11

(p) CIFAR-10, VGG-19, 𝑑 = 30%.

Figure 10. The round time breakdown for plain execution and pipeline acceleration. The implemented secure aggregation is
SecAgg (w/o +) and SecAgg+ (w/ +). The number of sampled clients for FEMNIST and CIFAR-10 are 100 and 16, respectively.
The model size for CNN, ResNet-18, and VGG-19 is 1M, 11M, and 20M, respectively. 𝑑 is the per-round dropout rate.

overall population size. In FL systems, although the popu-
lation can be extensive, the number of sampled clients is
typically restricted to a few hundred [14, 42]. This limitation
is due to the fact that involving additional clients beyond
a certain threshold only yields marginal benefits in terms
of accelerating convergence [53, 80]. Therefore, the results
presented in Table 3 are evaluated from practical settings of
sample sizes and are applicable in real-world scenarios.

6.4 Efficiency of Pipeline Acceleration

To study the impact of model sizes, we additionally train a
ResNet-18 over the FEMNIST dataset, and a VGG-19model [71]
(20M parameters) over the CIFAR-10 dataset.
Dordis Generally Benefits from Pipelining. Figure 10
shows that Dordis’s pipeline acceleration benefits all the eval-
uated aggregation protocols by providing a generic pipeline
architecture (§5). Specifically, utilizing idle resources with
pipelined execution can speed up Orig by up to 2.3× (resp.
2.2×) when the implemented secure aggregation is SecAgg
(resp. SecAgg+), while XNoise can achieve a comparable
maximum speedup of 2.4× (resp. 2.3×) with pipelining. We
also notice that the speedup is similar across different evalu-
ated dropout rates when fixing the use of a protocol.

Dordis Gains More Speedup with Larger Models. The
results in Figure 10i to 10p show that CIFAR-10 with ResNet-
18 (11M) is accelerated by 1.3-1.5×, while CIFAR-10 with
VGG-19 (20M) is accelerated by 1.9-2.5× by pipelining, indi-
cating that larger models benefit more from this approach.
Similar observations can be made when comparing the re-
sults of FEMNIST with CNN (1M) and with ResNet-18 (11M).
This trend can be explained by Amdahl’s law [7]: as the
aggregation time of larger models has a higher dominant
factor 𝑝 in the round latency (e.g., 𝑝 = 89-93% in CIFAR-10
with ResNet-18 and 𝑝 = 93-95% in CIFAR-10 with VGG-19),
assuming the same speedup 𝑠 of the aggregation offered by
pipelining, one can expect a higher overall speedup 𝑆 for
larger models as 𝑆 = 1/((1 − 𝑝) + 𝑝/𝑠).
Dordis Scales with Number of Sampled Clients. As
reported by Figure 10e to 10l, CIFAR-10 with ResNet-18 (16
sampled clients) and FEMNIST with ResNet-18 (100 sampled
clients) both benefit from pipelined execution, with FEM-
NIST achieving a larger speedup (1.7-2.0×) than CIFAR-10
(1.3-1.5×). It is important to note that the dominant part
of the round time is the aggregation process (plain-agg),
which is independent of the learning task. Therefore, the
superior performance of Dordis on FEMNIST with ResNet-18
over CIFAR-10 with ResNet-18 can be mainly attributed to
the larger number of sampled clients, indicating that Dordis

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhifeng Jiang, Wei Wang, and Ruichuan Chen

scales well and may even perform better with large-scale
training. This further suggests that the reason why FEMNIST
with CNN gains negligible speedup (Figure 10a to 10d) is due
to its small model size, not large participation scale.

