Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning

Zhifeng Jiang, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, Bo Li

Growth of edge computing

Edge devices generate massive **data**

Growth of edge computing

Growth of edge computing

Privacy-Enhancing
TechniqueFederated Learning!Privacy GuaranteeData kept on premises

¹McMahan et al.''Communication-Efficient Learning of Deep Networks from Decentralized Data'', In AISTATS '17

6

Privacy-Enhancing
TechniqueFederated Learning!Privacy GuaranteeData kept on premises

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

7

Privacy-Enhancing Federated Learning¹ Technique **Privacy Guarantee** Data kept on premises

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

2. Local training \rightarrow Local model update

Privacy-Enhancing Federated Learning¹ Technique **Privacy Guarantee** Data kept on premises

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

3. Model aggregation \rightarrow Global model update

Privacy-Enhancing Federated Learning¹ Technique Data kept on premises **Privacy Guarantee**

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

3. Model aggregation \rightarrow Global model update

¹McMahan et al.''Communication-Efficient Learning of Deep Networks from Decentralized Data'', In AISTATS '17 ²Yue et al.''Gradient Obfuscation Gives a False Sense of Security in Federated Learning'', In Security '23

Ground truth

Reconstructed

Problem: Data can be reconstructed from **local model updates**²

11

Privacy-Enhancing Technique

Privacy Guarantee

Data kept on premises

Federated Learning¹

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17 ²Yue et al. "Gradient Obfuscation Gives a False Sense of Security in Federated Learning", In Security '23 ³Bonawitz et al. "Practical Secure Aggregation for Privacy-Preserving Machine Learning", In CCS '17 ⁴Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20 **12**

Secure Aggregation^{3,4}

Local updates unseen

Privacy-Enhancing Technique

Privacy Guarantee

Data kept on premises

Federated Learning¹

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17 ²Yue et al. "Gradient Obfuscation Gives a False Sense of Security in Federated Learning", In Security '23 ³Bonawitz et al. "Practical Secure Aggregation for Privacy-Preserving Machine Learning", In CCS '17 ⁴Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

Secure Aggregation^{3,4}

Local updates unseen

Problem: Data still has footprints in global model update⁵

⁻S '17 ⁵Nasr et al.''Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning'', In S&P '19

Privacy-Enhancing Technique

Privacy Guarantee

Data kept on premises

Federated Learning¹

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17 ²Yue et al. "Gradient Obfuscation Gives a False Sense of Security in Federated Learning", In Security '23 ³Bonawitz et al. "Practical Secure Aggregation for Privacy-Preserving Machine Learning", In CCS '17 ⁴Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

⁵S '17 ⁵Nasr et al.''Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning'', In S&P '19 ⁶Cynthia.''Differential Privacy'', 06.

¹Kairouz et al. "The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation", In ICML '21

²Agarwal. ''The Skellam Mechanism for Differentially Private Federated Learning'', In NeurIPS '21

Privacy-Enhancing Technique	Federated Learning ¹	Secure Aggregation	Differential Privacy
Privacy Guarantee	Data kept on premises	Local updates unseen	Global update leaks little about any client

May **not** hold

Privacy-Enhancing Technique	Federated Learning
Privacy Guarantee	Data kept on premises

Dishonesty proportion

Secure Aggregation

Differential Privacy

Dishonesty proportion

Secure Aggregation

Differential Privacy

Secure Aggregation

Differential Privacy

Secure Aggregation

Differential Privacy

Secure Aggregation

Differential Privacy

Need for Lotto

Federated Learning

22

Secure Aggregation

Differential Privacy

Need for Lotto

Population $(|0^4 - |0^8)$

Secure Aggregation

Differential Privacy

Need for Lotto

Population $(|0^4 - |0^8)$ **Selected participants** $(|0^2 - |0^3)$

Secure Aggregation

Differential Privacy

Need for Lotto

• **Random**: uniform chance

Secure Aggregation

Differential Privacy

Need for Lotto

Population $(|0^4 - |0^8)$ **Selected participants** $(|0^2 - |0^3)$

- **Random**: uniform chance
- **Informed**: "best-performing" clients are preferred (e.g., high speed and/or rich data)

Secure Aggregation

Differential Privacy

Need for Lotto

Problem: participant selection can be manipulated by the malicious server

Lotto - Overview

Lotto - Overview

No peer-to-peer network: all traffic relayed by the server

Threat model: malicious server colluding with some clients, and a public key infrastructure (**PKI**)

Lotto - Overview

Threat model: malicious server colluding with some clients, and a public key infrastructure (**PKI**)

