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Abstract—A range nearest-neighbor (RNN) query retrieves the nearest neighbor (NN) for every point in a range. It is a natural

generalization of point and continuous nearest-neighbor queries and has many applications. In this paper, we consider the ranges as

(hyper)rectangles and propose efficient in-memory processing and secondary memory pruning techniques for RNN queries in both 2D

and high-dimensional spaces. These techniques are generalized for kRNN queries, which return the k nearest neighbors for every

point in the range. In addition, we devise an auxiliary solution-based index EXO-tree to speed up any type of NN query. EXO-tree is

orthogonal to any existing NN processing algorithm and, thus, can be transparently integrated. An extensive empirical study was

conducted to evaluate the CPU and I/O performance of these techniques, and the study showed that they are efficient and robust

under various data sets, query ranges, numbers of nearest neighbors, dimensions, and cache sizes.

Index Terms—Spatial database, nearest-neighbor search.

�

1 INTRODUCTION

NEAREST-NEIGHBOR (NN) query is an important query
type supported by most spatial databases [1], [2], [3],

[4]. Traditional NN queries require input as points from
which the NNs are computed. Thus, they are also called
point nearest-neighbor (PNN) queries. Although Tao et al.
[5] extended PNN queries to “continuous nearest-neighbor”
(CNN) queries, which retrieve the NNs for all points on a
line segment, the query input is still limited to a
1-dimensional line. In this paper, we propose a more
general query type—“range nearest-neighbor”(RNN)
queries. Given a d-dimensional data set, an RNN query
retrieves the nearest neighbors for every point in a
d-dimensional hyperrectangle. Such a generalization elim-
inates the dimensionality limitation on the query input.
RNN queries have many applications:

1. In mobile environments, users do not have the
accurate knowledge about their locations to specify
the query points because all location identification
methods have errors. Even if they have such
knowledge, they may not want to expose these
locations to the service providers for privacy
reasons. RNN queries address these issues by
allowing users to specify ranges rather than points
for NN queries. They are particularly appealing to
the large number of 2G/3G mobile subscribers
whose devices are incapable of pinpointing loca-
tions. While these devices cannot support conven-
tional NN queries, they can issue RNN queries
through text messages such as “find the nearest
hotels to the City Park.”

2. A user may continuously ask for nearest neighbors
while moving around. It is inefficient to submit
many PNN queries individually to the server. A

better alternative is to submit a single RNN query
around the current location to fetch all possible
nearest neighbors for this area. Any PNN query
issued in this area is then processed locally by a
nearest-neighbor search in the prefetched set, saving
both computation and communication costs.

3. The above case can be generalized to the situation in
which these PNN queries are submitted from
different users. Processing them individually is
inefficient because spatially adjacent PNN queries
often access the same R-tree nodes. It is more
efficient to group and process them in a batch by
first issuing an RNN query whose range is the
bounding box of all the PNN query points and then
resolving the PNN results within the RNN results.

This paper focuses on RNN query processing techniques.
In general, processing an NN query on a spatial index (an
R-tree, for example) involves two interleaving phases:
secondary memory pruning of distant index nodes and
in-memory computation of the nearest neighbors. For the
first phase, we develop efficient pruning heuristics for state-
of-the-art NN searching paradigms such as depth-first
search (DFS) [6] and best-first search (BFS) [7]. The second
phase is trivial for PNN queries: The distances between all
the objects in a leaf index node and the query point are
calculated and the object with the shortest distance is
recorded as the PNN candidate. However, this cannot be
applied to RNN queries since the number of query points in
an RNN query is infinite. Therefore, we propose new
algorithms based on either planar geometry for two-
dimensional spaces or linear programming for high-dimen-
sional spaces. We then extend both the secondary memory
and in-memory techniques to kRNN queries, which retrieve
the k nearest neighbors for every point in the range. In
addition to these techniques, we propose a CNN-based
algorithm for two-dimensional RNN queries.

Another contribution of this paper is a solution-based
auxiliary index, called EXO-tree. It is designed to accelerate
all types of NN (PNN, CNN, and RNN) searches. The basic
idea is that, for each index node, EXO-tree indexes some
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“valuable” objects to avoid visiting this node when we

process NN queries. EXO-tree is built on top of the primary

spatial index (for example, an R-tree) and is separately

stored. Therefore, it does not affect the processing of other

types of queries, such as range queries or spatial joins. EXO-

tree is also orthogonal to other NN processing techniques.

Thus, it can be incorporated into the aforementioned

secondary memory pruning techniques to further speed

up the RNN search.
The remainder of the paper is organized as follows:

Section 2 reviews DFS, BFS, CNN, and some specialized NN

search indexes. Section 3 presents the formal definition of

RNN queries. In Sections 4 and 5, various in-memory and

secondary memory RNN (and, more generally, kRNN)

processing techniques are proposed. The EXO-tree is

proposed in Section 6. The intensive experimental results,

in terms of I/O and CPU costs, are analyzed in Section 7 to

justify all these techniques. Finally, we suggest some

directions for future research.

2 RELATED WORK

2.1 DFS and BFS Paradigms

Given a hierarchical spatial index, for example, R-tree [8]

and its variants [9], [10] depth-first search (DFS) [6], and

best-first search (BFS) [7] are the most common branch-and-

bound paradigms for processing nearest-neighbor queries.

DFS recursively visits the index nodes to search for nearest-

neighbor candidates. More specifically, after visiting a node,

DFS schedules visits to its child nodes in a certain order.

The order is determined by sorting the nodes according to

their MINDIST distances, which is the minimum distance

between the query point q and the node’s minimum

bounding rectangle (MBR). When a leaf node is visited,

the objects are retrieved and the nearest-neighbor candidate

is updated. Fig. 1a illustrates an example: a; b; . . . ; h are

spatial objects and q is the query point. Fig. 1b shows the

corresponding R-tree, including the root, intermediate

nodes 1 and 2 and leaf nodes A, B, C, and D. Starting from

the root, DFS visits node 1 (because its MINDIST ¼ 0) and

then node B (because B:MINDIST < A:MINDIST ), and

finally obtains object c as the candidate NN. In subsequent

searches, DFS can avoid visiting nodes whose MINDIST is

greater than distðc; qÞ, the distance between the candidate

NN, c, and q. In this example, DFS avoids visiting nodes C,

D, and 2 because their MBRs are completely outside the

dotted circle. Only node A is not pruned, but as the visit to

A does not yield a better candidate than c, c is the final
result.

BFS uses a priority queue to store entries to be explored
during the search. The entries are sorted by their
MINDIST distances. BFS pops up the top entry in the
queue, pushes its child entries into the queue, and then
repeats the process. When a leaf entry (i.e., an entry in a leaf
node) is popped, the corresponding object becomes the
nearest neighbor. In the example shown in Fig. 1, BFS first
pushes the root into the queue. After the root is popped,
BFS pushes nodes 1 and 2 into the queue. Then, node 1 is
popped and A;B are pushed. Then, B is popped and leaf
entries, that is, objects c and d, are pushed. Finally, object c
is popped as the nearest neighbor.

