
Gillis: Serving Large Neural Networks in Serverless
Functions with Automatic Model Partitioning

Minchen Yu∗, Zhifeng Jiang∗, Hok Chun Ng∗, Wei Wang∗, Ruichuan Chen†, Bo Li∗
∗Hong Kong University of Science and Technology
{myuaj, zjiangaj, hcngac, weiwa, bli}@cse.ust.hk

†Nokia Bell Labs
ruichuan.chen@nokia-bell-labs.com

Abstract—The increased use of deep neural networks has
stimulated the growing demand for cloud-based model serving
platforms. Serverless computing offers a simplified solution: users
deploy models as serverless functions and let the platform handle
provisioning and scaling. However, serverless functions have con-
strained resources in CPU and memory, making them inefficient
or infeasible to serve large neural networks—which have become
increasingly popular. In this paper, we present Gillis, a serverless-
based model serving system that automatically partitions a large
model across multiple serverless functions for faster inference and
reduced memory footprint per function. Gillis employs two novel
model partitioning algorithms that respectively achieve latency-
optimal serving and cost-optimal serving with SLO compliance.
We have implemented Gillis on three serverless platforms—AWS
Lambda, Google Cloud Functions, and KNIX—with MXNet as
the serving backend. Experimental evaluations against popular
models show that Gillis supports serving very large neural
networks, reduces the inference latency substantially, and meets
various SLOs with a low serving cost.

Index Terms—machine learning inference; serverless comput-
ing; reinforcement learning

I. INTRODUCTION

Machine learning models, especially deep neural networks
(DNNs), are increasingly trained and published in the cloud to
provide inference services for dynamic queries [1]–[4]. As in-
ference is performed in real time with stringent SLOs (Service-
Level Objectives), the model serving platforms must be made
scalable to the changing workloads. This can be achieved
by augmenting the traditional VM-based model serving with
serverless functions: users simply deploy models as cloud
functions and let the serverless platform handle provisioning
and scaling; users pay only for the resources used when
the functions are running. Serverless functions have hence
been exploited, together with the conventional VMs, to build
scalable, pay-as-you-use inference serving platforms in the
public cloud [3], [5]–[9].

Unlike VMs, serverless functions have constrained re-
sources in CPU and memory [10]–[12]. As very large DNNs
are increasingly used for improved accuracy [13]–[15], using
serverless functions to serve those models is inefficient or
simply becomes infeasible with out-of-memory (OOM) errors.

There are mainly two approaches to addressing this prob-
lem. One is to reduce the model size using model compression
techniques [16], [17]. However, this approach sacrifices the
model accuracy and requires careful tuning to minimize the

loss [13]. A better approach is model partitioning, which
partitions a large model into smaller components for paral-
lel execution, without accuracy loss. Model partitioning was
originally proposed to train large DNNs on GPUs [13], [18],
[19] and has also been used for model inferencing on edge
devices [20], [21].

However, existing model partitioning techniques do not
apply to serverless functions. First, cloud-based model serving
has restrictive latency SLOs and is sensitive to the serving
costs—none of these requirements are mandated in GPU
training and edge-based serving. Second, unlike GPUs or edge
devices, serverless functions are stateless and their communi-
cations are usually performed through external storage with
limited network bandwidth [22], [23]. Yet, existing model
partitioning solutions presume addressable devices with high-
speed interconnections to facilitate direct data transfer. These
solutions cannot be used to coordinate multiple serverless
functions and would result in significant communication over-
head.

In this paper, we propose Gillis1, a serverless-based model
serving system that automatically explores parallel executions
of DNN inference across multiple functions for faster infer-
ence and reduced per-function memory footprint. Our design
follows the fork-join computing model: upon receiving an
inference request, a master function is invoked to initiate
multiple worker functions, each hosting a partition of the
model. The master interacts with workers through stateless
connections (function invocations). To reduce communications
between master and workers, Gillis performs coarse-grained
model partitioning. It fuses multiple consecutive layers of
a DNN model into a single layer group. The model can
have multiple layer groups. Gillis partitions each layer group
for parallel execution. Such coarse-grained partitioning allows
a function to compute all layers in a group locally, hence
avoiding frequent synchronizations with the other functions.

To determine which layers are grouped and how a layer
group is partitioned, we design novel network partitioning
algorithms for two common scenarios: (1) minimizing the
inference latency (latency-optimal), and (2) minimizing the
serving cost while complying with the user-specified latency

1We name our system after Gillis Lundgren, designer of IKEA who
popularized the idea of dissembling a bulky furniture into small parts and
“flat-packing” them for storage saving and ease of shipping.

SLOs (SLO-aware). For latency-optimal partitioning, we pro-
pose a dynamic programming algorithm to efficiently search
for the optimal strategy. For SLO-aware partitioning, finding
the optimal solution requires searching all feasible network
parallelization schemes that meet the latency SLOs. We hence
propose to learn the optimal strategy using reinforcement
learning. We encode the partitioning policy into a neural
network and train it with extensive simulated experiments, in
which we partition the serving model, observe the resultant
cost and inference latency, and iteratively refine the policy.

We have implemented Gillis on AWS Lambda [10], Google
Cloud Functions [11] and KNIX [24], [25] with MXNet [26]
as the serving framework. Gillis supports models in stan-
dard open exchange format ONNX [27]. We evaluate Gillis
against various popular DNN models. In the latency-optimal
mode, Gillis achieves up to 3× inference speedup over non-
parallelization when the models can fit into a single function;
for larger models, the speedup is up to 9.2× over the pipelined
execution where a single function sequentially loads layers
from S3. In the SLO-aware mode, Gillis consistently meets
various latency SLOs while minimizing the serving cost with
up to 1.8× savings than the Bayesian optimization-based
solution. Gillis is open-sourced for public access.2

II. BACKGROUND AND MOTIVATION

In this section, we motivate the benefits of serverless-
based inference serving (§II-A) and illustrate its inefficiency
of serving large DNNs (§II-B). We describe prior efforts in
handling large models on resource-constrained devices (§II-C)
and discuss the challenges of doing so in serverless functions
(§II-D).

A. Serverless-based Inference Serving

Inference serving is conventionally provisioned on VMs
with high-performance CPUs and GPU accelerators [1], [2],
[4]. VM-based inference serving delivers cost-effective high
performance for running stable workloads. However, it be-
comes inefficient in handling dynamic queries: as VM in-
stances have long startup latencies (e.g., several minutes), a
high margin of over-provisioning is usually needed to accom-
modate unexpected load spikes, e.g., SageMaker recommends
setting an over-provisioning factor of 2 [28].

