
Lecture 17: Huffman Coding
CLRS- 16.3

Outline of this Lecture

• Codes and Compression.

• Huffman coding.

• Correctness of the Huffman coding algorithm.

1

Suppose that we have a 100,000 character data file
that we wish to store . The file contains only 6 char-
acters, appearing with the following frequencies:

a b c d e f
Frequency in ’000s 45 13 12 16 9 5

A binary code encodes each character as a binary
string or codeword. We would like to find a binary
code that encodes the file using as few bits as possi-
ble, ie., compresses it as much as possible.

2

In a fixed-length code each codeword has the same
length. In a variable-length code codewords may have
different lengths. Here are examples of fixed and vari-
able legth codes for our problem (note that a fixed-
length code must have at least 3 bits per codeword).

a b c d e f
Freq in ’000s 45 13 12 16 9 5

a fixed-length 000 001 010 011 100 101

a variable-length 0 101 100 111 1101 1100

The fixed length-code requires 300,000 bits to store
the file. The variable-length code uses only

(5·1+13·3+12·3+16·3+9·4+5·4)·1000 = 224,000 bits,

saving a lot of space! Can we do better?

Note: In what follows a code will be a set of codewords, e.g.,

{000,001,010,011,100,101}

and {0,101,100,111,1101,1100}

3

Encoding

Given a code (corresponding to some alphabet Γ) and
a message it is easy to encode the message. Just
replace the characters by the codewords.

Example: Γ = {a, b, c, d}

If the code is

C1{a = 00, b = 01, c = 10, d = 11}.

then bad is encoded into 010011

If the code is

C2 = {a = 0, b = 110, c = 10, d = 111}

then bad is encoded into 1101111

4

Decoding

C1 = {a = 00, b = 01, c = 10, d = 11}.

C2 = {a = 0, b = 110, c = 10, d = 111}.

C3 = {a = 1, b = 110, c = 10, d = 111}

Given an encoded message, decoding is the process
of turning it back into the original message.
A message is uniquely decodable (vis-a-vis a particu-
lar code) if it can only be decoded in one way.

For example relative to C1, 010011 is uniquely de-
codable to bad.
Relative to C2 1101111 is uniquely decodable to bad.
But, relative to C3, 1101111 is not uniquely decipher-

able since it could have encoded either bad or acad.

In fact, one can show that every message encoded
using C1 and C2 are uniquely decipherable. The unique
decipherability property is needed in order for a code
to be useful.

5

Prefix-Codes

Fixed-length codes are always uniquely decipherable
(why).
We saw before that these do not always give the best
compression so we prefer to use variable length codes.

Prefix Code: A code is called a prefix (free) code if
no codeword is a prefix of another one.

Example: {a = 0, b = 110, c = 10, d = 111} is
a prefix code.

Important Fact: Every message encoded by a prefix
free code is uniquely decipherable. Since no code-
word is a prefix of any other we can always find the
first codeword in a message, peel it off, and continue
decoding. Example:

01101100 = 01101100 = abba

We are therefore interested in finding good (best com-
pression) prefix-free codes.

6

Fixed-Length versus Variable-Length Codes

Problem: Suppose we want to store messages made
up of 4 characters a, b, c, d with frequencies 60, 5, 30,
5 (percents) respectively. What are the fixed-length
codes and prefix-free codes that use the least space?

7

Fixed-Length versus Variable-Length Prefix Codes

Solution:

characters a b c d
frequency 60 5 30 5
fixed-length code 00 01 10 11
prefix code 0 110 10 111

To store 100 of these characters,
(1) the fixed-length code requires 100×2 = 200 bits,
(2) the prefix code uses only

60 × 1 + 5 × 3 + 30 × 2 + 5 × 3 = 150

a 25% saving.

Remark: We will see later that this is the optimum
(lowest cost) prefix code.