2.2 Continuous Nearest Neighbor

Song et al. first proposed the notion of “continuous nearest
neighbor” (CNN) queries in [11]. A CNN query searches the
nearest neighbors for a moving object. More specifically, it
searches the nearest neighbors for all points on a line
segment. To process a CNN query, Song proposed
repeatedly issuing NN queries on some sample points on
the line. In [5], Tao et al. elaborated on the CNN processing
algorithm. They proved that the line segment contains a set
of “split points,”each of which has two equally nearest
objects and that these objects comprise the CNN set. Thus,
the CNN problem is equivalent to finding and maintaining
the split points when traversing the R-tree. To prune
unnecessary node accesses, they proposed three heuristics:

1. prune nodes whose MINDIST > SLMAXD, the
maximum distance between a split point and its NN,

2. prune nodes whose minimum distance to every split
point p is greater than the distance between p and p’s
NN, and

3. sort nodes to be visited by their MINDIST values.

Tao et al. applied these heuristics to both DFS and BFS
paradigms and further generalized the algorithms to
answer kCNN queries, which retrieves the k nearest
neighbors for all points on a line segment.

2.3 Indexes for Nearest-Neighbor Search

Some dedicated spatial indexes have been proposed in the
literature to speed up NN search, especially for high-
dimensional data set. SS-tree [12] and SR-tree [13] are early
attempts of this kind. SS-tree employs bounding spheres
instead of bounding rectangles as the shape of an index
node. The shape of an SR-tree node, on the other hand, is
the intersection of a bounding sphere and a bounding
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Fig. 1. An example of a nearest-neighbor query on an R-tree index. (a) Objects placement and (b) corresponding R-tree.



rectangle. Such a shape results in a better subdivision of the

space and more disjoint nodes. Subsequent research led to

more sophisticated NN indexes. Kim et al. clustered the

objects and encapsulated the clusters into geometrically

regular shapes [14]. As these shapes are indexed, NN

queries will search only a portion of the clusters. In [15], Yu

et al. also adopted clustering. In each cluster, they chose a

reference point and indexed all objects’ distances to this

point (called iDistance) by a Bþ-tree.
There are relatively few solution-based NN indexes.

Berchtold et al. approximated the solution space of all

NN queries, that is, the Voronoi cells for high-dimensional

data set [16], [17]. The objective is to avoid computing the

exact Voronoi diagram for a large data set, which is

forbiddingly costly in terms of CPU and memory. Their

approximation is based on some regular geometric shapes

and their unions. Zheng et al. more recently proposed a

grid-partition index to approximate these Voronoi cells for

wireless environments [18]. The grid index speeds up the

searching as the initial NN candidate can be located at

constant time. However, both indexes only support

1NN queries, which is the common drawback of a

solution-based index.

3 RANGE NEAREST-NEIGHBOR QUERY

We formally define the range nearest-neighbor query as

follows:

Definition 1. Given a data set in the d-dimensional spaceRd, the

set of range nearest neighbors (RNN) for a hyperrectangle

� � Rd (boundary inclusive), denoted as RNNð�Þ, is defined

as the set of the nearest neighbors (NN) for every point in �.

That is,

RNNð�Þ ¼ fNNðpÞjp 2 �g: ð1Þ

NNðpÞ denotes point p’s nearest neighbor. � is called the

query range. By definition, it is a d-dimensional hyperrectan-

gle. When it degenerates to zero-dimension and one-dimension,

RNN degenerates to PNN and CNN, respectively.
Definition 1 can be extended for k-range-nearest-neigh-

bor (kRNN) queries. kRNNð�Þ is the union of kNNs for

every point in �, that is, kRNNð�Þ ¼ fkNNðpÞjp 2 �g.
We use Euclidean distance as the distance metric. This

implies that each object is a point or can be represented by a

point for distance measurement. As such, in the sequel, we

restrict the data set to a point data set.

4 IN-MEMORY RNN PROCESSING TECHNIQUES

In this section, we study the in-memory RNN query
processing algorithms in two-dimensional and d-dimen-
sional spaces. The problem is a computational geometry
one: Given the point data set P and the query range �, we
need to find all RNNs in P .

According to Definition 1, any object inside � is an RNN
of � since it is the NN for the same point it occupies. We call
it an internal RNN. Since internal RNNs can be found by a
range query, we then focus on finding external RNNs; that
is, the RNNs outside �. The following lemma indicates that
the external RNNs for � are exactly the same as the NNs for
all points on �’s boundary.

Lemma 1. The necessary and sufficient condition for an object p
to be an external RNN for � is that p is not in � but is the NN
for at least one point on �’s boundary.

Proof. The necessary condition is inherent in the RNN
definition. We prove the sufficient condition by contra-
diction. Assume p is not the NN for any point on the
boundary of �. Since p is an RNN, p is at least the NN for
one point i inside �. See Fig. 2a for a 2D illustration. Let i0

denote the intersection point of segment pi and the
boundary of �. Since p is not the NN of i0, there must be
another object p0 such that i0p0 is shorter than i0p; that is,
ji0p0j < ji0pj. Adding jii0j on both sides of the inequality,
we have ji0p0j þ jii0j < jpij. Since ji0p0j þ jii0j � jp0ij, we get
jp0ij < jpij, which contradicts our assumption that p is the
NN of i. Therefore, the sufficient condition must hold.tu

4.1 The 2D Case

Lemma 1 tells us that finding the external RNNs of � is
equivalent to finding the NNs for every point on �’s
boundary. In a 2D space, this boundary comprises four line
segments, so the problem is converted to “finding NNs for
all points on a line segment L. These NNs are called L’s
line-nearest-neighbors (LNNs).

4.1.1 LNN Search and Its Incremental Version

First, we show by the following lemma that L has only a
finite number of LNNs.

Lemma 2. Line L can be divided into a finite number of
subsegments; every point in a subsegment has the same NN.

Proof. Suppose there is a point i on L whose NN is p and p0

is the second nearest neighbor of i (refer to Fig. 2b). Let s
denote jpij and t denote jp0ij. Then, there is a subsegment
½i� t�s

2 ; iþ t�s
2 � on L such that all points on it have p as

80 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 1, JANUARY 2006

Fig. 2. Proofs of Lemmas 1, 2, 3, and 4. (a) Lemma 1, (b) Lemma 2, (c) Lemma 3, and (d) Lemma 4.



their NN. This is because their distances to p are always
less than sþ t�s

2 ¼ tþs
2 , and their distances to p0 or other

objects are always greater than t� t�s
2 ¼ tþs

2 . Since the
length of L is finite and the length of this subsegment is
t� s, which has a lower bound, the number of such
subsegments is finite. tu

Next, we show that an object can be the NN for at most
one such subsegment.

Lemma 3. If the number of subsegments is minimized; that is, if
any two adjacent subsegments have different NNs, then all
subsegments have different NNs.

Proof. See Fig. 2c. Assume p is the NN for the points in
subsegment e1e2, which is the leftmost subsegment with
p as its NN. Since the number of subsegments is
minimized, an object p0 is as close to e2 as p is. In other
words, e2 is the intersection point of L and the
perpendicular bisector of pp0. The perpendicular bisector
divides L into two parts: Points to the left of e2 are nearer
to p than to p0, and points to the right of e2 are nearer to p0

than to p. This means that p cannot be the NN for any
point to the right of e2. Combining the assumption that p
cannot be the NN for any point to the left of e1, p is the
NN only for subsegment e1e2. tu

Finally, we show that the NNs for all the subsegments
are sorted by their projected values on L.