Compared with VMs, serverless functions have a far shorter
startup latency (e.g., 10s ms if warm-started) and can quickly
scale out to a large number of instances to accommodate
the surging inference requests in a short period of time.
On the other hand, serverless functions are not well suited
to serve stable workloads, as they have a high price per
request [3], [23]. Therefore, one appealing approach is to
augment VMs with serverless functions [3], [5], [6], that is,
using VMs to handle stable inference requests while using
serverless functions to cover transient load bursts. In fact,
leading cloud providers like AWS and Google have advocated
inference serving as an important use case of their serverless

2https://github.com/MincYu/gillis-open-source.

offerings [5], [6]. Many recent works have also exploited
serverless functions to deploy neural networks. For example,
Fotouhi et al. [8] explored various architectures to deploy NLP
(Natural Language Processing) applications on the serverless
cloud; MArk [3] uses serverless functions to handle sporadic
inference load spikes to avoid over-provisioning VM servers;
Barista [29] uses predictive scaling to achieve low-latency
inference serving in the serverless cloud.

B. Inefficiency of Serving Large Models

The deep learning community is building increasingly larger
deep neural networks to achieve higher prediction accuracy for
various practical applications such as image classification [14],
[30] and language modeling [15]. This trend, driven by the
advances of hardware accelerators and the rapid growth of
training data, is predicted to continue in the future [13], [31].

Current serverless offerings, on the other hand, only support
functions with constrained resources. In Google Cloud Func-
tions, a function instance can access to only 4GB memory
with limited CPU cycles [32]. The network bandwidth is
also limited, around 300Mbps for running a single func-
tion and even lower when running more [22]. Other server-
less platforms have the similar constraints [10], [12]. Using
resource-constrained functions to serve very large models is
problematic—it either results in an exceedingly long inference
latency due to limited CPU cores, or simply becomes infea-
sible when the model is too large to fit into the memory of a
function.
Serving Large Models We illustrate these problems in
both Google Cloud Functions and AWS Lambda with WRes-
Net [14]. WResNet “widens” the classical ResNet [33] model
by increasing the number of both the input and output channels
of a weight tensor on each convolution layer. The width
of WResNet is determined by a widening scalar k, where
k = 1 means no widening. Increasing the widening scalar
improves the model accuracy, but also enlarges the model
quadratically. Following the benchmark settings in [13], we
experiment WResNet with widening scalar changing from 1
to 5 on ResNet-50. We deploy these models on Google Cloud
Functions and AWS Lambda with their respective maximum
possible instance memories at the time of experiments. For
each model, we run the inference in the hosting function 100
times after warming it up.

Fig. 1 shows that the inference latency increases almost
quadratically as the WResNet model grows wider and larger.
In particular, the inference requests take over 2000 ms to
complete on AWS Lambda and Google Cloud Functions with
widening scalar 3 and 4, respectively; further widening the
model exceeds the function’s memory limit, causing an out-
of-memory (OOM) error.

C. Prior Arts in Handling Large Models

Many works have been proposed recently to handle large
models in resource-constrained environments [13], [16]–[21],
[34]. These works fall into two approaches: model compres-
sion and model partitioning.

1 2 3 4 5
Widening scalar

0

1500

3000
La

te
nc

y
(m

s)

311 262
1054771

2245
1501

OOM

2687

OOMOOM

AWS Lambda Google Cloud Functions

Fig. 1: The inference latencies of WResNet-50 on Google
Cloud Functions and AWS Lambda.

Model Compression reduces the network parameters of a
large DNN and creates a significantly smaller network that
can run on a resource-constrained device (e.g., mobile and
edge devices). Popular model compression techniques include
network pruning [16] and weight quantization [17]. However,
this approach usually results in reduced accuracy and requires
careful model tuning or even retraining to minimize the
accuracy loss, which is too laboring for developers [13].
Model Partitioning Another promising approach is to divide
a large neural network into multiple small partitions and
run them in parallel [13], [18]–[21], [34], [35]. Compared
with compression, model partitioning sacrifices no accuracy
while accelerating the computation and reducing the per-
partition resource footprint. We therefore choose it over model
compression in our design.

The key technique of this approach is tensor partitioning. In
a DNN model, each layer takes an input tensor and computes
an output tensor. An output tensor typically has multiple
dimensions and can be parallelized in many different ways
along those dimensions. Take the convolution layer as an
example. A convolution layer with k filters generates output
feature maps with k channels. Such feature maps have three
dimensions: height, width, and channel (Fig. 2a). Partitioning
the output along any of the three dimensions can parallelize a
convolution layer. As shown in Fig. 2a, a subset of the output
feature maps along height and width depends on a partition
of the input and all k filters. We can therefore parallelize
the computation of the output by partitioning the input tensor
along height and width across multiple workers, each keeping
k filters. Alternatively, the partitioning can be along channels.
Fig. 2b shows that an output channel can be computed with a
single filter applied to the entire input tensor. We can hence
parallelize the computation of channels across workers, each
keeping a subset of filters.

Previous works use tensor partitioning to parallelize network
layers across memory-constrained GPU devices for accelerated
model training [13], [18], [19], [34], [35]. Similar approaches
have also been used to partition large DNNs across multiple
edge devices for distributed model inferencing [20], [21].
However, applying model partitioning to serverless functions
poses the following three challenges.

D. Challenges

Coordinating Serverless Functions Model partitioning re-
quires coordinating multiple workers to synchronize their
computations. Such coordination is straightforward when the

…

…

……

…

…

…

he
ig

h
t

width channel

input
k filters

output

(a) Partitioning the output tensor
by height and width.

…

…

……

…

…

…input
k filters

output

(b) Partitioning the output ten-
sor by channel.

Fig. 2: An illustration of tensor partitioning along different
dimensions in a convolution layer.

workers are addressable devices with direct interconnections
(e.g., GPUs or edge devices). However, serverless functions
are usually unaddressable and cannot be reached by others
via stateful connections. Therefore, how to efficiently coor-
dinate serverless functions in DNN parallelization becomes a
challenge.
Reducing Communication Overhead Parallelizing a DNN
layer requires transferring the input tensors to multiple work-
ers. As serverless functions have limited network band-
width [22], [23], parallelizing multiple layers results in a
significant communication overhead that may undermine the
benefits of tensor partitioning. Therefore, how to reduce the
communication between functions poses another challenge.
SLO Compliance and Cost Minimization Unlike model
training on GPUs and model serving at edges, serverless-based
inference serving needs to comply with the latency SLOs while
minimizing the serving cost under the pay-per-use billing.
Achieving these two goals complicates the model partitioning
algorithms, which is still an open problem.

