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Abstract—Defining a good distance measure between patterns
is of crucial importance in many classification and clustering
algorithms. Recently, relevant component analysis (RCA) is
proposed which offers a simple yet powerful method to learn
this distance metric. However, it is confined to linear transforms
in the input space. In this paper, we show that RCA can also
be kernelized, which then results in significant improvements
when nonlinearities are needed. Moreover, it becomes applicable
to distance metric learning for structured objects that have
no natural vectorial representation. Besides, it can be used in
an incremental setting. Performance of this kernel method is
evaluated on both toy and real-world data sets with encouraging
results.

I. INTRODUCTION

Many classification and clustering algorithms rely on the

use of an inner product or distance measure between patterns.

Examples include the nearest neighbor classifiers, radial basis

function networks, kernel methods and k-means clustering.

While measuring distances appears to be a simple problem

when the data can be described by a handful of meaningful

features (attributes), many real-world applications involve the

use of thousands of features (or even more). Given this large

pool of features, it is apparent that many of them may be

highly correlated with each other or even irrelevant to the

task being considered. The commonly-used Euclidean distance

assumes that all features are of equal importance, which is thus

often violated in practice.

As a remedy, a large number of feature weighting methods

have been proposed [1], [19]. However, the number of param-

eters involved typically increases with the number of features,

and they are thus prone to the curse of dimensionality problem.

Moreover, another limitation is that they are usually designed

for classification problems, and thus require the availability of

class label information. However, label information is often too

strong, and may not be readily available in some applications.

Recently, there has been a lot of interest on learning with

side information (e.g., [7]). One type of side information that

is often easier to obtain is similarity (dissimilarity) information

[20], i.e., we may only know that certain pairs of patterns are

similar (dissimilar). An example in surveillance application is

suggested in [14]. Here, faces from successive frames of the

surveillance video in roughly the same location often come

from the same person. Thus, we can know that these successive

faces are similar, although we are not given the exact identities

(labels) of these faces. Unlike class label information, such

similarity information can be obtained at virtually no cost

in this case. The use of similarity information has led to

significant improvements in clustering [3], [16], [17]. Recently,

a number of researchers have also proposed distance metric

methods that can utilize such similarity information [8], [13],

[20].

However, these distance metric learning methods rely heav-

ily on convex programming, which can be computational

expensive in some applications (e.g., information retrieval),

and a faster method is thus called for. Recently, [14] proposed

the method of relevant component analysis (RCA). It performs

a linear transform on the input space such that the Euclidean

distance in the transformed space is less affected by irrelevant

variabilities. The basic idea is to assign large weights to the

relevant features and small weights to the irrelevant features.

Moreover, it can also be shown that the RCA transform is

optimal in an information theoretic sense [2]. Computationally,

it involves only one matrix inversion. Results obtained in [2]

are comparable or even better than those in [20].

Though simple yet powerful, RCA still suffers from several

limitations. First, RCA is restricted to the use of linear

transforms in the input space, and can fail even in simple

nonlinear problems such as the XOR problem. As can be seen

in Figure 1, the two classes cannot be separated even after

performing the RCA transform. Second, as RCA operates in

the input space, its number of parameters is dependent on the

dimensionality of the feature vectors. Hence, it suffers from

the same curse of dimensionality problem that plagues many

traditional feature weighting methods, and dimensionality re-

duction is often required before RCA can be run. Third, RCA

relies on a vectorial representation of the data. However, some

objects, such as protein sequences, graphs and trees, may not

have a natural feature vector representation and thus cannot

benefit from RCA. Finally, in an adaptive environment, there

is a continual input of new information. For example, in the

surveillance example mentioned earlier, there is a continual

arrival of new video clips. Thus, it is desirable to have RCA

being able to operate in an incremental setting, such that the

computations do not have to start from scratch every time.

In this paper, we propose the use of kernels in RCA. The

954

mailto:jamesk@cs.ust.hk
mailto:pakming@cs.ust.hk
mailto:ivor@cs.ust.hk


(a) Original. (b) After the RCA transform.

Fig. 1. An simple XOR example that RCA fails.

use of kernels has been highly successful in various aspects of

machine learning, such as classification, regression, clustering,

ranking and principal component analysis [12], [15]. A well-

known example in supervised learning is the support vector

machines (SVMs). The basic idea of kernel methods is to map

the data from an input space to a feature space F via some
map ϕ, and then apply a linear procedure there. It is now well-

known that the computations do not involve ϕ explicitly, but

depend only on the inner product defined in F , which in turn
can be obtained efficiently from a suitable kernel function (the
“kernel trick”).

The rest of this paper is organized as follows. RCA is first

reviewed in Section II. Then, in Section III, we show that RCA

can be kernelized and also can be computed in an incremental

fashion. Experimental results are presented in Section IV, and

the last section gives some concluding remarks.