Lemma 4. Let e1; e2; . . . denote the end points of all the
subsegments from left to right, and p1; p2; . . . denote the NNs
for each subsegment. Then, 8i < j, pi:x < pj:x, where “p:x”
denotes the projected value of object p on the axis parallel to L.

Proof. We prove this lemma by contradiction. If this is not
true, at least two adjacent subsegments violate this rule;
without loss of generality, let us assume that they are
ek�1ek and ekekþ1. In other words, pk�1:x > pk:x (cf.
Fig. 2d). Therefore, pk is to the left of the perpendicular
bisector of pkpk�1 while pk�1 is to the right. Then, points
on L and to the left of ek are nearer to pk�1 than to pk, and
vice versa. This contradicts the assumption that pk�1 is
the NN for ek�1ek and pk is the NN for ekekþ1. tu

Based on these lemmas, we then show how the LNN
algorithm works through an example (see Fig. 3). The
algorithm first sorts all objects by their projected values on
L and names them p1, p2, p3, p4, p5.1 Then, it scans the
objects in this order and computes the subsegment for each
object. If an object has no such subsegment, it means that
the object is not an LNN. The endpoints of the subsegments

are obtained from the intersections of L and the perpendi-
cular bisectors (pb) of every pair of consecutive objects. In
the example, initially, e1 ¼ L:min is the left-hand side
endpoint of the subsegment for p1. When p2 is scanned, e2 is
obtained as the left-hand side endpoint for p2 (and also the
right-hand side endpoint for p1). However, when p3 is
scanned, the pb of p2p3 intersects L at a point somewhere to
the left of e2. This means that p2 has no corresponding
subsegment because either p1 or p3 is nearer than p2 to any
point on L. Thus, p2 is not an LNN and is therefore
removed. Now that p1 and p3 are consecutive objects, the
left-hand side endpoint for the subsegment of p3, namely, e02
is recomputed. The algorithm continues to scan p4 and
obtain e3 as the left-hand side endpoint for the subsegment
of p4. Then, it scans p5, but the pb of p4p5 does not intersect
L. This means that p5 has no subsegment and as such is not
an LNN. Since p4 is the rightmost object remaining, the
right-hand side endpoint of its subsegment, namely, e4, is
extended to L:max. In the final result, p1, p3, and p4 are
LNNs, with corresponding subsegments e1e

0
2, e02e3, and e3e4.

Theorem 5. The aforementioned algorithm finds and only finds
the LNNs for L.

Proof. First, we prove that any removed object is not an
LNN since when an object is removed, there must be
some objects on either its immediate left or its immediate
right that are closer to a point on L than the object is.
Second, we prove that if an object p is not an LNN, it is
always removed. If this is not the case, p must have a
subsegment according to the algorithm. However, the
object to the immediate left or right of p cannot be the
NN for any point on this subsegment because the two pbs
that determine this subsegment ensure that p is nearer to
any point on this subsegment than these two objects are.
No remaining objects can be the NN either. Otherwise, it
would contradict Lemma 3. Therefore, we finally arrive
at the fallacy that no object can be the NN for any point
on this subsegment. Therefore, p must have already been
removed by the algorithm. tu

The LNN algorithm is required to sort the objects, which
takes OðnlognÞ time. After that, the sequential scan of the
objects takes OðnÞ time. In addition, the algorithm recom-
putes previous endpoints at most n times because each
recomputation corresponds to one object removal. As a
result, the time complexity of the LNN algorithm is
OðnlognÞ.

A more practical use of the LNN algorithm is when a left
index node is visited and the objects are added to the
candidate RNN set and, thus, we need to compute the new
LNNs from the existing LNNs. As such, we devise the
following incremental version of the LNN algorithm. It first
locates the new object p in the current LNN list according to
p’s projected value on L. It then sequentially scans p and the
objects to the right of p in the list, using the standard LNN
algorithm. The scan stops if the most recently scanned
object has the same subsegment as before because this
means that all remaining LNN objects are not affected by
the insertion of p. The time complexity of the incremental
LNN algorithm is OðnÞ because it scans at most n objects
and recomputes at most n endpoints.
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1. In the case where two or more objects have the same projected values,
the algorithm only keeps the object that is nearest to L.

Fig. 3. LNN Search Example.



4.1.2 Extension to kRNN

When k > 1, Lemmas 1 still holds. Thus, we can reduce the

kRNN problem to the kLNN problem. Lemmas 2 and 3 are

still valid, except that each k-object set, instead of a single

object, has a subsegment. When an object is scanned, it affects

the previous subsegments in a more complex way than

merely removing the objects. Fig. 4 illustrates a 2LNN

example. Before p is scanned, x and y are the 2LNN for bc.

When p is scanned, the perpendicular bisectors of xy, yp, and

px are drawn and the intersection points e1; e2; e3 are

computed. These points divide bc into four subsegments:

be1, e1e2, e2e3, and e3c. Each subsegment has a unique order of

x, y, and p based on their distances to any point on the

subsegment. For example, be1 has the order x! y! p. The

order for the next subsegment e1e2 is x! p! y, which is

obtained by flipping y and p in x! y! p, the order of be1.

The rationale is that the two subsegments are separated by e1,

which is the intersection point of L and the perpendicular

bisector of yp. Thereafter, the order for e2e3 is p! x! y,

which is obtained by flipping x and p in x! p! y, the order

of e1e2, and so on. The 2LNN set for each subsegment is

simply the first two objects in the order. As a result,p splits the

original subsegment bc (whose 2LNNs are fx; yg) into four

subsegments: be1 (2LNN ¼ fx; yg), e1e2 (2LNN ¼ fx; pg),
e2e3 (2LNN ¼ fp; xg), and e3c (2LNN ¼ fp; yg). Sometimes

such a split causes two or more consecutive subsegments to

have the same set of kLNNs because the flipping does not

occur at the top-k objects. As such, a postprocessing step is

necessary to linearly scan and merge such subsegments.
During the scan of each object p, the kLNN algorithm

checks if p splits a preceding subsegment as above,
starting from the rightmost subsegment and then left-
wards. When p no longer splits a preceding subsegment,
that is, when all objects in the kLNN set of this
subsegment are nearer than p to any point on this
subsegment, the check terminates and the algorithm
continues to scan the next object. The following lemma
guarantees the correctness of this termination criterion.

Lemma 6. If p is not a kLNN for subsegment ab, then p is not a
kLNN for any subsegment xy, where y � a.

Proof. By mathematical induction, we only need to prove
that p is not a kLNN for the subsegment to the immediate
left of ab, denoted as xa. Suppose this is not true. Since
the object order for ab is obtained by flipping the
positions of two objects in the order for xa and since p
cannot be the object to be flipped to a lower position in
the order (because p is the rightmost object scanned so
far), p must still be a kLNN for ab, which contradicts our
assumption. Therefore, p is not a kLNN for xa. tu

Each split check for p with a preceding subsegment
needs to compute kðkþ 1Þ=2 perpendicular bisectors, and
the maximum number of subsegments after splitting is also
kðkþ 1Þ=2. Let N denote the number of subsegments in the
final kLNN result. Scanning p takes at most Oðk2NÞ time.
Therefore, the total time complexity of the kLNN algorithm
is Oðnk2NÞ. Similar to the LNN algorithm, the incremental
version of the kLNN algorithm scans the new object p and
the objects to the right of p until no subsegment changes.
The time complexity is Oðmk2NÞ, where m is the number of
objects scanned.