III. GILLIS OVERVIEW

In this section, we describe Gillis, a serverless-based infer-
ence serving system that automatically parallelizes the execu-
tion of large DNNs across multiple serverless functions for
faster inference and reduced memory footprint per function.
We developed Gillis in three platforms: AWS Lambda [10],
Google Cloud Functions [11] and KNIX [24], [25]—an open-
source serverless platform with the state-of-the-art perfor-
mance. Compared with the former two platforms, KNIX im-
proves function interactions with compute-collocated storage
(e.g., Redis), allowing Gillis to achieve a substantial latency
improvement (§V-B). Gillis uses MXNet [26], [36] as the
serving framework, and supports DNN models in standard
open exchange format ONNX [27]. To our knowledge, Gillis
is the first system that supports very large models in the
serverless cloud.

A. Workflow

Fig. 3 gives a workflow overview of Gillis. Gillis starts
with the runtime profiling. For each type of DNN layer,
Gillis profiles its execution time in a single function. Gillis
also profiles the function communication latency. Based on
the profiling results, Gillis builds a performance model and
uses it to predict the model execution time under various

Runtime Profiling

Performance
Model + SLO-AwareLatency-OptimalAlgorithms

Model Partitioning Phase

Input DNN Model
Model Partitions

…
Hosting
Functions

Deployment Phase

Model Runtime Comm. Latency

train perform

partitioning

deploy
& warm up

Serverless Platforms

…

KNIX

Fig. 3: A workflow overview of Gillis.

Query

…Worker 1

Worker n
… …

Fig. 4: The fork-join model for function coordination.

parallelization schemes (§IV-A). In the model partitioning
phase, Gillis accepts a serving model and generates a par-
allelization scheme to achieve the optimal inference latency
(latency-optimal, §IV-B) or the minimum serving cost with
SLO compliance (SLO-aware, §IV-C), using the performance
model as a guideline. Gillis automatically partitions the model
following that scheme. It then proceeds to the deployment
phase, where the model partitions are packaged into functions
and deployed on serverless platforms. The serving function
usually takes a longer time to complete for the first invocation
(cold start). To mitigate this issue, Gillis supports periodically
warming up functions by sending concurrent pings to the
serverless platform [37]. As function instances stay active for a
long time [38], the warm-up cost can be amortized by serving
numerous inference queries and is hence negligible [3].

Gillis adopts three key designs to address the challenges
described in §II-D. First, it uses the fork-join computing
model to efficiently coordinate multiple functions. Second,
Gillis chooses to perform coarse-grained model partitioning
to reduce the communication cost. Third, Gillis employs
two novel partitioning algorithms that respectively achieve
latency-optimal serving and cost-optimal serving with SLO
compliance in the serverless cloud. We next describe the first
two designs and defer the algorithms to the next section.

B. Function Coordination with Fork-Join

Fig. 4 illustrates the fork-join model that Gillis uses to
coordinate multiple serverless functions. A master function is
triggered to run upon receiving an inference query. Following
the computed partitioning scheme, the master asynchronously
invokes multiple worker functions. Each worker computes a
partition of the served model, returns the result to the master,
and ends its execution. The master can also help to compute
a partition if having sufficient memory, which can result in
fewer workers and less cost. The master assembles the returned
results from all workers into a full tensor, and may initiate
more workers to continue parallelizing model execution. The
fork-join process may take multiple rounds to complete, with
the final inference result given by the master function.

Merge

Fig. 5: An illustration of branch merging, where two parallel
branch modules are merged into one layer.

This design provides two benefits. First, in the fork-join
model, function interactions are restricted between the master
and a worker through REST APIs (i.e., function invocations).
In comparison, existing model parallelization schemes [13],
[19], [20] require direct data transfer across multiple workers
through stateful connections, which is not generally supported
in the serverless platforms. Second, unlike many serverless-
based parallel systems that use external VMs (rendezvous
server) to coordinate function instances [39], Gillis has no
serverful component, making it highly scalable to dynamic
workload.

C. Coarse-Grained Parallelization

Parallelizing individual layers across multiple devices us-
ing different strategies, known as layer-wise parallelization,
yields the optimal performance, when the network is not a
bottleneck [13], [18], [19]. However, this is not the case
in our problem as serverless functions have limited network
bandwidth. To reduce the communication overhead, Gillis
instead performs coarse-grained parallelization: it combines
multiple consecutive layers into a single group and parallelizes
each group across serverless functions. All layers in a group
are hence computed locally within a function—only the input
tensor of the first layer and the output of the last in this
group need to be transferred, which significantly reduces the
communication overhead.

A similar idea is also used to reduce cross-device com-
munications in edge-based model serving [20], [21], where
multiple convolution layers are fused into a single block for
parallelization. We extend this idea in two ways.

First, our layer grouping is not limited to convolution
layers, but applies to all. This enables more parallelization
opportunities, yet significantly increases the search space for
optimal grouping as a DNN model can have a large number
of layers. To address this problem, we propose to merge
consecutive element-wise layers (e.g., ReLU) and branch
modules, if any. The former require less computations and
can be flexibly parallelized along any dimensions. We hence
merge them into the preceding weight-intensive layers (e.g.,
convolution). In case that a DNN model has a branch structure

T3T2T1 T4

L1 L3L2
Layer Group

Fig. 6: An example of layer grouping based on tensor de-
pendencies. The first two layers L1 and L2 can be group
parallelized as they have a local response to the input along
width and height; L3 cannot be grouped with them as its output
element depends on the entire input.

(e.g., Inception module [40] and Residual block [33]), we
merge parallel branches into a single layer as shown in Fig. 5.
Branch merging transforms a complex computation graph of
a DNN model into a linear graph, substantially simplifying
the partitioning strategy. In Gillis, layer merging is performed
before layer grouping and parallelization. We hence do not
differentiate between the original layers and the merged ones.

Second, in Gillis, worker functions do not communicate
with others. This poses a new requirement to layer group-
ing and parallelization—group partitions must be computed
independently. To meet this requirement, we determine if two
consecutive layers can be grouped based on the dependency of
their input and output tensors. Specifically, given two layers, if
their output tensors have a local response to the input along the
same dimensions, they can be group-parallelized along those
dimensions. Fig. 6 gives an example, where the first two layers
L1 and L2 can be grouped as each element of their output
is locally dependent on a single input element at the same
position. The layer group can hence be parallelized across four
worker functions.

While layer grouping reduces the communication overhead,
grouping too many layers can be inefficient, especially for
those with convolution-like operators. As these operators (e.g.,
convolution and pooling) map multiple input elements to a
single output, parallelizing the output tensor results in an
overlap in the input partitions (Fig. 2a). As more layers are
grouped, more overlaps are added, causing more redundant
computations in the intermediate layers. Also, as the layer
group grows larger, its partition may not fit into the memory
of a single function.