Functionality

Support both **random** and informed selection

Lotto - Overview

Threat model: malicious server colluding with some clients, and a public key infrastructure (PKI)

Functionality

Support both **random** and informed selection

Theoretical guarantee of

preventing manipulation

Lotto - Overview

Security

Threat model: malicious server colluding with some clients, and a public key infrastructure (PKI)

Functionality

Support both **random** and informed selection

Theoretical guarantee of

preventing manipulation

Lotto - Overview

Security

Efficiency

Mild runtime overhead with no **network cost**

Problem: Random selection

Problem: Random selection

Selection criteria: <3

Problem: Random selection

Curr roun	ent d: 2	5
	Randomness	Select
#	$RF_{pkl}(2) = 9$	No
#2	$RF_{pk2}(2) = 1$	Yes
#3	$RF_{pk3}(2) = 7$	No

Selection criteria: <3

Selection criteria: <3 For dishonest majority

Problem: Random selection

Potential approach:

• Outcome verification

Selection criteria: <3 For dishonest majority

Problem: Random selection

Potential approach:

Outcome verification

1	3?	
1	3?	

Selection criteria: <3 For dishonest majority

Problem: Random selection

Potential approach:

- Outcome verification
- Only within participants (10² 10³)

What is achieved:

Each participant sees a list of peers

Potential approach:

- Randomness verification
- Only within participants (10² 10³)

What is achieved: Each participant sees a list of peers who presents only by chance.

Potential approach:

- Randomness verification
- Only within participants (10² 10³)

What is achieved: Each participant sees a list of peers who presents only by chance.

Selection criteria: <3

= 3/10

Output range: [0, 10)

Potential approach:

- Randomness verification
- Only within participants (10² 10³)

What is achieved: Each participant sees a list of peers who presents only by chance.

Selection criteria: <3

= 3/10

Output range: [0, 10)

What is achieved:

Each participant sees a list of peers who presents only by chance.

What is achieved:

Each participant sees a list of peers who presents only by chance.

Problem: The server may arbitrarily **ignore honest** clients

What is achieved:

Each participant sees a list of peers who presents only by chance.

Problem: The server may arbitrarily **ignore honest** clients

What is achieved:

Each participant sees a list of peers who presents only by chance.

Problem: The server may arbitrarily **ignore honest** clients

Unbounded advantage in growing dishonesty

What is achieved:

Each participant sees a list of peers who presents only by chance.

Solution: Enforce a large enough list and a small enough chance.

What is achieved:

Each participant sees a list of peers who presents only by chance.

Solution: Enforce a large enough list and a small enough chance.

Example

- **len(list)**: ≥ 200
- Chance: $\leq 0.1\%$

What is achieved:

Each participant sees a list of peers who presents only by chance.

Solution: Enforce a **large enough list** and a **small enough chance**.

What is achieved: Each participant sees a list of peers who

presents only by chance.

Solution: Enforce a **large enough list** and a **small enough chance**.

What is achieved: Each participant sees a list of peers who

presents only by chance.

Solution: Enforce a large enough list and a small enough chance.

► 0.99 .0 Pr. Fail in Half Dishonesty Example • **len(list)**: ≥ 200 0.5 • **Chance**: $\leq 0.1\%$ 0.0 80000 100000 120000 # Dishonest clients 76 Selected ≤ **50%** ≥ **50%**

What is achieved: Predictable to server? Each participant sees a list of peers who presents only by chance.

Public Round index **Examples**: #2 will be selected as $\mathbf{RF}_{pk2}(2) = 1 < 3$. Public Public keys

What is achieved: Predictable to server? Each participant sees a list of peers who presents only by chance.

Problem: Attack surfaces **enlarged**!

Examples: #2 will be selected as $\mathbf{RF}_{pk2}(2) = 1 < 3$. It's honest, so the server may grow its advantage by

Focused h	nacking
-----------	---------

What is achieved: Predictable to server? Each participant sees a list of peers who presents only by chance.

Problem: Attack surfaces **enlarged**!

Examples: #2 will be selected as $\mathbf{RF}_{pk2}(2) = 1 < 3$.