4.2 The d-Dimension Case

In d-dimensional spaces (d � 3), RNNs cannot be computed
using the same techniques as in Section 4.1 because the
boundary of � is no longer composed of four line segments.
Rather, it is composed of 2d hyperplanes of d� 1 dimen-
sion. Since other geometric approaches such as building
d-dimensional Voronoi diagrams (or even k-order Voronoi
diagrams for kRNN) are costly, we propose in this section a
linear programming approach to solve the d-dimensional
RNN problem.

Let variable x denote a point in the d-dimensional space,
and xi denote its coordinate in the ith dimension. As such, �
is denoted as ai � xi � bi; 81 � i � d, where ai, bi are the
bounds. Given data set D ¼ fpð1Þ;pð2Þ; . . . ; pðnÞg, object p� 2 D
is an RNN if and only if the following set of inequalities
with regard to x can be satisfied simultaneously:

dist2ðp�;xÞ�dist2ðp1;xÞ�0
Pd

i¼1
½2ðpð1Þi �p�i Þxiþðp�i Þ

2�ðpð1Þi Þ
2��0

dist2ðp�;xÞ�dist2ðp2;xÞ�0
Pd

i¼1
½2ðpð2Þi �p

�
i Þxiþðp�i Þ

2�ðpð2Þi Þ
2��0

. . . ¼) . . .
dist2ðp�;xÞ�dist2ðpn;xÞ�0

Pd

i¼1
½2ðpðnÞi �p�i Þxiþðp�i Þ

2�ðpðnÞi Þ
2��0

ai�xi�bi;81�i�d ai�xi�bi;81�i�d:

ð2Þ

The right-hand side derivation shows that these inequal-
ities are linear with respect to xi, 1 � i � d. As such, they
can be regarded as the set of linear constraints in a linear
programming (LP) problem regarding the variable set xi.
We build an LP problem P with the objective function C ¼
0 and the same linear constraints as above. Determining
whether these inequalities can be satisfied simultaneously is
then equivalent to testing whether P has a feasible solution.

We use the classic Simplex or Ellipsoid method to solve P.
If the solver shows that the problem is feasible, p� is an
RNN, otherwise, it is not. Using an LP solver to test the
feasibility does not degrade the performance since it was
shown that the cost of a feasibility test for P is already half
the cost of finding the optimal solution for P [19]. This
approach can also be extended to kRNN: We choose n� k
objects from D (excluding p�) and form an LP problem P.
There are n�1

k�1

� �
possible Ps. As long as one of them is

feasible, p� is a kRNN.
Although many LP solvers such as the Simplex and

Ellipsoid methods practically run in polynomial time, their
performance still depends heavily on d and n (the
cardinality of D) [19]. Since d cannot be changed, we
propose some heuristics to efficiently decrease n. The idea is
to choose a set of “seed” objects from D, denoted as D0, and
for each object pðiÞ 2 D, we use pðiÞ and D0 to form a smaller-
scale LP problem P0. If P0 has no feasible solution, it means
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that pðiÞ is not even the (k)RNN in a smaller data set, let
alone the (k)RNN for D. Therefore, we can prune pðiÞ from
D. After pruning all such pðiÞs from D, we can generate the
LP problem PðsÞ for each remaining object in D and test the
feasibility. As the cardinality of D is much smaller after
pruning, the computational cost is significantly reduced.

If the seed objects are the actual (k)RNNs, the preceding
algorithm can prune the most number of the objects.
However, this optimal seed set is unknown at the pruning
stage. As such, we propose the following two heuristics to
approximate it.

Heuristic 7. MINDIST Seed Heuristic: Choose the dþ k nearest
objects to � in D. The distance metric is MINDIST.

Heuristic 8. Face Seed Heuristic: Choose a random point on each
face of � and take its (k)NN as seeds.

The first heuristic takes advantage of the fact that objects
in D are bounded by an MBR. If the MBR does not overlap
�, objects that are closer to � are more likely to be the
(k)RNNs. The second heuristic finds some true (k)RNNs
along the boundary. Since all 2d faces are considered, the
seed set can include as many (k)RNNs as possible.

5 SECONDARY MEMORY RNN PRUNING

TECHNIQUES

In this and the next sections, we turn our focus to the
database aspect. More specifically, we presume that a range
query has been issued in advance to find all internal RNNs.
Thus, we investigate techniques for processing external
RNNs on the R-tree index and show how unnecessary
index traversal can be avoided to save I/O and CPU costs.
The traversal still adopts the DFS or BFS paradigms: When
it accesses a leaf R-tree node, it calls the in-memory RNN
algorithms (i.e., the incremental (k)LNN-based algorithm
for 2D or the LP-based method for d-dimension). In this
section, we first present pruning heuristics for DFS or BFS
and then present a CNN-based algorithm specialized for
2D cases. In the next section, we further propose an
auxiliary index called EXO-tree to speed up the processing
of RNN as well as any other types of NN queries.

5.1 Pruning Techniques for DFS and BFS RNN
Search

We define the minimum distance between two sets of points
S and R, denoted as �ðS;RÞ, as the minimum distance
between any point in S and any point in R:

Definition 2. �ðS;RÞ ¼ mins;r distðs; rÞ, where s 2 S and
r 2 R.

We also define the maximum distance between two sets of
points S and R, denoted as �ðS;RÞ, as the maximum
distance between any point in S and any point in R:

Definition 3. �ðS;RÞ ¼ maxs;r distðs; rÞ, where s 2 S and
r 2 R.

We also define �ðS;CÞ as the maximum distance between any
point in S and its NN in the current RNN candidate set C:

Definition 4. �ðS;CÞ ¼ maxs distðs;NNðsÞÞ, where s 2 S.

Both S and R can be finite or infinite (for example, a spatial
range). Under these distance metrics, we propose the
following three pruning heuristics.

Heuristic 9. An R-tree node n (n also denotes its MBR) with
�ðC;�Þ < �ðn;�Þ should not be visited.

Heuristic 10. An R-tree node n that satisfies “for each face of �’s
boundary, F , �ðC;FÞ < �ðn;FÞ” should not be visited.

Heuristic 11. Nodes are visited in the ascending order of their
minimum distances to �, that is, �ðn;�Þ.

The first two heuristics essentially identify conditions
under which no object in node n can be closer to any point
in � than the current RNN candidates. The last heuristic is
based on the fact that the closer an object is to �, the more
likely it is an external RNN of �. In essence, the three
heuristics are generalizations of the three heuristics pro-
posed in [5]: When � degenerates to L, �ðn;�Þ becomes
MINDIST(n,L) and �ðC;�Þ becomes SLMAXD. Thus, Heur-
istics 9 and 11 degenerate, respectively, to the first and third
heuristics in [5]. Nonetheless, the second heuristics are
different: The face-based pruning Heuristic 10 does not
degenerate to the second heuristic in [5] which is a split-
point-based pruning. Although such pruning is more fine-
grained, it is only feasible for line segments. By contrast, the
face-based pruning works for two or high-dimensional
query inputs where the NN distribution on a face is more
complicated than a set of line segments divided by split
points. For the same reason, the computation of �ðC;FÞ
needs to be approximated in d-dimensional spaces.2 We can
bound it by any RNN candidate p’s maximum distance to
F ; that is, �ðp;FÞ. To make the pruning most effective,
however, we should use the lowest bound; that is, the
minimum of �ðp;F values among all p 2 C.