Parallelizing a layer group across too many functions can
also be inefficient, as it may incur significant synchronization
overhead in function communications, undermining the ben-
efits of parallelization. Fig. 7 shows an example (see §V for
the experimental settings). As the number of parallel functions
increases, the time spent on function communications and
synchronizations grows, eventually dominating the end-to-end
latency. Specifically in Lambda, increasing the number of
parallel functions from 8 to 16 does more harm than good.

Therefore, a desirable grouping and parallelization strategy
should strike a good balance between the computation cost
and communication and synchronization overheads under the

1 2 4 8 16
of parallel functions

0

400

La
te

nc
y

(m
s)

452 358
218 156 177

450
244 149 104 94

Lambda-Inference
Lambda-Overhead

KNIX-Inference
KNIX-Overhead

Fig. 7: The latency performance of parallelizing the first four
convolution layers of VGG-16 with a varying number of func-
tions in Lambda and KNIX. The end-to-end latency is broken
down into the inference time (Inference) and the function
communication and synchronization overheads (Overhead).

memory constraint of serverless functions.

IV. MODEL PARTITIONING

In this section, we describe two layer grouping and paral-
lelization algorithms that respectively achieve (1) the optimal
latency and (2) the minimum cost with SLO compliance. Both
algorithms use a performance model to guide partitioning,
which we introduce first.

A. Performance Model

Searching for the optimal partitioning requires evaluating
the latency and cost performance of various DNN paralleliza-
tion schemes. Gillis builds a performance model to make such
predictions based on the profiling results of model runtime and
function communication delay.
Model Runtime A DNN model is a stack of convolution,
normalization, activation, pooling, and fully connected layers.
For each type of layer, we run it with various configurations
(e.g., the filters and the shape of the output tensor in a
convolution layer) in a single function, profiles the execution
time, and build a regression model for prediction. Given a
DNN, we infer its runtime by summing up all the predicted
layer execution time.
Function Communication Delay The end-to-end latency
also includes the function communication delay. We profile
it by transferring data of varying sizes through REST APIs.
Recall that in the fork-join model, the master function initi-
ates multiple workers, and the communication delay depends
on the slowest connection. This is equivalent to predicting
the maximum delay of n concurrent communications. Our
extensive measurements in AWS Lambda show that function
communication delays follow an exponentially modified Gaus-
sian distribution. We hence use the nth order statistics [41] to
predict the maximum delay of communicating with n workers.

We will show in §V-E that our performance model can
accurately predict the DNN execution time and the function
communication delays, which we use to guide the search of
optimal partitioning.

B. Latency-Optimal Partitioning

We now present our first model partitioning algorithm. Our
goal is to minimize the inference latency. We start with the
problem formulation followed by a dynamic programming-
based optimization algorithm.

Problem Formulation Consider a model G whose compute
graph has n layers l1, l2, · · · , ln. We apply a layer grouping
strategy S that fuses the n layers into multiple layer groups
S(G). Let l(i,j) ∈ S(G) be such a group obtained by fusing
consecutive layers from li to lj . Following the fork-join model
(§III-B), we parallelize each layer group across worker and
master functions with memory size M . Unlike a worker that
only computes a partition of one group, the master runs for
a longer time and could compute the partitions of multiple
groups along the way (Fig. 4). As the computed partitions
are maintained in memory, the master may not have sufficient
memory to compute all groups. It hence needs to judiciously
budget its memory for computing each group. Suppose for
each group l(i,j), the master allocates the memory of size
Ml(i,j) for its computation. Under that allocation, the master
optimally parallelizes l(i,j) across multiple workers and fin-
ishes the computation in time t(l(i,j),Ml(i,j)), which includes
both the layer execution time and the function communication
delay. Adding the computation times of all layer groups, we
obtain the total inference latency under layer grouping strategy
S:

TS(G) =
∑
l(i,j)∈S(G) t(l(i,j),Ml(i,j)), (1)

where the memory allocations must not exceed the memory
size, i.e., ∑

l(i,j)∈S(G)Ml(i,j) ≤M. (2)

Our goal is to find the optimal layer grouping and paralleliza-
tion strategy that minimizes the latency, i.e., minS T

S(G).
Dynamic Programming We search for the optimal strategy
using a dynamic programming-based algorithm. Let L(i, j,m)
be the optimal latency of executing the model’s consecutive
layers from li to lj , with memory footprint no more than m
in the master function. The optimal latency of executing the
entire model is given by L(1, n,M), which can be recursively
computed using dynamic programming as follows:

L(i, j,m) =

0 i > j,

min
i≤k≤j
0≤b≤m

L(i, k − 1,m− b) + t(l(k,j), b) i ≤ j.

That is, we optimally compute a varying number of beginning
layers (li to lk−1) under various memory budget (m−b), while
grouping the remainders (l(k,j)) for parallel execution. We take
the minimum latency as L(i, j,m).
Parallelizing a Layer Group Our dynamic programming
algorithm requires to know t(l(k,j), b), the latency of optimally
parallelizing a layer group l(k,j) with memory budget b in
the master. As shown in Algorithm 1, we predict the latency
using the performance model described in §IV-A. In a nutshell,
given a layer group, we search over all feasible parallelization
options based on the tensor dependencies (§III-C). For each
option, we determine if the parallelization involves the master
by checking the size of the computed group partition and the
allocated memory budget in master. We predict the execution
latencies for all options and return the minimum. As a layer
group has only a limited number of parallelization options, the
search space is relatively small.

Algorithm 1 Finding the optimal latency of a layer group
– l(k,j): a layer group obtained by fusing layers from lk to lj
– b: the memory budget for computing l(k,j) in the master
– M : the memory size of a function

1: function FINDOPTLATENCY
2: O ← all feasible parallelization options of layer group l(k,j)
3: t(l(k,j), b)←∞
4: for all option o ∈ O do
5: s← the partition size given by parallelization option o
6: τ ←∞
7: if s > M then . partition too large to fit into a function
8: Continue
9: else if s > b then . size exceeds the master’s budget

10: τ ← the latency of worker-only parallel execution with o
11: else . size is contained within the master’s budget
12: τ ← the latency of parallelization across both the master and

workers with o
13: if τ < t(l(k,j), b) then
14: t(l(k,j), b)← τ

15: return t(l(k,j), b)

C. Minimizing Cost with SLO Compliance

While minimizing the inference latency is desirable, it is
not always necessary. In many cases, cloud users have targeted
latency SLOs—as long as the SLOs are met, they are more
concerned with minimizing the inference cost. We therefore
propose a learning-based algorithm to achieve this goal.