7 Discussion
Random Client Sampling with VRFs. As mentioned
in §2.1, we can enforce mild collusion among sampled clients
even in the presence of a malicious server through the use
of VRFs. Our key insight is that incorporating verifiable
randomness can prevent the server from manipulating the
sampling process to include a disproportionate number of
dishonest clients. Given that dishonest clients only repre-
sent a small portion of the entire population (e.g., billions
of Apple devices [8]), a VRF-based client selection can en-
sure that dishonest clients remain a minority in the sampled
participants, thus effectively preventing Sybil attacks.
The expected low base rate of dishonest clients results

from the prohibitive costs associated with creating and man-
aging a large number of simulated clients. The adversary
is hindered by the high expenses of registering numerous
identities to a public key infrastructure (PKI) operated by a
qualified trust service provider [12, 15]. Furthermore, main-
taining a client botnet at scale incurs substantial monetary
expenditure [86].

Regarding the use of verifiable randomness, we briefly de-
scribe a possible design as introduced in a recent work [38].
Initially, the server initiates a training round by making an
announcement. Each client within the population employs a
VRF using its private key to generate a random number along
with an associated proof, with the current round index serv-
ing as input. By comparing the generated random number
with a predetermined threshold, a client determines whether
it should participate in the ongoing round. Once a client
decides to join, it informs the server about its random num-
ber and provides the corresponding proof. Upon receiving
responses from all participating clients, the server considers
them as participants and broadcasts their responses for mu-
tual verification. Ultimately, a participant proceeds with the
training only if all verification tests are successfully passed.

In the above design, a client does not need to know every
other clients to reproduce the sampling process for the entire
population, as the server does. Instead, a sampled client only
needs to refer to the identities of other sampled clients and
verify their randomness. Moreover, the server can achieve
a fixed sample size by first slightly adjusting the selection
threshold for over-selection, and then discarding excessive
clients based on indiscriminate criteria on their randomness.

8 Related Work
The topic of differentially private FL (DPFL) has seen a surge
of interest in recent years. DP-FedAvg [54, 65], Distributed
DP-SGD [11], and DP-FTRL [41] initiate DPFL in the central

DP model where the server is trusted. Unlike these works,
Dordis studies semi-honest and malicious adversaries.
In distributed DP, recent efforts have made significant

progress in integrating secure aggregation with DP mecha-
nisms. DDGauss [40] and DSkellam [5] provide end-to-end
privacy analysis by combining the DP noise addition with
SecAgg. FLDP [75] explores aggregation based on the learn-
ing with errors (LWE) problem [68], using residual errors
as DP noise. Dordis complements these works by providing
dropout resilience and improved execution efficiency.

Thework closest to Dordis is [10]which tackles the dropout
resilience problem in distributed DP. Unlike Dordis, they
adopt a ‘rebasing’ design that is incompatible with transmit-
ting seeds (thus, poor efficiency) and does not handle client
dropout during noise removal (thus, poor robustness) (§3.1).
Also, it is unclear how to implement their noise enforcement
securely against malicious adversaries.
Replacing secure aggregation with other cryptographic

primitives in distributed DP is far less studied in FL mainly
due to their inefficiency. For instance, [77] explores the use of
homomorphic encryption schemes, but induces an overhead
of over 16 minutes to encrypt a model of size 1M.
Finally, several studies have focused on enhancing the

SecAgg protocol, both in general-purpose scenarios [12, 39,
72, 73] and in those specific to FL [49, 52, 66, 84], without
integration with DP. Dordis is thus independent of these
studies in terms of noise enforcement. Dordis also offers the
first generic pipeline solution that can expedite them.

9 Conclusion
This paper presents Dordis, an efficient FL framework that
enables efficient and dropout-resilient distributed DP in real-
istic scenarios. To handle client dropout, Dordis designs an
efficient and secure “add-then-remove” approach to enforce
the required noise at the target level precisely. Dordis also en-
ables pipeline parallelism for accelerated secure aggregation
with a generic distributed parallel architecture. Compared to
existing distributed DP mechanisms in FL, Dordis enforces
privacy guarantees with optimal model utility in the pres-
ence of client dropout without requiring manual strategies.
It also achieves up to 2.4× faster training completion.