As for the time complexity, computing �ðn;�Þ needsOðdÞ
time. Thus, the first heuristic runs in OðdÞ time, assuming
that �ðC;�Þ is always maintained whenever C is updated.
Similarly, the second heuristic runs in Oðd2Þ time because it
must check all of the 2d faces. The third heuristic also takes
OðdÞ time to compute �ðn;�Þ. In addition, we need to count
the time spent on maintaining �ðC;�Þ and �ðC;FÞ.

Generalizing these heuristics for kRNN queries is no
more complicated than literally replacing every “NN” with
“kNN.” For example, distance metric �ðC;FÞ becomes
�kðC;FÞ, which denotes the largest distance of any point on
F from its kth NN in C, and to bound it in d-dimensional
spaces, we need to use the “kth minimum,” instead of the
“minimum” �ðp;FÞ value.

Algorithm 1 shows the complete pseudocode for the
RNN algorithm in the BFS paradigm that applies these
heuristics.

Algorithm 1 The Complete RNN Search Algorithm in

BFS Paradigm

Input: �, the query range

Output: C, the set of RNNs

Procedure:
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2. It is still easy in 2D spaces because F is simply a line segment. After
the preceding in-memory LNN algorithm is executed, �ðC;FÞ is set to the
maximum distance between any endpoint and its LNN.



1: Initialize C and the priority queue Q for the BFS
paradigm

2: Enqueue the root node to Q

3: while Q is not empty do

4: Dequeue node n from Q

5: if �ðC;�Þ � �ðn;�Þ then

6: if 9 face F of �, �ðC;FÞ � �ðn;FÞ then

7: if n is an object then

8: C ¼ C [ n
9: Call (the incremental version of) the in-memory

RNN algorithm on C

10: else

11: for each child entry v of n do

12: Enqueue node v

13: return C

5.2 CNN-Based Search

Lemma 1 shows that external RNNs are exactly the set of
NNs for every point on �’s boundary. In 2D spaces, the
boundary is composed of four line segments, which inspires
us to exploit the continuous nearest-neighbor (CNN)
algorithm in [5] to process 2D RNN queries. However,
invoking the CNN algorithm four times is inefficient
because it might retrieve the same R-tree nodes more than
once. Such redundant accesses occur more frequently as �
becomes smaller. Therefore, we revise the original CNN
algorithm so that it traverses the R-tree only once to retrieve
all the NNs for the four line segments. The changes are as
follows: 1) While pruning in the original CNN algorithm is
based on MINDIST ðn; lÞ, where l represents one line
segment, the enhanced algorithm considers the four lines
segments as a whole by replacing MINDIST ðn; lÞ with
�ðn;�Þ. 2) To prune more nodes, the internal RNNs are set
as the initial external RNN candidate set, C. As CNN has
been generalized to kCNN in [5], this approach can directly
answer kRNN queries.

6 EXO-TREE

In this section, we first investigate the drawbacks of the
traditional DFS and BFS paradigms. To address the
problems, we propose an solution-based auxiliary index,
called EXO-tree, to augment the primary index (for
example, an R-tree). We then show how DFS and BFS can
use it to speed up any type of NN (PNN, CNN, and
especially RNN) query processing.

6.1 “Fringe Effect”

For PNN queries, DFS and BFS are efficient if the query
point q resides deep inside the MBR of a leaf R-tree node n
because: 1) n is the first leaf node explored. 2) When it is
explored, the current NN candidate is updated, and since
all of the other nodes are probably farther from q than the
candidate, the algorithm can stop immediately. However, if
q is close to the boundary of n or not inside any leaf node,
all nodes in the vicinity might need to be visited even after
n is visited because they may contain objects closer to q than
the current candidate. Fig. 5 shows such an example: For q1,
only leaf node n1 is accessed. By comparison, p2 is the actual
NN for q2, but DFS must visit n1, then n3, and then n2.

Although it finds p2 when visiting n1, it cannot avoid the

subsequent visits of n2 and n3. BFS has the same problem,

since n2 and n3’s MINDIST to q2 are both less than that of p2,

they precede p2 in the priority queue and thus are accessed

before p2.
We call such a performance downgrade the “fringe

effect” because it occurs when q resides in the fringe area of

a node or outside any node of the same level in the R-tree.

The higher the level (closer to the R-tree root) in which this

problem occurs, the more dramatic the fringe effect since

many more intermediate and leaf nodes are unnecessarily

visited. RNN queries intensify this effect because a query

point is now enlarged to a range, which increases the

possibility that the neighboring nodes have NN candidates.

6.2 Basic Idea

The fringe effect is inevitable for R-tree or any partition-

based spatial index. Therefore, we propose an auxiliary

solution-based index to complement the primary index and

reduce this effect. A key observation from Fig. 5 is that, for

q2, even though n1, n2, and n3 all need to be visited, not all

object entries in them need to be accessed. In general, if a

query point is outside node n, only some objects in n could

possibly be its NN. Based on this observation, we divide the

objects in each index node n into two categories: those that

can never be the NN for any query point outside n and those

that can. We call them internally influential objects and

externally influential objects, or internal objects (INOs) and

external objects (EXOs) for short. For example, in Fig. 5, p2

in n1 is an EXO, but p4 is an INO because it is not the NN for

any point outside n1 (we show in the next section why this is

true). Intuitively, EXOs are located close to the boundary,

and they form a (small) subset of all the objects in n.
Note that an object might be an EXO for node n but an

INO for n’s ancestors. Nonetheless, an EXO of n must be an

EXO of any of n’s descendants that contain this object. Thus,

each object is associated with the highest level node in

which this object is an EXO. In this way, all EXOs form a

hierarchy superimposed on the primary index. Such a

hierarchy on EXOs, called an EXO-tree, is stored as an

auxiliary index. With this index, if n does not overlap q but

still needs to be accessed without further traversing the

subtree rooted at n, we only need to retrieve n’s EXOs and

search for q’s NN among them.
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Fig. 5. Performance problems for DFS and BFS.



6.3 Computing External Objects

To compute the EXOs for node n, the straight-forward
approach is to compute the Voronoi cells for all objects in n:
Those objects whose Voronoi cells are not totally inside n
are EXOs. However, computing the exact Voronoi cells
requires knowledge of the entire data set, so this approach
is costly. We thus propose a local algorithm that only needs
a linear scan of the objects in n to determine the EXOs.
Efficient as it is, such localization has its own cost: The
resultant EXOs are just a superset of the actual EXOs
because the algorithm ignores all objects outside n.

In the same spirit of Lemma 1, the following lemma
shows that to find EXOs in n, it is only necessary to find
NNs for all points on n’s boundary. In 2D spaces, this is the
same as the LNN problem in Section 4.1.1, except that all
objects are on one side of L. Therefore, the LNN algorithm
and its incremental version can still be applied.

Lemma 12. The sufficient and necessary condition for an object p
to be an EXO in node n is that p must be the NN for at least
one boundary point of n.