1) Problem Definition

Inference Cost Commercial serverless offerings charge users
based on the number of requests for function invocations and
the duration for function execution, rounded up to the nearest
100ms [11] or 1ms [10]. In Gillis, the cost for an inference
query depends on the number of parallel functions invoked
and their durations. As the former incurs negligibly small
charges in our settings, we simply use the latter to measure the
inference cost. More specifically, given a DNN model G and a
partitioning strategy S, let TSw (G) be the duration of a worker
function w and TS(G) the duration of the master, which is
also the inference latency. The billed function duration is given
by

CS(G) =
(
dTS(G)/De+

∑
wdTSw (G)/De

)
×Dms,

where D denotes the billing granularity of the concerned
serverless platform (i.e., 1 or 100).
Latency SLO We define the SLO for the mean latency
with response-time threshold Tmax. That is, the mean inference
latency should not exceed Tmax. We notice that the support of
tail-latency requirement would be more meaningful, which we
will discuss in §VI and leave for future work.
Problem Formulation Given a DNN model G and the
latency SLO Tmax, our goal is to find the optimal parti-
tioning strategy that minimizes the inference cost with SLO
compliance. Specifically, let LS(G) be the mean inference
latency under strategy S. We solve the following optimization
problem:

min
S

CS(G),

s.t. LS(G) ≤ Tmax.
(3)

Partitioner Placer

DNN
Layers

Simulated Experiments

Performance Model

Layer Groups
& Parallelization

Partition
Placement

Reward

Execution PlanLatency & Cost

Fig. 8: An overview of RL-based model partitioning.

2) Challenges and Potential Solutions

Minimizing the inference cost with SLO compliance ap-
pears more challenging than optimizing the latency (§IV-B).
Unlike the latter, the optimization problem (3) cannot be recur-
sively broken down into simpler sub-problems, violating the
fundamental structural requirement for dynamic programming-
based solutions.

In general, optimally solving problem (3) requires searching
over all possible partitioning schemes that meet the latency
SLOs, which does not scale to large DNNs. We therefore
consider two popular learning-based algorithms: Bayesian
optimization (BO) and reinforcement learning (RL).

BO has been widely used in finding the optimal configura-
tions of cloud applications [42]. It is well-suited for optimizing
black-box systems that have no clear performance model. This
is not the case in our problem, where the objective—the billed
function duration—is well defined and can be easily obtained
using the performance model (§IV-A).

RL, on the other hand, appears a good fit to our problem,
where we encode the partitioning strategy into a neural net-
work and train it with extensive simulated experiments: the
RL agent makes a partitioning decision, predicts the resultant
cost and latency using the performance model, and iteratively
refines the strategy. In fact, RL has been successfully applied
to a similar device placement problem for training large
DNNs [34], [35], [43]. We hence choose it over BO as our
solution. We will justify our choice empirically in §V-C.

3) RL-Based Model Partitioning

Overview We design a hierarchical RL model to learn the
optimal partitioning strategy. Fig. 8 gives an overview of our
solution. Our RL model has two agents, partitioner and placer,
each of which is a two-layer neural network. The partitioner
takes as input the DNN layers and determines how these layers
are fused into groups and how each group is parallelized.
Given the layer groups, the placer determines how partitions
are placed on the master and workers, which works out a
detailed function execution plan. In simulated experiments, we
can obtain the latency and cost of an execution plan using the
performance model (§IV-A), then jointly train the partitioner
and the placer with policy gradients [44]. We next elaborate
the training details.
Reward Function A typical RL training process consists
of multiple episodes. In each episode, the agent makes a
partitioning attempt, evaluates its performance using a reward
function, and iteratively refines the strategy in the following

episodes. We define the reward function that accounts for
both the inference cost and latency. Intuitively, only when the
latency SLO is satisfied can a positive reward be made, where
a shorter billed duration leads to a higher reward. We therefore
evaluate strategy S using the following reward function:

RS(G) =

{
B − CS(G) LS(G) ≤ Tmax,

Tmax − LS(G) otherwise.
(4)

Here, B is the budget of cost, which is set large enough to
ensure a positive reward B − CS(G) when the SLO is met.
All variables in Eq. (4) are measured in units of milliseconds.
In practice, some attempted strategies lead to OOM errors. We
impose a large negative reward for those strategies.
RL Training We jointly train the partitioner and the placer
to maximize the reward. Both agents are two-layer neural
networks and use stochastic policies for decision making. In
particular, the partitioner decides layer grouping and paral-
lelization by drawing a sample u from partitioning policy
πa; the placer then decides the host functions for the group
partitions by drawing a sample v from placing policy πb. As
sample v is conditional on u, we rewrite the reward RS(G)
as R(v|u). We encode πa and πb into two policy networks,
parameterized by θa and θb, respectively, We jointly train the
two policies to maximize the expected reward, defined as

J(θa, θb) = Eu∼πa,v∼πb
[R(v|u)]. (5)

We compute the policy gradients for the partitioner and the
placer using REINFORCE [44], respectively:

∇θaJ(θa, θb) = Eu∼πa
[∇θa log p(u; θa) ·Ev∼πb

[R(v|u)]],
∇θbJ(θa, θb) = Eu∼πa,v∼πb

[∇θb log p(v|u; θb) ·R(v|u)],
where p(·) is the probability density function. With these two
gradients, we update θa and θb using Adam optimizer [45],
and iteratively learn the optimal policies.

V. EVALUATION

We have implemented Gillis along with the two partitioning
algorithms in 3K lines of Python code. In Gillis, a user simply
provides a DNN model file in ONNX format and chooses from
the two serving modes Gillis provides: latency-optimal and
SLO-aware. A user also specifies the latency requirement in
the SLO-aware mode—Gillis will notify the user if the SLO
requirement is too restrictive that cannot be met. Gillis figures
out the parallel execution plan offline in the chosen mode
using the corresponding partitioning algorithm, and serves the
inference queries online following that plan. We evaluate Gillis
on AWS Lambda [10], Google Cloud Functions [11] and
KNIX [24] with popular convolutional and recurrent neural
networks. Our evaluations are set to answer the following
questions:
• How does Gillis perform when used to reduce the infer-

ence latency (§V-B)?
• Can Gillis meet the latency SLOs while minimizing the

serving cost (§V-C)?
• How do the algorithms behave in microbenchmarks

(§V-D)?