Acknowledgments
We extend our special thanks to Peter Kairouz, Zheng Xu,
Marco Canini, and Suhaib A. Fahmy for their valuable discus-
sions and suggestions that helped improve the early shape
of this work. We are also grateful to our shepherd, Manuel
Costa, and the anonymous EuroSys reviewers for their con-
structive feedback, which greatly enhanced the quality of
this paper. We would like to acknowledge Shaohuai Shi for
providing GPU clusters and environment settings. This work
was supported in part by RGC RIF grant R6021-20 and RGC
GRF grant 16211123.

Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy EuroSys ’24, April 22–25, 2024, Athens, Greece

References
[1] [n. d.]. Reddit Comment Data. https://files.pushshift.io/reddit/comm

ents.
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: a system for large-scale machine
learning.. In OSDI.

[3] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. 2016. Deep learning with
differential privacy. In CCS.

[4] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew
Mattina, Paul N Whatmough, and Venkatesh Saligrama. 2021. Feder-
ated learning based on dynamic regularization. In ICLR.

[5] Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The Skellam
mechanism for differentially private federated learning. In NeurIPS.

[6] Maruan Al-Shedivat, Jennifer Gillenwater, Eric Xing, and Afshin Ros-
tamizadeh. 2020. Federated Learning via Posterior Averaging: A New
Perspective and Practical Algorithms. In ICLR.

[7] Gene M Amdahl. 1967. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of the April
18-20, 1967, spring joint computer conference. 483–485.

[8] Apple. 2023. Apple Reports First Quarter Results. https://www.apple.
com/newsroom/2023/02/apple-reports-first-quarter-results.

[9] Arm. 2021. TrustZone technology. https://developer.arm.com/ip-
products/security-ip/trustzone.

[10] Chunghun Baek, Sungwook Kim, Dongkyun Nam, and Jihoon Park.
2021. Enhancing differential privacy for federated learning at scale.
IEEE Access (2021).

[11] Borja Balle, Peter Kairouz, Brendan McMahan, Om Thakkar, and
Abhradeep Guha Thakurta. 2020. Privacy amplification via random
check-ins. In NeurIPS.

[12] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lep-
oint, and Mariana Raykova. 2020. Secure single-server aggregation
with (poly) logarithmic overhead. In CCS.

[13] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth
Raghunathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien
Tinnes, and Bernhard Seefeld. 2017. Prochlo: Strong privacy for ana-
lytics in the crowd. In SOSP.

[14] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Ste-
fano Mazzocchi, Brendan McMahan, et al. 2019. Towards federated
learning at scale: System design. In MLSys.

[15] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. 2017. Practical secure aggregation for privacy-preserving
machine learning. In CCS.

[16] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub
Konečnỳ, H Brendan McMahan, Virginia Smith, and Ameet Talwalkar.
2019. Leaf: A benchmark for federated settings. In NeurIPS Workshop.

[17] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn
Song. 2019. The secret sharer: Evaluating and testing unintended
memorization in neural networks. In USENIX Security.

[18] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David
Oswald, and Flavio D Garcia. 2021. VoltPillager: Hardware-based fault
injection attacks against Intel SGX Enclaves using the SVID voltage
scaling interface. In USENIX Security.

[19] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim
Zhilyaev. 2019. Distributed differential privacy via shuffling. In Euro-
crypt.

[20] Cisco. 2020. Cisco Annual Internet Report (2018–2023) White Paper.
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html.

[21] Dwork Cynthia. 2006. Differential privacy. Automata, languages and
programming (2006), 1–12.

[22] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A verifiable random
function with short proofs and keys. In PKC.

[23] Cynthia Dwork, FrankMcSherry, Kobbi Nissim, and Adam Smith. 2006.
Calibrating noise to sensitivity in private data analysis. In Theory of
cryptography conference. Springer, 265–284.

[24] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations
of differential privacy. Foundations and Trends in Theoretical Computer
Science 9, 3–4 (2014), 211–407.

[25] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan,
Kunal Talwar, and Abhradeep Thakurta. 2019. Amplification by shuf-
fling: From local to central differential privacy via anonymity. In SODA.