What is achieved:PredictableEach participantto server?sees a list of peers who)presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99 ²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05 Solution: Self-sampling with

verifiable random functions (VRFs)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = (I,) (output, Secret key —

Predictable What is achieved: to server? Each participant sees a list of peers who presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99 ²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05 Solution: Self-sampling with

verifiable random functions (**VRFs**)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = $(I, \mathbf{\pi}_2)$ (output, **proof**)

Predictable What is achieved: to server? Each participant sees a list of peers who presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99 ²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05 Solution: Self-sampling with

verifiable random functions (**VRFs**)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = $(I, \mathbf{\pi}_2)$ (output, **proof**) Verification: **VRF.ver**_{pk2}(2, I, $\mathbf{\pi}_2$) = True Public key 🦯

Unpredictable What is achieved: to server Each participant sees a list of peers who presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99 ²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05 Solution: Self-sampling with

verifiable random functions (**VRFs**)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = $(I, \mathbf{\pi}_2)$ (output, **proof**) Verification: **VRF.ver**_{pk2}(2, I, $\mathbf{\pi}_2$) = True

What is achieved:UnpredictableEach participantto serversees a list of peers whoImage: Compresents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al.''Verifiable random functions'', In FOCS '99 ²Dodis et al.''A verifiable random function with short proofs and keys'', In PKC '05

Evaluation: **VRF.eval**_{sk2}(2) = $(I, \mathbf{\pi}_2)$ (output, **p** Verification: **VRF.ver**_{pk2}(2, I, $\mathbf{\pi}_2$) = True

Actual participants throughout the training?

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance.

> The absent will not get arbitrarily ignored

Actual participants throughout the training?

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance.

> The absent will not get arbitrarily ignored

Problem: The server may **not follow**.

Involve non-selected dishonest ones

Actual participants throughout the training?

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance.

> The absent will not get arbitrarily ignored

Problem: The server may **not follow**.

Involve non-selected dishonest ones

Disregard **selected honest** ones

Actual participants throughout the training?

What is achieved: Unpredictable to server Each participant sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing secure semantics of secure aggregation¹

65

Actual participants throughout the training?

What is achieved: Unpredictable to server Each participant sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing secure semantics of secure aggregation¹

• **Commitment**: necessary info shared only once

Actual participants throughout the training?

What is achieved: Unpredictable to server Each participant sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing secure semantics of secure aggregation¹

• **Commitment**: necessary info shared only once

Actual participants throughout the training?

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing **secure semantics** of secure aggregation¹

• **Commitment**: necessary info shared only once

• **Consistency check**: to know remaining participants

Actual participants throughout the training

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing **secure semantics** of secure aggregation¹

• **Commitment**: necessary info shared only once

• Consistency check: to know remaining participants

Actual participants throughout the training

What is achieved: Unpredictable to server Each participant sees a list of peers who presents only by chance.

The absent will not get arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Minor issues:

. . .

- Fixed sample size: over-selection
- Consistent round index: uniqueness check

Please find more in the paper :)

Problem: Informed selection

Problem: Informed selection

Problem: Informed selection

Selection criteria: the fastest For dishonest majority

Problem: Informed selection

74

Problem: Informed selection

Major Challenge: Client metrics are hard to verify by honest clients

Problem: Informed selection

Major Challenge: Client metrics are hard to verify by honest clients

Metrics are fake

Problem: Informed selection

Major Challenge: Client metrics are hard to verify by honest clients

Metrics are fake

Metrics are true, but...

Problem: Informed selection

Major Challenge: Client metrics are hard to verify by honest clients

Metrics are fake

Metrics are true, but...

Solution: Approximate inform selection by **random** selection

Please find more in the paper :)

What can be **proven**:

Population

Population

Base rate of dishonest clients

What can be **proven**:

Base rate of dishonest clients

Example

- **Population**: 200,000
- Dishonesty base rate: 0.005

What can be **proven**:

What can be **proven**:

Base rate of dishonest clients

Example

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200

What can be **proven**:

Base rate of dishonest clients

Example

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200

What can be **proven**:

Base rate of dishonest clients

Example

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200

¹Random selection as an example. See results for informed selection in the paper.

¹Random selection as an example. See results for informed selection in the paper.

88

Random selection as an example. See results for informed selection in the paper.

Random selection as an example. See results for informed selection in the paper.

Oort^I → State-of-the-art **informed** selector: optimized for **time-to-accuracy** of training

Lai et al. "Oort: Efficient Federated Learning via Guided Participant Selection", In OSDI '21

Oort^I → State-of-the-art **informed** selector: optimized for **time-to-accuracy** of training

Oort^I → State-of-the-art **informed** selector: optimized for **time-to-accuracy** of training

¹Lai et al. "Oort: Efficient Federated Learning via Guided Participant Selection", In OSDI '21

Lotto: Results summary

Support both random (exact) and informed (well **approximated)** selection

Theoretical guarantee (tight probability bound) of preventing manipulation

github.com/SamuelGong/Lotto

Security

Mild runtime overhead (≤10%) with no network cost (<1%)

Efficiency

Thank you

zjiangaj@connect.ust.hk