A. Methodology

Benchmarking Models We use four families of popular
DNNs as the benchmarking models: VGG [30], ResNet [33],
Wide ResNet [14], and Multi-layer recurrent neural networks
(RNNs) [15]. Each family has multiple model variants. For
Wide ResNet (§II-B), we test models with 34 and 50 layers
with widening scalar ranging from 3 to 5. We use notations
like WRN-34-3 to denote the ResNet-34 model widened by
3×. For RNN models, we can improve the accuracy by adding
more RNN layers and using a larger hidden size [13], [15].
Both approaches lead to the increased network parameters. We
test RNN models of various numbers of layers with 2K hidden
size, and use notations like RNN-6 to denote a 6-layer RNN
model. All RNN model variants use LSTM cell.
Serverless Platforms We evaluate Gillis on AWS Lambda
functions and Google Cloud Functions with their respective
maximum possible instance memories (i.e., 3GB and 4GB, re-
spectively) at the time of experiments3. We also evaluate Gillis
on KNIX, an open-source serverless platform enabling faster
function communications than Lambda (Fig. 7). We deploy
KNIX on an EC2 c5.12xlarge instance, and configure the
resources of each KNIX function to match the performance of
a Lambda instance.
Memory Footprint The memory footprint of model serving
in a Lambda function is usually much larger than the model
weight size, as the function also needs to load the OS kernel,
maintain a software stack, and cache the runtime data. We em-
pirically characterize the maximum memory to host the model
weights, and set the maximum available function memory M
to 1.4 GB in our partitioning algorithms (see Eq. (2)).
Metrics We use the inference latency and the serving cost
as the two primary performance metrics. In particular, when
comparing Gillis with the baseline, we measure the inference
speedup as LBaseline/LGillis, where LBaseline and LGillis respec-
tively denote the inference latencies of the baseline and Gillis.

We measure the inference cost as the billed function dura-
tion under the pricing scheme [32], [46]. We ignore the func-
tion invocation charges, which are two orders of magnitude
smaller than the duration charges.

B. Gillis in Latency-Optimal Mode

Baselines We start with the latency-optimal (LO) mode,
where we evaluate Gillis against two baselines:

(1) Default serving (Default) uses a single function to serve
a model. Due to the memory constraint, it only applies to a
model of a moderate size.

(2) Pipelined execution (Pipeline) divides layers of a large
model into small partitions and stores them in S3 [47]. It
then launches a single function to sequentially execute these
partitions in a pipeline, one partition at a time.
Serving CNN Models We first evaluate the latency per-
formance of serving popular CNN models on Lambda and
Google Cloud Functions (GCF). Fig. 9 compares the latencies

3Our experiments were conducted in September and October 2020.

of various VGG and WResNet models over 100 queries using
Gillis (LO) and Default. The error bars measure the latency
variances, which are almost indistinguishable, an indication of
the strong performance isolation between function instances.
We observe that parallelizing CNN models across multiple
functions significantly speeds up the inference than serving
them using a single function (Default) for both platforms.
Compared with Google Cloud Functions, Lambda can enable
more latency improvements for Gillis due to its less resources
per instance. For example, Gillis on Lambda achieves 1.4×
speedup for WRN-50-3 while it reduces to 1.2× on Google
Cloud Functions. In addition, as the model grows deeper and
wider with more widened convolution layers, Gillis identifies
more parallelization opportunities, leading to more salient
latency improvements. In particular, on Lambda we observe
1.6×, 1.9×, and 2× speedup for VGG-11, VGG-16, and
VGG-19, respectively; widening ResNet from WRN-34-3 to
WRN-34-4 also improves the speedup from 1.2× to 1.26×.

We also evaluate Gillis on KNIX. Fig. 10 shows the
latencies of various CNN models using Gillis (LO) and Default
KNIX serving. Owing to the low-latency communication in
KNIX, Gillis can reap more benefits from parallelization
compared with Lambda. Gillis hence achieves greater latency
improvement (Fig. 10, left), leading to 3×, 2.9×, and 1.8×
speedup over Default KNIX for VGG-16, VGG-19, and WRN-
50-3, respectively. Moreover, the improved communication
enables Gillis to speed up more “thin” models (e.g., classical
ResNet), which fail to be accelerated on Lambda (Fig. 10
right). In particular, Gillis is 1.4×, 1.6×, and 1.3× faster
than Default KNIX for ResNet-34, ResNet-50, and ResNet-
101, respectively.

We next evaluate large CNN models that cannot be handled
by Default. Fig. 11 compares the latencies of those models
using Gillis and Pipeline. We break down the end-to-end
latency of Pipeline into the function computation time and
the network transfer time for loading model partitions. Due to
the limited network bandwidth, its communication overhead
becomes a severe bottleneck. In comparison, Gillis transfers
no weight tensors from remote storage. Moreover, its parallel
execution is 2× faster than the sequential execution of Pipeline
(see Pipeline-comp.). Owing to these two advantages, Gillis
significantly outperforms Pipeline, speeding up the end-to-end
latency by 9.1×, 9.2×, and 8.3× for WRN-34-5, WRN-50-4,
and WRN-50-5, respectively.

Serving RNN Models We next turn to RNN models. RNN
layers need to be unrolled in multiple time steps, and they
cannot be parallelized spatially like the convolution layers.
Fig. 12 depicts the mean inference latencies of various RNN
models on Lambda using Gillis (LO) and Default serving. As
RNN layers cannot be parallelized, Gillis shows no advantage
over Default for small models that can fit into a single function.
However, a single function can only support RNN models with
up to 9 layers. Gillis has no such limitation on the model size,
but linearly scales to large RNNs. The inference latency grows
linearly as the number of RNN layers increases, indicating that

VGG-11 VGG-16 VGG-19 WRN-34-3 WRN-34-4 WRN-50-30

2

4
La

te
nc

y
(s

)

0.41 0.66 0.75
1.66

2.73
1.63

0.65
1.24 1.48

2.0

3.43
2.28

0.41 0.61 0.74
1.28

2.09
1.3

0.51 0.97 1.15 1.39
2.4

1.56

LO (Lambda)
Default Lambda

LO (GCF)
Default GCF

Fig. 9: The inference latencies of various CNN models on Lambda and Google Cloud Functions (GCF) using Default and
Gillis’s latency-optimal partitioning (LO).

VGG-16 VGG-19 WRN-50-30.0

1.5

La
te

nc
y

(s
)

0.43 0.51
1.211.3 1.5

2.21LO

ResNet-34 ResNet-50 ResNet-101

0.4
0.2 0.21

0.41
0.28 0.33

0.54Default

Fig. 10: The inference latencies of various CNN models on
KNIX using Gillis (LO) and Default.

WRN-34-5 WRN-50-4 WRN-50-50

35

La
te

nc
y

(s
)

3.9 2.7 4.5

35.5
24.7

38.3
LO Pipeline-comp. Pipeline-netw.

Fig. 11: The inference latencies of serving large CNN models
on Lambda using Gillis (LO) and Pipeline. We break down the
latency of Pipeline into the computation and network time.

the function communication overhead is minimized in Gillis.
This suggests that the function communication overhead is
minimized in Gillis, thanks to its layer grouping strategies
and efficient function coordination mechanism.