[26] David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. 2018. A prag-
matic introduction to secure multi-party computation. Foundations
and Trends® in Privacy and Security (2018).

[27] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael
Moeller. 2020. Inverting gradients-how easy is it to break privacy in
federated learning?. In NeurIPS.

[28] Google. 2021. Your chats stay private while messages improves sug-
gestions. https://support.google.com/messages/answer/9327902.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In CVPR.

[30] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measur-
ing the effects of non-identical data distribution for federated visual
classification. arXiv:1909.06335 (2019).

[31] Intel. 2021. Software Guard Extensions. https://software.intel.com/co
ntent/www/us/en/develop/topics/software-guard-extensions.html.

[32] Tayyebeh Jahani-Nezhad, Mohammad Ali Maddah-Ali, Songze Li, and
Giuseppe Caire. 2023. SwiftAgg+: Achieving asymptotically optimal
communication loads in secure aggregation for federated learning.
IEEE Journal on Selected Areas in Communications (2023).

[33] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei
Zaharia, and Alex Aiken. 2019. TASO: optimizing deep learning com-
putation with automatic generation of graph substitutions. In SOSP.

[34] Zhipeng Jia and Emmett Witchel. 2021. Boki: Stateful Serverless
Computing with Shared Logs. In SOSP.

[35] Zhifeng Jiang, Wei Wang, Baochun Li, and Bo Li. 2022. Pisces: Efficient
Federated Learning via Guided Asynchronous Training. In SoCC.

[36] Zhifeng Jiang, Wei Wang, Bo Li, and Qiang Yang. 2022. Towards
Efficient Synchronous Federated Training: A Survey on System Opti-
mization Strategies. IEEE Transactions on Big Data (2022).

[37] Zhifeng Jiang, Wei, and Ruichuan Chen. 2023. Dordis: Efficient
Federated Learning with Dropout-Resilient Differential Privacy. In
arXiv:2209.12528.

[38] Zhifeng Jiang, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, and Bo
Li. [n. d.]. Lotto: Secure Participant Selection for Federated Learning
with Malicious Server. https://github.com/SamuelGong/Lotto-doc.

[39] Swanand Kadhe, Nived Rajaraman, O Ozan Koyluoglu, and Kannan
Ramchandran. 2020. Fastsecagg: Scalable secure aggregation for
privacy-preserving federated learning. arXiv:2009.11248 (2020).

[40] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The distributed
discrete gaussian mechanism for federated learning with secure ag-
gregation. In ICML.

[41] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar,
Abhradeep Thakurta, and Zheng Xu. 2021. Practical and private (deep)
learning without sampling or shuffling. In ICML.

[42] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al. 2021. Advances and open
problems in federated learning. Foundations and Trends in Machine
Learning 14, 1 (2021).

[43] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers
of features from tiny images. (2009).

[44] Fan Lai, Yinwei Dai, Sanjay S Singapuram, Jiachen Liu, Xiangfeng Zhu,
Harsha V Madhyastha, and Mosharaf Chowdhury. 2022. FedScale:

https://files.pushshift.io/reddit/comments
https://files.pushshift.io/reddit/comments
https://www.apple.com/newsroom/2023/02/apple-reports-first-quarter-results
https://www.apple.com/newsroom/2023/02/apple-reports-first-quarter-results
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://support.google.com/messages/answer/9327902
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://github.com/SamuelGong/Lotto-doc

EuroSys ’24, April 22–25, 2024, Athens, Greece Zhifeng Jiang, Wei Wang, and Ruichuan Chen

Benchmarking model and system performance of federated learning
at scale. In ICML.

[45] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. 2020. Albert: A lite bert for self-
supervised learning of language representations. In ICLR.

[46] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, MarkusWeimer, andMatteo Interlandi. 2018. PRETZEL:
Opening the black box of machine learning prediction serving systems.
In OSDI.

[47] Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Han-
cox, Wentao Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin,
M Jorge Cardoso, et al. 2019. Privacy-preserving federated brain tu-
mour segmentation. In MLMI Workshop.