Proof. The proof is the same as that of Lemma 1 except that
now p resides inside the boundary rather than outside it
as seen in Lemma 1. tu

In d-dimensional spaces, to determine if object pi is an
EXO, we build an LP problem that is the same as (2), except
that the last constraint is “xi � bi or xi � ai, rather than
“ai � xi � bi. If the LP problem is feasible, pi is an EXO.
Otherwise, it is not.

If n is not a leaf node, the EXOs do not have to be
computed from scratch. Instead, n’s EXOs can be computed
from the EXOs of n’s child nodes since EXOs of higher level
nodes must also be EXOs of lower level nodes.

6.4 EXO-Tree Index

The auxiliary index, called “external objects tree” (EXO-
tree), is an index of the EXOs for every node in the primary
index (for example, R-tree). Each EXO-tree node corre-
sponds to a node in the primary index. However, the two
nodes store different information:

1. A leaf EXO-tree node only stores the entries of
external objects that belong to it, while a leaf primary
index node stores the entries of all objects that
belong to it.

2. Each external object entry in a leaf EXO-tree node
has an additional attribute “level” that denotes the
level of the top-most primary index node in which
this object is still an external object.

3. In an intermediate EXO-tree node, each entry also
has a “level” attribute that designates the highest
“level” value of all EXOs contained in this entry.

By this design, the EXO-tree need not store redundant EXOs
for any intermediate node because they must also be the
EXOs of some leaf nodes. Fig. 6b is an example of an EXO-
tree. A;B; a; b; c; d are R-tree nodes and 1; . . . ; 10 are EXOs.
The second digit in each entry is the level attribute for the
entry. Thus, ðb; 1Þmeans the top-most level of EXOs in node
b is 1 (object 5). A leaf entry corresponds to an EXO. Thus,
ð4; 0Þ means object 4 is an EXO only for leaf node b, and

ð1; 2Þ means 1 is an EXO for the leaf node a, level 1 node A

and the root node.
To build the EXO-tree from the primary index, we

compute all nodes’ EXOs in a bottom-up fashion: the leaf

nodes first, then their parents, ..., and, finally, the root node.

Note that for an EXO p, its level is not determined until p is

no longer an EXO for some ancestor node. When the values

of the level for all EXOs are determined, the values of the

level for all intermediate node entries can be determined.

6.5 Integration with R-Tree: EXR-Tree

In this section, we consider R-tree as the primary index. The

EXO-tree can be stored separately or integrated into the

R-tree to avoid storing common entry information (for

example, MBR and node id) twice. The integration is

achieved by augmenting each node entry with a level

attribute required by the EXO-tree. In addition, since the

leaf nodes of the EXO-tree and the R-tree are different, they

are stored in separate disk pages. Such an augmented R-tree

is called an EXR-tree. Three storage issues arise in the

EXR-tree:

1. An EXO-tree leaf node contains only a small portion
of the objects in the corresponding R-tree leaf node.
As such, we group nearby leaf EXO-tree nodes to fit
in one disk page. To minimize the I/O cost, these
nodes are grouped by their Hilbert curve [20] order
to reserve spatial locality.

2. For intermediate nodes, although the level attribute
needs only one byte, augmenting the entries of an
existing R-tree might make the nodes unable to fit
into disk pages. In these cases, we store the level
attributes of an EXR-tree node separately on disk or
memory.3

3. So far, only the EXOs for leaf nodes are directly
stored. To retrieve the EXOs for an intermediate
node, we have to visit all its descendant nodes and
choose EXOs whose level values are not lower than
the level of this node. This is inefficient, particularly
because the EXOs for higher level nodes are more
frequently accessed than those for the lower level
nodes. Therefore, we buffer all high level EXOs to
avoid any disk access. The threshold level that
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3. To illustrate how small this part of the data is, imagine a data set with
10 million objects and an R-tree with 4k-byte page size. The number of
intermediate nodes is less than 1,000. As such, even if all nodes have the
maximum number of entries (about 200), the level data only take up
200K bytes in total.

Fig. 6. Example of EXO-tree. (a) Objects placement and (b) correspond-
ing EXO-tree.



determines “high” or “low” adapts to the available
memory size.

A sketch of an EXR-tree is given in Fig. 7. All gray areas
are the additional storage required for the EXR-tree besides
the R-tree: The slim gray area in each entry designates the
level attribute. Although depicted inside the entry, it can be
stored outside the entry. At the leaf node level, both the
R-tree nodes (in white) and the EXO-tree nodes (in gray) are
stored separately. For each entry, a solid arrow denotes a
link to the corresponding tree node, whereas a dotted arrow
denotes a link to the external objects. In the figure, all
external objects at level 1 or higher are buffered, so every
entry that corresponds to a node at level 1 or higher has the
dotted arrow pointing to the buffer and every remaining
entry has a dotted arrow pointing to the disk page. The
dotted arrows are implemented virtually and stored outside
the entries by a hashing function. In contrast, the solid
arrows are stored physically with the entry. The advantage
of such storage organization is that the original R-tree
remains unchanged: The EXR-tree is just the R-tree plus
some auxiliary structures.

6.6 Processing NN Query on EXO-Trees

The EXO-tree can speed up any NN query (PNN, CNN, or
RNN) for any “branch and bound” search paradigm (DFS or
BFS). The improvement lies in that, if query q (which could be
a point, a line, or a range) does not overlap the MBR of an
entry n, even if no heuristics can prune n,4 it is only necessary
to access n’s external objects, which are only a small portion
of the entire set of objects in n and are probably already
buffered in the memory.

More specifically, in the DFS paradigm, before the
recursive call to process q on entry n, we check if q overlaps
n. If it is negative, the external objects of n are retrieved
instead of carrying out the recursive call. In the BFS
paradigm, when n is dequeued, besides checking whether
n is an object or an intermediate node, we also check if q
overlaps n. If it is negative, the external objects of n, instead
of n’s child entries, are enqueued into the priority queue.

6.7 Handling Updates

In this section, we show how the EXO-tree handles updates;
that is, object insertions, object deletions, and index node
splits. Insertion or deletion of an object in a leaf node n
might change the EXO set of n. We thus need to recompute
the set. If the set actually changes, the update procedure is
propagated to its parent. The parent then gathers all the

EXOs of its child entries, recomputes its own EXO set, and
propagates the update to its parent, until the EXO set ceases
to change.

Splitting index node n into n1 and n2, on the other hand,
does not invalidate the EXO set of any lower level node. The
EXO set of a new node n1 is computed from the EXO sets of
the child entries in n that now belong to n1, and so is the
EXO set of n2. Similarly, since n1 and n2 are the new child
entries of n’s parent, the parent must recompute its own
EXO set. Similar to insertion/deletion, if the EXO set
actually changes, the update procedure must be propagated
to its parent.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of all proposed
RNN processing techniques. We also evaluate the perfor-
mance gain of EXR-tree for PNN, CNN, and RNN queries.

7.1 Experimental Setup

The simulation testbed runs on the Win32 platform with
Pentium 4 1.8G CPU, 512MB memory. The testbed consists
of two 2D real data sets: “NE” contains 123,593 postal
addresses in New York, Philadelphia, and Boston; “US”
contains the centroids of 569,120 major road segments
throughout the United States [data set]. The testbed also
consists of a series of synthetic data sets “UN-xD” with
increasing dimensions: UN-2D, UN-4D, UN-6D, and UN-
8D. Each data set contains 100,000 objects that are uniformly
and randomly distributed. All six data sets are normalized
to unit (hyper)rectangles and indexed by R*-trees [10].