II. RELEVANT COMPONENT ANALYSIS

In this Section, we will briefly review relevant component

analysis (RCA) as introduced in [14]. Here, similarity infor-

mation is provided in the form of chunklets. Patterns in a
chunklet are similar, i.e., belonging to the same class, though

its exact class label is not known. Moreover, each chunklet

may only contain a small number of patterns. As mentioned

in Section I, the patterns are further assumed to be in some

vectorial representation.

In the following, we assume that C chunklets are given, with

chunklet c containing nc patterns {xc,1, . . . ,xc,nc
}, where

each xc,i ∈ R
d. In RCA, the chunklets are first centered.

Then, the covariance matrix of the centered patterns in all

the chunklets is obtained, as:

C =
1

n

C∑
c=1

nc∑
i=1

(xc,i − x̄c)(xc,i − x̄c)
′. (1)

Here, x̄c denotes the mean of chunklet c and n =
∑C

c=1
nc.

Finally, a whitening transform associated with this chunklet

covariance matrix C is applied, and each pattern x in the data

set is transformed as

x �→ C− 1

2 x. (2)

RCA is thus similar to principal component analysis (PCA),

except that it does not aim at finding directions that represent

most of the variance in the data. Computationally, RCA only

involves one matrix inversion of the d×d matrix C. Thus, it is

very efficient when the input dimensionality d is low. However,

on high-dimensional data sets where d is large, computing the

chunklet covariance matrix explicitly can be expensive, if not

prohibitive.

III. KERNEL RCA

With the use of kernels, the patterns will first be implicitly

mapped from the input space to the kernel-induced feature

space F . The dimensionality of F is usually very high,

sometimes even infinite (such as when the Gaussian kernel is

used). Thus, a direct computation of the chunklet covariance

matrix in (1) is not feasible.

In Section III-A, we first show how RCA can be kernelized.

An incremental procedure for updating the (kernel) RCA

transform is then proposed in Section III-B.

A. Chunklet Covariance Matrix

For class c = 1, . . . , C, let 1c be the n-dimensional vector

with [1c]i =

{
1, pattern i ∈ c

0, otherwise
, and Ic be the n × n

diagonal matrix diag(1c). We also stack the chunklet patterns
together in a d × n matrix, as

X = [x1,1,x1,2, . . . ,x1,n1
, . . .xC,1,xC,2, . . . ,xC,nC

]. (3)

Then, C in (1) can be written in matrix form, as

C =
1

n

C∑
c=1

nc∑
i=1

(
xc,i −

1

nc

X1c

) (
xc,i −

1

nc

X1c

)′

=
1

n

C∑
c=1

nc∑
i=1

(
xc,ixc,i

′ −
1

nc

X1cxc,i
′

−
1

nc

xc,i1c
′X′ +

1

n2
c

X1c1c
′X′

)

=
1

n

C∑
c=1

X

(
Ic −

2

nc

1c1c
′ +

1

nc

1c1c
′

)
X′

=
1

n

C∑
c=1

X

(
Ic −

1

nc

1c1c
′

)
X′

=
1

n
XHX′, (4)

where

H =

C∑
c=1

(
Ic −

1

nc

1c1c
′

)
(5)

is an n×n matrix that is similar1 to the conventional centering
matrix

(
I− 1

n
11′

)
.

1In particular, H is symmetric, block diagonal, idempotent and positive
semi-definite.
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Note that C will be singular when n ≤ d. Therefore, we

add a regularizer εI to C, where ε is a small positive constant.

On using (4), we then have

Ĉ = εI + C = εI +
1

n
XHX′. (6)

Using the Woodbury formula

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1,

we obtain the inverse of C as required in (2):

Ĉ−1 =

(
εI +

1

n
XH · X′

)−1

=
1

ε
I −

1

nε2
XH

(
I +

1

nε
X′XH

)−1

X′.

The dot product between any two patterns x and y in the

RCA transformed space is then equal to

(Ĉ− 1

2 x)′(Ĉ− 1

2 y)

= x′Ĉ−1y

= x′

[
1

ε
I −

1

nε2
XH

(
I +

1

nε
X′XH

)−1

X′

]
y.

Obviously, the computations above only involve dot products

between patterns, and the kernel trick can be readily applied.

Specifically, suppose that RCA is performed in the feature

space F corresponding to a kernel function k (and a nonlinear

map ϕ), then the dot product between ϕ(x) and ϕ(y) after
running RCA in F is

k̃(x,y) =
1

ε
k(x,y)

−k′
x

[
1

nε2
H

(
I +

1

nε
KH

)−1
]
ky, (7)

where K = [k(xi,xj)]ij is the n × n kernel matrix defined

on the chunklet patterns, kx = [k(x1,1,x), . . ., k(xC,nC
,x)]′

and ky = [k(x1,1,y), . . . , k(xC,nC
,y)]′.

Notice that this kernelization does not incur additional costs.

Thus, while most existing distance metric learning methods

that are capable of utilizing similarity information are based

on convex programming (Section I), an unique advantage of

kernel RCA is that it is much faster, which may be crucial in

some applications.