[48] Ruixuan Liu, Yang Cao, Masatoshi Yoshikawa, and Hong Chen. 2020.
Fedsel: Federated sgd under local differential privacy with top-k di-
mension selection. In DASFAA.

[49] Zizhen Liu, Si Chen, Jing Ye, Junfeng Fan, Huawei Li, and Xiaowei Li.
2023. DHSA: efficient doubly homomorphic secure aggregation for
cross-silo federated learning. The Journal of Supercomputing (2023).

[50] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay
Regularization. In ICLR.

[51] Heiko Ludwig, Nathalie Baracaldo, Gegi Thomas, Yi Zhou, Ali An-
war, Shashank Rajamoni, Yuya Ong, Jayaram Radhakrishnan, Ashish
Verma, Mathieu Sinn, et al. 2020. Ibm federated learning: an enterprise
framework white paper v0.1. arXiv:2007.10987 (2020).

[52] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou,
and Tal Rabin. 2023. Flamingo: Multi-Round Single-Server Secure
Aggregation with Applications to Private Federated Learning. In IEEE
S&P.

[53] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of
deep networks from decentralized data. In AISTATS.

[54] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.
2018. Learning Differentially Private Recurrent Language Models. In
ICLR.

[55] Ralph C Merkle. 1978. Secure communications over insecure channels.
Commun. ACM 21, 4 (1978), 294–299.

[56] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random
functions. In FOCS.

[57] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehen-
sive privacy analysis of deep learning: Passive and active white-box
inference attacks against centralized and federated learning. In IEEE
S&P.

[58] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz
Kaiser, Karol Kurach, and James Martens. 2015. Adding gradient noise
improves learning for very deep networks. arXiv:1511.06807 (2015).

[59] NVIDIA. 2020. Triaging COVID-19 Patients: 20 Hospitals in 20 Days
Build AI Model that Predicts Oxygen Needs. https://blogs.nvidia.com
/blog/2020/10/05/federated-learning-covid-oxygen-needs/.

[60] Stuart L Pardau. 2018. The California consumer privacy act: Towards
a European-style privacy regime in the United States. J. Tech. L. &
Pol’y 23 (2018), 68.

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In NeurIPS.

[62] Matthias Paulik, Matt Seigel, HenryMason, Dominic Telaar, Joris Kluiv-
ers, Rogier van Dalen, Chi Wai Lau, Luke Carlson, Filip Granqvist,
Chris Vandevelde, et al. 2021. Federated Evaluation and Tun-
ing for On-Device Personalization: System Design & Applications.
arXiv:2102.08503 (2021).

[63] Vasyl Pihur, Aleksandra Korolova, Frederick Liu, Subhash Sankuratri-
pati, Moti Yung, DachuanHuang, and Ruogu Zeng. 2018. Differentially-
private" draw and discard" machine learning. arXiv:1807.04369 (2018).

[64] Tina Piper. 2000. The Personal Information Protection and Electronic
Documents Act-A Lost Opportunity to Democratize Canada’s Techno-
logical Society. Dalhousie LJ 23 (2000), 253.

[65] Swaroop Ramaswamy, Om Thakkar, Rajiv Mathews, Galen Andrew,
H Brendan McMahan, and Françoise Beaufays. 2020. Training produc-
tion language models without memorizing user data. arXiv:2009.10031.

[66] Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa.
2023. ELSA: Secure Aggregation for Federated LearningwithMalicious
Actors. In S&P.

[67] Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,
Keith Rush, Jakub Konečnỳ, Sanjiv Kumar, and Hugh Brendan McMa-
han. 2020. Adaptive Federated Optimization. In ICLR.

[68] Oded Regev. 2009. On lattices, learning with errors, random linear
codes, and cryptography. J. ACM 56, 6 (2009), 1–40.

[69] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979),
612–613.

[70] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
2017. Membership inference attacks against machine learning models.
In IEEE S&P.

[71] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolu-
tional networks for large-scale image recognition. arXiv:1409.1556
(2014).