There are two tunable parameters in the experiments:
len, the side length of � and mem, the available memory.
We set the same length for each dimension of �, making it a
(hyper)cube. Thus, len designates the RNN query’s work-
load. The centroid of � is randomly and uniformly
generated. The memory is used to cache R-tree or EXR-tree
index nodes, or buffer high-level external objects of the
EXR-tree.5 mem is expressed as the percentage of the size of
the R-tree. To be fair, both the R-tree and the EXR-tree apply
LRU (least-recently-used) as their cache replacement policy.

The performance metrics are CPU time and the number
of accessed disk pages per query. If we need to evaluate the
overall cost in terms of time, we charge 10ms for each page
access, as in [5]. To obtain stable statistics, each measure-
ment is obtained by averaging the results from 1,000 in-
dependent queries, after 200 (20 percent) queries have been
run as warm-up queries.

7.2 In-Memory RNN Processing

In this section, we evaluate the performance of the LNN-
based (for 2D) and LP-based (for d-dimension) algorithms.
To compare with the LNN-based algorithm, we also
implement the Voronoi-diagram-based algorithm using
Fortune’s sweepline technique [22]. We measure the CPU
time dedicated to in-memory processing, which is plotted in
Fig. 8a. The figure also shows the average number of
external RNNs for different � sizes. Although both the
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4. That is, the MINDIST (for PNN) or �ðn;�Þ (for RNN) distance metric
is not high enough.

5. We do not consider the runtime memory for the algorithms, for
example, the stack for DFS recursive calls and the priority queue for BFS
because they are implementation-dependent.

Fig. 7. EXR-tree: R-tree with EXO-tree integration.



LNN-based and the Voronoi-diagram-based algorithms

have OðnlognÞ worst-time complexity, the figure shows

that the former always outperforms the latter by at least an

order of magnitude. We also observe that the LNN-based

algorithm runs almost linearly to the number of external

RNNs while the Voronoi algorithm runs exponentially. This

is because the LNN algorithm can be incremental and only

costs OðnÞ time whereas the Voronoi algorithm cannot: It

has to recompute the entire diagram whenever a leaf R-tree

node is visited.
In the next experiment, we fix len at 1=1; 000 and

measure the CPU time for the kLNN-based algorithm.

Fig. 8b shows its trend with respect to k: The CPU time

increases as the number of subsegments increases drasti-

cally. Nevertheless, even when k ¼ 9, the CPU time is about

130ms, a reasonable cost for desktops. The experiments on

len=1/500,1/250,1/125 show similar results. Therefore, we

conclude that the (k)LNN-based algorithm is efficient for

2D RNN in-memory processing.
Next, we evaluate the LP-based algorithms on the UN-

xD data sets (x ¼ 2; 4; 6; 8). Since two heuristics (MINDIST

and Face Seed) are proposed in Section 4.2, we evaluate all

four combinations: PLAIN (without heuristics), MINDIST

(the MINDIST heuristic), FACE (the FACE heuristic), and

BOTH (both heuristics). Fig. 9a shows the CPU time for the

four data sets. In general, none of these algorithms are

sensitive to d since the size of the LP problem depends more

on the number of objects n than d. Nonetheless, the

performance does degrade due to the curse of dimension-

ality [23]. For the same reason, MINDIST is the most

sensitive to d: As d increases, the top dþ k objects are less

likely to become the RNNs. In contrast, FACE is less

sensitive since it always chooses true RNNs as seeds. As

such, BOTH achieves the best performance for all d values.

In the next experiment, we fix d ¼ 8 and evaluate under
different k values. k significantly affects the CPU time
because it affects the number of LP problems to solve. From
Fig. 9b, we observe that PLAIN is only feasible for k � 3 and
that even MINDIST becomes extremely slow when k � 7.
This is again due to the fact that the top dþ k objects are less
likely to be RNNs as k increases. Thus, we do not count in
PLAIN and MINDIST beyond their feasible ranges. FACE is
the best algorithm here because it is the least sensitive to k.
In contrast, BOTH hardly outperforms FACE, which means
that the overhead of executing MINDIST outweighs its
additional performance gain added to FACE. As such, we
conclude that BOTH is the best for small k and FACE is the
best for medium and large k.

7.3 Secondary Memory Pruning

In this section, we evaluate the performance of the
secondary-memory pruning heuristics given various para-
meter settings. The heuristics are implemented in a BFS
paradigm. In the 2D case, we also compare them with the
proposed CNN-based algorithm in terms of the number of
R-tree page accesses.

Figs. 10a and 10b show the results for the two real data
sets. The BFS and CNN-based algorithms show similar
performance, although the latter is slightly better than the
former by 5 percent to 15 percent. This is expected as Tao et al.
already proved that the CNN algorithm is nearly I/O
optimal for NN queries on line segments [5]. As such, the
close performance of BFS indicates that our pruning
heuristics are still competitive even in 2D. The performance
gap is even less when len increases because a larger
proportion of page accesses is due to the internal RNN query.

In the next experiment, we compare the performance of
kRNN queries using the same data sets (see Figs. 11 and
11b). We find that, when k increases, the gap between BFS
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Fig. 8. CPU Time for 2D RNN Queries (NE data set). (a) LNN-based algorithm versus Voronoi diagram and (b) LNN algorithm with different k values.

Fig. 9. CPU time for d-dimensional RNN queries (UNxD data sets). (a) CPU time versus d. (b) CPU time versus k (d ¼ 8).



and CNN-based algorithms increases accordingly. This is

attributed to the increasing performance gap between the

face-based and the split-point-based pruning methods, as

the increasing number of split points makes a split-point-

based pruning method still competitive for large k. Data set

US reveals a larger gap than NE as the objects in US are

more skewed, making the face-based pruning method even

worse. But even so, CNN-based algorithm never outper-

forms BFS by more than 30 percent even when k ¼ 9. Given

the fact that BFS works for arbitrary dimensions, the

performance gap in 2D is acceptable.

In the next experiment, we evaluate BFS in different

dimensions using the UN-xD data set. Fig. 12a shows the

number of page accesses, which increases steadily when d

increases. However, it does not deteriorate drastically

because the increase is attributed more to the dimension-

ality curse than to the pruning heuristics. Fig. 12b

integrates the CPU time from Fig. 9a (using BOTH) to

show the overall clock time to process an RNN query. Like

in Fig. 12a, we find that the clock time increases steadily.

One interesting observation is that the overall time becomes

more I/O bound (less CPU bound) when d increases. This

can be interpreted as follows: Although both the in-memory

and secondary memory processing are cursed by the

dimensionality, the former is less cursed as the FACE

heuristic is independent of d.

7.4 The Effect of EXR-Tree

In this section, we evaluate the performance gain (in terms

of page accesses) of EXR-tree over R-tree for all types of NN

queries: PNN, CNN, and RNN. For each query type, we

measure the performance of BFS with EXR-tree (denoted as

BFS-EXR), with R-tree (denoted as BFS-R) and with SR-tree

(denoted as BFS-SR). Since the EXR-tree takes up some

memory to buffer its high-level EXOs, to make the

comparison fair, we add the same amount of memory to

the R-tree and SR-tree cache.