C. Gillis in SLO-Aware Mode

Baselines We now switch to the SLO-aware (SA) mode and
evaluate the cost performance of Gillis on Lambda under SLO
constraint against two baselines:

(1) Brute-force search (BF) enumerates all possible par-
allelization strategies with SLO compliance and finds the
one with the minimum cost. In light of its computational
intractability, we only apply it to VGG-11, the smallest model
in our benchmarks, which still takes over 24 hours to complete.

(2) Bayesian Optimization (BO) models the inference cost
as a Gaussian Process, and iteratively refines the model by
sampling to search for the optimal strategy. Our BO algorithm
follows the same design as Cherrypick [42], where we use the
expected improvement (EI) [48] to evaluate sampled strategies.
SLO and Models We use four CNN models in our experi-
ments, VGG-11, VGG-16, WRN-50-4, and WRN-50-5, each
evaluated with two latency SLOs, restrictive and loose. We do
not evaluate Gillis (SA) against RNN models, because without
parallelization, minimizing the serving cost is equivalent to
optimizing the latency (§V-B).
Cost Performance and SLO Compliance We evaluate the
SLO-aware partitioning (SA) against BO and BF. As both
SA and BO are randomized algorithms, we conduct three

3 6 9 12 15 18
of RNN layers

5
10
15

La
te

nc
y

(s
)

LO
Default

Fig. 12: The mean inference latencies of various RNN models
on Lambda using Gillis (LO) and Default.

experiments and report the best result for each algorithm. In
each experiment, we launch 100 clients that concurrently query
the inference service 1000 times.

Fig. 13 compares the latencies and costs of the three
solutions applied to various models with different latency re-
quirements Tmax. Compared with BF that optimally parallelizes
VGG-11 for cost minimization, Gillis (SA) learns the same
partitioning strategy (Fig. 13a), achieving the similar latency
and cost with much smaller computational overhead. Com-
pared with BO that applies black-box optimizations, Gillis’s
RL algorithm uses the performance model to guide the search
of optimal partitioning in simulated experiments, leading to
much improved results. In fact, BO fails to meet the latency
SLOs in several cases, especially for complex models like
WRN-50-4, or restrictive latency requirements like VGG-11
with Tmax = 500ms. In contrast, Gillis (SA) can always meet
the SLOs while achieving significant cost savings than BO,
e.g., up to 1.8× for VGG models and 1.5× for WResNet.

D. Microbenchmark

To understand how Gillis makes partitioning decisions to
reduce the inference latency, we turn to Fig. 14, in which
we illustrate the layer grouping and parallelization results of
WRN-34-5 given by the latency-optimal algorithm. WRN-34-
5 has a total of 36 (merged) layers, where low convolution
layers (closer to the input) have larger feature maps but smaller
weight tensors than the high layers. We make three observa-
tions. First, compared with the top-level convolution layers
(Groups 6 and 7), the optimal strategy tends to fuse more
layers at the bottom (Groups 1 and 2) that have smaller sizes.
Second, low convolution layers are usually parallelized across
more functions (16 for Group 1) as they have large feature
maps. Third, the master tends to compute group partitions of
low convolution layers (Groups 2, 3, 4, and 5) with small
weight tensors. This not only leads to reduced memory foot-
print, but also incurs less communication overhead between
the master and workers.

(a) VGG-11 with Tmax = 500ms and 600ms

Tmax mean median

(b) VGG-16 with Tmax = 800ms and 1000ms

SA BO2400
3200
4000
4800

La
te

nc
y

(m
s)

SA BO Tmax=3200ms 4000ms

2

Co
st

 (1
0

4 $
)

2.9 2.6
3.5 3.7

(c) WRN-50-4 with Tmax = 3200ms and 4000ms
SA BO4000

5000
6000
7000

La
te

nc
y

(m
s)

SA BO Tmax=5000ms 6000ms

5

Co
st

 (1
0

4 $
)

5.4 5.0
7.9

5.9

(d) WRN-50-5 with Tmax = 5000ms and 6000ms

Fig. 13: Comparison of inference latencies and costs of the SLO-aware partitioning (SA), brute force (BF) and Bayesian
optimization (BO) applied to various models with two latency thresholds (Tmax). The latency boxes depict the 25th, 50th,
and 75th percentiles, and whiskers depict the 5th and 95th percentiles. Bars measure the average costs of serving an inference
request.

10 layers

Group 1

8 layers

Group 2

4 layers

Group 3

4 layers

Group 4

4 layers

Group 5

2 layers

Group 6

2 layers

Group 7

2 layers

Group 8

Fig. 14: An illustration of the grouping and parallelization results of WRN-34-5. There are eight layer groups in total, where
the first seven contain convolution layers while the last includes a fully-connected layer. We draw the output tensor of each
group, and show how it is partitioned along height (horizontal) and width (vertical) for parallel execution. The tensor partitions
in red are executed on the master while those in blue run on workers.

VGG-19 WRN-50-3 RNN-3
Models

0

2

La
te

nc
y

(s
)

1.5
2.3

2.9
1.5

2.5 2.9

2 4 6
of concurrent functions

50

La
te

nc
y

(m
s)

69 82 9280 88 92

VGG-19 WRN-50-3 WRN-50-4 WRN-50-50

2

4

La
te

nc
y

(s
)

0.8
1.6

2.7

4.5

0.8
1.7

2.8
4.2Actual

Predicted

RNN-12 RNN-150

10
11.5

14.3
11.5

14.4

Fig. 15: Comparison of the actual and predicted model
runtimes (top left), function communication delays (top right),
and end-to-end latencies in latency-optimal mode (bottom).

E. Performance Model

Recall that we use the performance model to predict the
latency performance of a parallelization strategy(§IV-A). We
next evaluate its prediction accuracy by comparing the pre-
dicted model runtime, function communication delay, and end-
to-end latencies with the actual measured ones in Lambda
functions.

Fig. 15 (top left) depicts the actual and predicted model
runtimes on a Lambda instance. Our performance model
makes accurate predictions, deviating from actual ones within
3%, 9%, and 1% for VGG-19, WRN-50-3, and RNN-3,
respectively. To measure the communication delay, we transfer
1MB data between the master and workers, as they usually
exchange tensors of 100s of KBs. Fig. 15 (top right) shows the
actual and predicted delays of various numbers of concurrent
workers, where the average prediction error is 6.3%.

As our performance model can closely estimate both the
model runtime and function communication delays, it makes
a high-fidelity prediction to the end-to-end latency. Fig. 15
(bottom) compares the actual and the predicted inference
latencies of serving various CNN and RNN models using the
latency-optimal partitioning algorithm, where the prediction
errors are within 6% across all models.