[72] Jinhyun So, Başak Güler, and A Salman Avestimehr. 2021. Turbo-
aggregate: Breaking the quadratic aggregation barrier in secure feder-
ated learning. IEEE Journal on Selected Areas in Information Theory 2,
1 (2021), 479–489.

[73] Jinhyun So, Corey J Nolet, Chien-Sheng Yang, Songze Li, Qian Yu,
Ramy E Ali, Basak Guler, and Salman Avestimehr. 2022. Lightsecagg:
a lightweight and versatile design for secure aggregation in federated
learning. In MLSys.

[74] Congzheng Song and Vitaly Shmatikov. 2019. Auditing data prove-
nance in text-generation models. In SIGKDD.

[75] Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring,
Samuel Clark, and Joseph Near. 2022. Efficient Differentially Private
Secure Aggregation for Federated Learning via Hardness of Learning
with Errors. In USENIX Security.

[76] Huangshi Tian, Minchen Yu, and Wei Wang. 2021. CrystalPerf: Learn-
ing to Characterize the Performance of DataflowComputation through
Code Analysis. In ATC.

[77] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko
Ludwig, Rui Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-
preserving federated learning. In AISec.

[78] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom,
and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In USENIX
Security.

[79] Paul Voigt and Axel Von dem Bussche. 2017. The eu general data
protection regulation (gdpr). A Practical Guide, 1st Ed., Cham: Springer
International Publishing 10, 3152676 (2017), 10–5555.

[80] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan
McMahan, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr,
Katharine Daly, Deepesh Data, et al. 2021. A field guide to federated
optimization. In arXiv:2107.06917.

[81] Junxiao Wang, Song Guo, Xin Xie, and Heng Qi. 2022. Protect Privacy
from Gradient Leakage Attack in Federated Learning. In INFOCOM.

[82] WeBank. 2020. Utilization of FATE in Anti Money Laundering Through
Multiple Banks. https://www.fedai.org/cases/utilization-of-fate-in-
anti-money-laundering-through-multiple-banks/.

[83] Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui
Bian, Yunxin Liu, and Xuanzhe Liu. 2021. Characterizing impacts of
heterogeneity in federated learning upon large-scale smartphone data.
In WWW.

https://blogs.nvidia.com/blog/2020/10/05/federated-learning-covid-oxygen-needs/
https://blogs.nvidia.com/blog/2020/10/05/federated-learning-covid-oxygen-needs/
https://www.fedai.org/cases/utilization-of-fate-in-anti-money-laundering-through-multiple-banks/
https://www.fedai.org/cases/utilization-of-fate-in-anti-money-laundering-through-multiple-banks/

Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy EuroSys ’24, April 22–25, 2024, Athens, Greece

[84] Shisong Yang, Yuwen Chen, Zhen Yang, BoWen Li, and Huan Liu. 2023.
Fast Secure Aggregation with High Dropout Resilience for Federated
Learning. In TGCN.

[85] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz,
and Pavlo Molchanov. 2021. See through gradients: Image batch re-
covery via gradinversion. In CVPR.

[86] Joshua C Zhao, Atul Sharma, Ahmed Roushdy Elkordy, Yahya H
Ezzeldin, Salman Avestimehr, and Saurabh Bagchi. 2023. Secure aggre-
gation in federated learning is not private: Leaking user data at large
scale through model modification. In arXiv.

A Artifact Appendix

A.1 Abstract
We have made the artifact available in our GitHub reposi-
tory’s main branch4 for reproducing the experimental results
presented in the paper. Additionally, for long-term accessi-
bility, we have also uploaded the artifact to a Zenodo reposi-
tory.5 The artifact comprises the source code of the Dordis,
along with configuration files and Python scripts necessary
to execute the experiments described in the paper. Further
instructions on using the artifact can be found in the subse-
quent sections and in the README file of the repository.

A.2 Description & Requirements
A.2.1 How to access. The artifact is available at the above-
mentioned repositories.