7.4.1 EXR-Tree Construction and Maintenance

We first evaluate the cost of constructing and maintaining

an EXR-tree from an R-tree. The maintenance cost is

measured under a workload consisting of 1,000 insertions

followed by 1,000 deletions. Tables 1 and 2 show the space

and time cost for all six data sets. From the tables, we make

the following observations:

1. The storage overhead of EXR-trees is small, adding
only 13 percent to 17 percent to the original R-tree.

2. The size of level 1þ EXOs is small (tens of kilobytes
for any data set), thus buffering them incurs only a
small amount of memory;

3. The time cost to compute the EXR-tree is small,
especially given the fact that it is a one time cost.

4. The maintenance of EXR-tree takes up 40 percent to
60 percent of the total maintenance cost, which is
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Fig. 10. Page accesses versus len for 2D. (a) NE and (b) US.

Fig. 11. Page accesses versus k for 2D. (a) NE and (b) US.

Fig. 12. BFS performance under UN-xD data sets. (a) Number of page accesses and (b) clock time.



reasonable as EXR-tree redundantly stores external
objects.

5. As d increases, the number of EXOs increases, a
result of the “dimensionality curse.”

7.4.2 PNN and CNN Results

In the first experiment, we evaluate the EXR-tree on PNN
queries using all six data sets. Fig. 13a shows the
improvement of BFS-EXR over BFS-R, which ranges from
13 percent to 32 percent. BFS-SR, on the other hand, is
comparable to BFS-EXR only for the two 2D real data sets.
This is due to their different mechanisms of speeding up
NN search: While SR-tree refines the bounding area for a
more accurate MINDIST value, EXR-tree directly stores
the external objects that lead to more node accesses. As
such, EXR-tree is less vulnerable to dimensionality and
skewness than SR-tree. Nonetheless, a skew data set
increases the gain of EXR-tree because it is more likely for
the query point to locate outside all the child nodes, which
BFS-EXR avoids visiting. Low dimensionality also increases
the gain of EXR-tree since there are fewer external objects as
d decreases, making the EXR-tree pruning more efficient.

In the next experiment, we evaluate the BFS-EXR and
BFS-R algorithms on CNN queries. We vary the query
length [5] and plot the number of page accesses in Fig. 13b.6

The overall performance gain ranges from 10 percent to
40 percent, which is significant. However, the gain shrinks
as the query length increases because a longer line segment
is more likely to intersect a node, making the EXR-tree
pruning less effective. Furthermore, the gain in NE is larger

than that in UN-8d due to higher skewness and smaller
dimensionality.

7.4.3 RNN Results

In this section, we compare BFS-EXR, BFS-R, and BFS-SR on
RNN queries. Three experiments were run, each varying
len, k, and mem (the cache size) individually. In the first
experiment, len varies from 1/1000 to 1/125 and we can see
from Fig. 14a an improvement of EXR-tree over R-tree of
20 percent to 50 percent. This improvement is more evident
than CNN given the same len setting because the query
input is a multidimensional range rather than a one-
dimensional line segment. On the other hand, SR-tree is
not suitable for RNN query as its improvement over R-tree
is only visible for the 2D data set and small len; it is even
worse than R-tree in cases of high dimensions and large len.
This is attributed to the fact that SR-tree is less accurate than
R-tree when it comes to the computation of MINDIST
between the bounding area and the query range. Therefore,
we do not compare BFS-SR in the subsequent experiments.

Fig. 14b shows the results of the second experiment
where k varies from 1 to 9. Although EXR-tree can still
handle k > 1, large k degrades the performance more than
large len does. This is because the EXR-tree becomes less
efficient for larger k values as the number of EXOs
increases. Nonetheless, even in the extremely adverse case,
that is, uniform data set with a high dimension and high
k values, BFS-EXR still outperforms BFS-R by 5 percent to
10 percent, which shows that EXR-tree is a robust index for
RNN queries. In the third experiment, we vary mem, the
cache memory for the BFS-EXR algorithm or the BFS-R
algorithm. Fig. 15 shows that for both data sets, EXR-tree
enlarges its performance gain over R-tree when mem
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6. To simplify the charts, in the sequel only the results for data sets NE
and UN-8d are shown.

TABLE 1
EXR-Tree Size

TABLE 2
EXR-Tree Construction and Maintenance Cost



increases from 1 percent to 10 percent, but shrinks when
mem increases from 20 percent to 50 percent. This is
because EXR-tree manages the memory more efficiently:
The LRU cache strikes a balance between caching R-tree
nodes and caching leaf EXO-tree nodes. In other words,
compared to R-tree, EXR-tree caches “better” nodes that can
save more I/O cost. As a side effect, the performance of
EXR-tree also saturates earlier than that of R-tree, which
explains why the improvement shrinks when mem > 20%.

7.4.4 EXR-Tree Summary

We summarize the characteristics of EXR-tree as follows:

1. It achieves a better performance on skew data set
than on uniform data set.

2. It achieves a higher performance gain when the
dimension of the query input increases; that is, the
performance gain on RNN queries is higher than on

CNN queries, which is still higher than on PNN
queries.

3. It achieves a better performance in lower dimensions.
4. It can handle kNN queries, but for each k, a separate

EXR-tree must be built unless there is a maximum
value of k for which an EXR-tree can be built;
furthermore, the EXR-tree becomes less beneficial as
k increases and more objects become EXOs.

5. The EXR-tree uses cache memory more efficiently
than the R-tree.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed the range nearest neighbor

(RNN) query as an extension to point nearest neighbor

(PNN) and continuous nearest-neighbor (CNN) queries. We

then devised efficient in-memory processing algorithms

and secondary memory pruning heuristics for both 2D and
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Fig. 13. (a) PNN and (b) CNN performance gain under all data sets.

Fig. 14. RNN performance gain under NE and UN-8d data sets. (a) Various len. (b) Various k.

Fig. 15. RNN performance gain under various cache sizes.



d-dimensional spaces. All these techniques were general-
ized to handle kRNN queries. We also proposed an
innovative solution-based auxiliary index, EXO-tree, which
is dedicated to speeding up the processing of all types of
NN queries. Empirical results showed that our proposed
techniques are efficient and robust given various data sets,
query range sizes, numbers of nearest neighbors returned
(k), dimensions, and cache sizes. We also performed
extensive experiments on EXR-tree, an R-tree augmented
by an EXO-tree, and showed that it significantly improves
the NN search performance. It achieves the best perfor-
mance for skewed data sets, small k values, small to
medium dimensions, and RNN queries type. Since EXO-
tree is orthogonal to other NN processing techniques, it can
be incorporated into any existing NN searching algorithms.

In future work, we will extend the query shape from a
hyperrectangle to an arbitrary shape that has a close-form
mathematical expression. We are also interested in handling
a moving object data set rather than a stationary spatial data
set. Regarding the EXO-tree, since it is independent of the
primary index that it is attached to, it would be meaningful
to investigate its performance on other spatial indexes such
as kd-trees (integrated as an EXkd-tree). In addition, since
the performance of EXO-tree degrades as k increases, we will
seek alternative ways to index objects for kNN (including
kPNN, kCNN, and kRNN) queries when k is large.
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