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[ hreat model: malicious server colluding with
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Minor Issues:

What is achieved: * Fixed sample size: over-selection
Fach participant . e Consistent round index: uniqueness check

sees a list of peers who

presents only by chance. Please find more In the paper :)
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future work).
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Metrics are fake Metrics are true, but...
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Solution; Approximate inform

selection by random selection

Please find more In the paper :)
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What can be proven:

AR AN AR A A5 AN S S W e
A A A A A fAE AN N e e Fos pom som soEm SN S fem pem e !

' =3 = =3 = )~ 1 1 =3 :Q P e — — QI . .
Population (] [®] [®] @ |2 [®] [®] €] [¥] & —) e ©|!  Participants
- G - - _—— - - _—_— __—_— - : 1
_—am mEm Em Em e En e e ™ ..., TEEETEEmEEEmEmEEmETEETEEEmETEEmEEEEeEmS

- G - __—_— _—— - __—_— _—_— - -

80



Lotto prevents arbitrary manipulation

What can be proven:

s| 8| ] (o] |®| o] |7| || 3] &
el Lotto
Population 2] B [5] o (& (B ¥ [ & ] ——— & i Participants
3| 8| 3] |=| o (o] 9| || 3] &
Base rate of dishonest clients = ¢————— Fraction of dishonest clients
w/ high prob.

81



Lotto prevents arbitrary manipulation

What can be proven:

s| 8| ] (o] |®| o] |7| || 3] &
e e e e e e e e Lotto
Population  [B] [Z] [E] [®] [Z] [®] ¥ [F @] |Z -_— Participants
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Base rate of dishonest clients = == | Fractions of dishonest clients
w/ high prob.

Example
e Population: 200,000

* Dishonesty base rate: 0.005
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Lotto prevents arbitrary manipulation

What can be proven:

Population ] &

Base rate of dishonest clients

Example
e Population: 200,000

* Dishonesty base rate: 0.005
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| otto functions as insecure selectors

Oort! = State-of-the-art informed selector: optimized for time-to-accuracy of training
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Lotto well approximate Oort with no
cost in time-to-accuracy performance
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Lotto: Results summary

Functionality | Security \ Efficiency I

Support both random Theoretical guarantee (tight | .
: . Mild runtime overhead (=10%)
(exact) and informed (well probability bound) of |
: . . . . with no network cost (<1%)
approximated) selection preventing manipulation

O Thank you

github.com/SamuelGong/Lotto zjiangaj@connect.ust.hk
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