8

Optimum Source Coding Problem

The problem: Given an alphabet A = {a1, . . . , an}

with frequency distribution f(ai) find a binary prefix
code C for A that minimizes the number of bits

B(C) =
n∑

a=1

f(ai)L(c(ai))

needed to encode a message of
∑n

a=1 f(a) charac-
ters, where c(ai) is the codeword for encoding ai, and
L(c(ai)) is the length of the codeword c(ai).

Remark: Huffman developed a nice greedy algorithm
for solving this problem and producing a minimum-
cost (optimum) prefix code. The code that it produces
is called a Huffman code .

9

1 0 1

0 1

0 1

n2/35 n1/20

n4/100

n3/55

0

c/5

e/45

d/15b/15a/20

{a = 000, b = 001, c = 010, d = 011, e = 1}

Correspondence between Binary Trees and prefix codes.
1-1 correspondence between leaves and characters.
Label of leaf is frequency of character.
Left edge is labelled 0; right edge is labelled 1
Path from root to leaf is codeword associated with
character.

1 0 1

0 1

0 1

n2/35 n1/20

n4/100

n3/55

0

c/5

e/45

d/15b/15a/20

{a = 000, b = 001, c = 010, d = 011, e = 1}

Note that d(ai), the depth of leaf ai in tree T is equal
to the length, L(c(ai)) of the codeword in code C

associated with that leaf. So,
n∑

a=1

f(ai)L(c(ai)) =
n∑

a=1

f(ai)d(ai).

The sum
∑n

a=1 f(ai)d(ai) is the weighted external
pathlength of tree T .

The Huffman encoding problem is equivalent to the
minimum-weight external pathlength problem: given
weights f(a1), . . . , f(an), find tree T with n leaves
labelled a1, . . . , an that has minimum weighted exter-
nal path length.

Huffman Coding

Step 1: Pick two letters x, y from alphabet A with the
smallest frequencies and create a subtree that has
these two characters as leaves. (greedy idea)
Label the root of this subtree as z.

Step 2: Set frequency f(z) = f(x) + f(y).
Remove x, y and add z creating new alphabet
A′ = A ∪ {z} − {x, y}.
Note that |A′| = |A| − 1.

Repeat this procedure, called merge, with new alpha-
bet A′ until an alphabet with only one symbol is left.

The resulting tree is the Huffman code.

10

Example of Huffman Coding

Let A = {a/20, b/15, c/5, d/15, e/45} be the
alphabet and its frequency distribution.
In the first step Huffman coding merges c and d.

10

a/20

c/5 d/15

e/45b/15 n1/20

Alphabet is now A1 = {a/20, b/15, n1/20, e/45}.

11

Example of Huffman Coding – Continued

Alphabet is now A1 = {a/20, b/15, n1/20, e/45}.
Algorithm merges a and b

(could also have merged n1 and b).

n2/35 n1/20

1010

b/15a/20 c/5 d/15

e/45

New alphabet is A2 = {n2/35, n1/20, e/45}.

12

Example of Huffman Coding – Continued

Alphabet is A2 = {n2/35, n1/20, e/45}.
Algorithm merges n1 and n2.

n2/35 n1/20

55
10

1010

e/45

a/20 d/15c/5b/15

New alphabet is A3 = {n3/55, e/45}.

13

Example of Huffman Coding – Continued

Current alphabet is A3 = {n3/55, e/45}.
Algorithm merges e and n3 and finishes.

1 0 1

0 1

0 1

n2/35 n1/20

n4/100

n3/55

0

c/5

e/45

d/15b/15a/20

14

Example of Huffman Coding – Continued

Huffman code is obtained from the Huffman tree.

1 0 1

0 1

0 1

n2/35 n1/20

n4/100

n3/55

0

c/5

e/45

d/15b/15a/20

Huffman code is
a = 000, b = 001, c = 010, d = 011, e = 1.
This is the optimum (minimum-cost) prefix code for
this distribution.