VI. DISCUSSION AND FUTURE WORK

Increasing Function Size Since mainstream serverless plat-
forms generally impose stringent constraints on function re-
sources (e.g., Google Cloud Functions [11] and IBM Cloud
Functions [49]), Gillis can be widely applicable to improving
serverless-based model inference. While we notice that some
platforms recently increase their function sizes4, we believe
that parallel model executions across multiple functions is still
necessary in the serverless cloud due to two reasons. First, the
ever-increasing model parameters, which have doubled every
2.4 years [31], is expected to outpace the growth of function
size in the future. Second, we observe that next-generation
serverless platforms (e.g., KNIX [24]) enable increasingly
faster function communications, making Gillis’s parallelization
more efficient (See Fig. 10).
Tail Latency SLOs In Gillis, the SLO requirements are
specified by the mean latency. Yet, a more common SLO
definition concerns the tail latency [3], e.g., at least 99% of
queries should be served in 1s. Our RL-based optimization

4For example, AWS Lambda increases its memory limit per instance from
3GB to 10GB from December 2020 [50].

(§IV-C) can still be applied to meet these SLOs, as long as the
tail latency can be accurately predicted. However, predicting
the tail is more challenging and requires extensive profiling to
cover more corner cases, which we leave as a future work.

VII. CONCLUSION

In this paper, we have described Gillis, a serverless-based
model serving system that automatically parallelizes a large
DNN model across multiple functions for faster inference and
reduced per-function memory footprint. We have proposed two
partitioning algorithms to achieve latency-optimal serving and
cost-optimal serving with SLO compliance, respectively. Eval-
uations show that Gillis accelerates model inference, supports
very large DNNs, and enables significant cost savings while
meeting the specified latency SLOs.

ACKNOWLEDGMENT

This research was supported in part by RGC RIF grant
R6021-20 and RGC GRF grants 16213120, 16207818, and
16209120. Minchen Yu was supported in part by the Huawei
PhD Fellowship Scheme.

REFERENCES

[1] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system,” in
Proc. USENIX NSDI, 2017.

[2] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg,
“Swayam: Distributed autoscaling to meet SLAs of machine learning
inference services with resource efficiency,” in Proc. ACM Middleware,
2017.

[3] C. Zhang, M. Yu, W. Wang, and F. Yan, “MArk: Exploiting cloud ser-
vices for cost-effective, SLO-aware machine learning inference serving,”
in Proc. USENIX ATC, 2019.

[4] “Amazon SageMaker,” https://aws.amazon.com/sagemaker/.
[5] “Seamlessly scale predictions with AWS lambda and MXNet,”

https://go.aws/2SJyER0.
[6] “Simplifying ML predictions with google cloud functions,”

https://bit.ly/2YIVFHs.
[7] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning

models in a serverless platform,” in Proc. IEEE Intl. Conf. Cloud
Engineering (IC2E), 2018.

[8] M. Fotouhi, D. Chen, and W. J. Lloyd, “Function-as-a-service applica-
tion service composition: Implications for a natural language processing
application,” in Proceedings of the 5th International Workshop on
Serverless Computing (WOSC), 2019.

[9] E. Jonas, A. Khandelwal, K. Krauth, J. Schleier-Smith, Q. Pu, N. Yad-
wadkar, I. Stoica, V. Sreekanti, V. Shankar, J. E. Gonzalez, D. A.
Patterson, C.-C. Tsai, J. Carreira, and R. A. Popa, “Cloud programming
simplified: A Berkeley view on serverless computing,” arXiv preprint
arXiv:1902.03383, 2019.

[10] “AWS Lambda,” https://aws.amazon.com/lambda/.
[11] “Google Cloud Functions,” https://cloud.google.com/functions.
[12] “Microsoft Azure Functions,” https://azure.microsoft.com/en-

us/services/functions/.
[13] M. Wang, C.-c. Huang, and J. Li, “Supporting very large models using

automatic dataflow graph partitioning,” in Proc. ACM EuroSys, 2019.
[14] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv

preprint arXiv:1605.07146, 2016.
[15] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Explor-

ing the limits of language modeling,” arXiv preprint arXiv:1602.02410,
2016.

[16] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[17] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[18] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism
for deep neural networks,” arXiv preprint arXiv:1807.05358, 2018.

[19] Z. Jia, S. Lin, C. R. Qi, and A. Aiken, “Exploring hidden dimensions in
parallelizing convolutional neural networks,” in Proceedings of the 35
th International Conference on Machine Learning, 2018.

[20] L. Zhou, H. Wen, R. Teodorescu, and D. H. C. Du, “Distributing deep
neural networks with containerized partitions at the edge,” in Proc.
USENIX HotEdge, 2019.

[21] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[22] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in Proc. USENIX ATC, 2018.

[23] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One step
forward, two steps back,” in Proc. CIDR, 2019.

[24] “KNIX,” https://knix.io.
[25] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,

and V. Hilt, “SAND: Towards high-performance serverless computing,”
in Proc. USENIX ATC, 2018.

[26] “MXNet,” https://mxnet.apache.org.
[27] “Open Neural Network Exchange (ONNX),” https://onnx.ai.
[28] “Autoscaling configuration of AWS SageMaker,”

https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-scaling-
loadtest.html.

[29] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “BARISTA: Efficient and scalable serverless serving system
for deep learning prediction services,” arXiv preprint arXiv:1904.01576,
2019.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[32] “Google Cloud Functions Pricing,”
https://cloud.google.com/functions/pricing/.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, 2016.

[34] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device placement for
training deep neural networks,” in Proceedings of the 35th International
Conference on Machine Learning, 2018.

[35] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in Proc. ACM ICML, 2017.

[36] “MXNet Model Server,” https://pypi.org/project/mxnet-model-server/.
[37] “Keeping functions warm - how to fix AWS lambda cold start issues,”

https://serverless.com/blog/keep-your-lambdas-warm/.
[38] “How long does AWS Lambda keep your idle functions around before

a cold start?” https://bit.ly/2AVfxgL.
[39] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,

R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding,
fast and slow: Low-latency video processing using thousands of tiny
threads,” in Proc. USENIX NSDI, 2017.

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016.

[41] J. E. Gentle, Computational statistics. Springer, 2009.
[42] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and

M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in Proc. USENIX NSDI, 2017.

[43] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean,
“A hierarchical model for device placement,” 2018.

[44] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
Cambridge, MA: MIT Press, 2011.

[45] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[46] “AWS Lambda Pricing,” https://aws.amazon.com/lambda/pricing/.
[47] “AWS S3,” https://aws.amazon.com/s3/.
[48] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian

optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[49] “IBM Cloud Functions,” https://cloud.ibm.com/functions/.
[50] “AWS Lambda increases function size,” https://amzn.to/2WA7kWS.