A.2.2 Hardware dependencies. Paper experiments were
done in the following two modes:
• Simulation: When assessing the efficacy of noise enforce-
ment (§6.2), each experiment can be effectively simulated
using a single node equipped with multiple GPUs for ac-
celeration. This is because the metrics of interest, namely
privacy budget consumption and final model accuracy, re-
main unaffected by system speed or network bandwidth.
As a reference, our evaluation employed a machine with 8
NVIDIA Geforce RTX 2080 Ti GPUs.
• Cluster Deployment: During the evaluation of noise en-
forcement efficiency (§6.3) and pipeline acceleration (§6.4),
the respective experiments necessitate an EC2 cluster setup.
In this configuration, an r5.4xlarge instance serves as the
server, while each client node is equippedwith a c5.xlarge
instance. This setup aims to replicate the computational
capabilities of mobile devices. Additionally, the artifact
includes scripts for simulating network heterogeneity by
limiting the bandwidth of the client instances.

A.2.3 Software dependencies. The artifact requires an
Anaconda environment with Python 3. While the specific
Python packages used are listed in the ‘requirement.txt’ file
of the GitHub repository, one can easily install them using
provided scripts.
4At https://github.com/SamuelGong/Dordis.
5At https://doi.org/10.5281/zenodo.10023704.

A.2.4 Benchmarks. As mentioned in §6.1, the provided
artifact utilizes publicly available machine learning datasets,
namely CIFAR-10 [43], FEMNIST [16], and Reddit [1]. Addi-
tionally, a variety of models are employed, including ResNet-
18 [29], a customized CNN [5, 40], VGG-19 [71], and Al-
bert [45]. The artifact includes automated scripts that can be
used to download and preprocess all the datasets.

A.3 Set-up
Installation and configuration steps required to prepare the
artifact environment are described in the ‘Simulation’ and
‘Cluster Deployment’ section of the repository README file.

A.4 Evaluation workflow
A.4.1 Major Claims. As mentioned in §6, the major ex-
perimental claims made in the paper are:
• C1: Our noise enforcement scheme, XNoise, guarantees
the consistent achievement of the desired privacy level,
even in the presence of client dropout, while maintaining
the model utility. This claim is supported by the simulation
experiment (E1) outlined in §6.2, with the corresponding
results presented in Figure 8, Table 2, and Figure 9.
• C2: The XNoise scheme introduces acceptable runtime
overhead, with the network overhead being scalable with
respect to the model’s expanding size. S This can be proven
by the cluster experiment (E2) described in 6.3 whose re-
sults are reported in Figure 10 and Table 3.
• C3: The pipeline-parallel aggregation design employed by
Dordis significantly boosts training speed, leading to a re-
markable improvement of up to 2.4× in the training round
time. This finding is supported by the cluster experiment
(E3) discussed in §6.4, and the corresponding results are
depicted in Figure 10.

A.4.2 Experiments. The artifact includes a dedicated sec-
tion in the repository’s README file titled ‘Reproducing Ex-
perimental Results’. This section provides a comprehensive
guide on conducting the necessary experiments to replicate
the main claims mentioned earlier. For every experiment, we
meticulously document all the essential setup requirements,
estimated costs and timeframes, a concise explanation of the
procedure, the anticipated outcomes, and an explicit link to
one of the aforementioned three claims.

Received 24 May 2023; accepted 12 September 2023

https://github.com/SamuelGong/Dordis
https://doi.org/10.5281/zenodo.10023704

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Scenario
	2.2 Differential Privacy
	2.3 Practical Issues of Distributed DP

	3 Dropout-Resilient Noise Enforcement
	3.1 Technical Intuition
	3.2 Add-Then-Remove with Noise Decomposition
	3.3 Security Consolidation with Optimized Practice
	3.4 Security Analysis

	4 Optimal Pipeline Acceleration
	4.1 Staging Workflow for Pipelined Execution
	4.2 Determining Optimal Number of Chunks

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Effectiveness of Noise Enforcement
	6.3 Efficiency of Noise Enforcement
	6.4 Efficiency of Pipeline Acceleration

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