15

Huffman Coding Algorithm

Given an alphabet A with frequency distribution {f(a) :

a ∈ A}. The binary Huffman tree is constructed using
a priority queue, Q, of nodes, with labels (frequencies)
as keys.

Huffman(A)
{ n = |A|;

Q = A; the future leaves
for i = 1 to n − 1 Why n − 1?
{ z = new node;

left[z] =Extract-Min(Q);
right[z] =Extract-Min(Q);
f [z] = f [left[z]] + f [right[z]];
Insert(Q, z);

}

return Extract-Min(Q) root of the tree
}

Running time is O(n logn), as each priority queue
operation takes time O(logn).

16

Huffman Codes are Optimal

Lemma: Consider the two letters, x and y with the smallest fre-
quencies. Then is an optimal code tree in which these two letters
are sibling leaves in the tree in the lowest level.

Proof: Let T be an optimum prefix code tree, and let b and c
be two siblings at the maximum depth of the tree (must exist
because T is full). Assume without loss of generality that f(b) ≤
f(c) and f(x) ≤ f(y) (if this is not true, then rename these
characters). Since x and y have the two smallest frequencies it
follows that f(x) ≤ f(b) (they may be equal) and f(y) ≤ f(c)
(may be equal). Because b and c are at the deepest level of the
tree we know that d(b) ≥ d(x) and d(c) ≥ d(y).

Now switch the positions of x and b in the tree resulting in a differ-
ent tree T ′ and see how the cost changes. Since T is optimum,

B(T) ≤ B(T ′)

= B(T) − f(x)d(x) − f(b)d(b) + f(x)d(b) + f(b)d(x)

= B(T) − (f(b) − f(x))(d(b) − d(x))

≤ B(T).

Therefore, B(T ′) = B(T), that is, T ′ is an optimum tree. By

switching y with c we get a new tree T ′′ which by a similar argu-

ment is optimum. The final tree T′′ satisfies the statement of the

claim.

17

An Observation: Full Trees

Lemma: The tree for any optimal prefix code must
be “full”, meaning that every internal node has exactly
two children.

Proof: If some internal node had only one child then
we could simply get rid of this node and replace it with
its unique child. This would decrease the total cost of
the encoding.

18

Huffman Codes are Optimal

Theorem: Huffman’s algorithm produces an optimum
prefix code tree.

Proof: By induction on n. When n = 2, obvious.

Assume inductively that with strictly fewer than n let-
ters, Huffman’s algorithm is guaranteed to produce an
optimum tree. We want to show this is also true with
exactly n letters.

19

Huffman Codes are Optimal

Proof – continued: Consider an alphabet A′ of n let-
ters. Let T ′ be an optimum tree for A′ with the two
letters of lowest frequency x and y as sibling leaves
(exists by Lemma). Let T be the coding tree for A =

A′∪{z}−{x, y} (n−1 leaves) obtained by removing
x and y and replacing their parent by z.

T

x y
T’

T

z

f(z) = f(x) + f(y)

d(x) = d(y) = d(z) − 1 and f(z) = f(x) + f(y),
so

B(T) = B(T ′) − f(x)d(x) − f(y)d(y) + f(z)d(z)

= B(T ′) − (f(x) + f(y)).

20

Huffman Codes are Optimal

Proof – continued: By the induction hypotheses, the
Huffman algorithm gives a Huffman code tree HA that
is optimal for A. Let HA′ be the tree obtained by
adding x and y as children of z in HA. Note that,
as in the calculations for T and T ′, we have:

B(HA) = B(HA′) − (f(x) + f(y)).

Also, note that, by the optimality of HA, we have that
B(HA) ≤ B(T), so

B(HA′) = B(HA) + f(x) + f(y)

≤ B(T) + f(x) + f(y)

= B(T ′).

Since we started with the assumption that T ′ was an
optimal tree for A′ this implies that HA′, which is ex-
actly the tree constructed by the Huffman algorithm,
is also an optimal tree for A′ and we are done.

21