B. Incremental Update

As mentioned in Section I, in many applications, it is typical

to have a continual input of new chunklets. As the computation

in (7) involves the matrix inversion

H

(
I +

1

nε
KH

)−1

, (8)

it could become expensive if this matrix inversion had to be

performed on the arrival of every chunklet. In this Section,

we show that (8) can be computed in an efficient, incremental

manner instead.

By redefining the value of ε, (6) can be rewritten as

Ĉ =
1

n
(XHX′ + εI).

Using the Woodbury formula again, we obtain

Ĉ−1 =
n

ε
I −

n

ε2
XH

(
I +

1

ε
KH

)−1

X′. (9)

In the following, we denote the set of all processed chunklets

by A (containing a total of nA patterns) and the new chunklet

by B (with nB patterns). Denote the corresponding X’s in

(3) by XA and XB (which are of size d × nA and d × nB

respectively). Then, K and H can be decomposed as

K =

[
KAA KAB

K′
AB KBB

]
, H =

[
HA 0

0 HB

]
,

where KAA = X′
AXA,KAB = X′

AXB,KBB = X′
BXB ,

HA is the matrixH in (5) that corresponds to all the processed

chunklets, andHB = I− 1

nB
11′, where 1 is a nB-dimensional

vector of all ones.

Denote ZA = (I + 1

ε
KAAHA)−1. Using the fact that[

A B

C D

]−1

=

[
A−1 0

0 0

]
+[

−A−1B

I

]
P−1

[
−CA−1 I

]
,

where P = D − CA−1B and 0 is a zero matrix with the

appropriate dimensions, we have(
I +

1

ε
KH

)−1

=

(
I +

1

ε

[
KAAHA KABHB

K′
ABHA KBBHB

])−1

=

[
I + 1

ε
KAAHA

1

ε
KABHB

1

ε
K′

ABHA I + 1

ε
KBBHB

]−1

=

[
ZA 0

0 0

]
+

[
− 1

ε
ZAKABHB

I

]
(
I +

1

ε
KBBHB −

1

ε2
K′

ABHAZAKABHB

)−1

[
− 1

ε
K′

ABHAZA I
]
.

Denote YA = HAZA. Then, (8) becomes (on replacing nε

by ε):

H

(
I +

1

ε
KH

)−1

=

[
YA 0

0 0

]
+

[
− 1

ε
YAKABHB

HB

]
(
I +

1

ε
KBBHB −

1

ε2
K′

ABYAKABHB

)−1

[
− 1

ε
K′

ABYA I
]
. (10)

Note that YA has already been obtained during the processing

of chunklet A. Hence, on the arrival of the new chunklet
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B, we have to compute the following terms in (10) with

complexities2:

1) KABHB: O(nAn2

B);
2) YAKABHB: O(n2

AnB);
3) KBBHB: O(n3

B);
4) K′

ABYA: O(n2

AnB);
5) K′

ABYAKABHB: O(nAn2

B);

6)
(
I + 1

ε
KBBHB − 1

ε2
K′

ABYAKABHB

)−1

: O(n3

B);
7) multiplying the matrices together: O((nA +nB)n2

B) and
O((nA + nB)2nB).

Ignoring the matrix additions, which take at most O((nA +
nB)2), the total computational complexity is thus

O(n2

AnB + nAn2

B + n3

B). (11)

Typically, nB � nA. The complexity incurred in (11) is thus

much less than that of the naive approach, which is O((nA +
nB)3).

IV. EXPERIMENTS

In this Section, experiments are performed on a number of

toy and real-world data sets. Section IV-A first demonstrates

the performance of kernel RCA on the XOR problem that mo-

tivated this work. As in [14], our kernelized version is then also

evaluated in retrieval (Section IV-B) and clustering settings

(Section IV-C). Performance gains on using the incremental

update procedure is illustrated in Section IV-D.

A. XOR Problem

The same XOR problem as mentioned in Section I is used

here. Thirty patterns are drawn from each cluster to form a

total of four chunklets. As shown in Figure 1, linear RCA

fails on this simple data set. Here, we apply kernel RCA

with the Gaussian kernel. As the feature space induced by the

Gaussian kernel is infinite-dimensional, so, for visualization

purposes, we project the transformed patterns on the two

leading principal axes obtained by kernel PCA [11]. As can be

seen in Figure 2, the two classes now become well separated.

To quantitatively evaluate the qualities of the distance met-

rics, we perform the constrained k-means clustering algorithm

[17] using both the original and the transformed metrics.

Clustering accuracy is measured by the Rand index, which

is defined as [20]:

accuracy =
∑
i>j

1{1{ci = cj} = 1{ĉi = ĉj}}

0.5n(n− 1)
,

where 1{·} is the indicator function, n is the number of

patterns in the data set, ci is the true cluster label for pattern

xi, and ĉi is the corresponding label returned by the clustering

algorithm. To reduce statistical variability, results here are

based on averages over 300 random repetitions.

Table I shows that kernel RCA can attain superb clustering

performance on this data set. Note that even though a support

2Here, we assume that each kernel evaluation takes O(1) time. Moreover,
the complexity for multiplying a p × q matrix by another q × r matrix is
O(pqr), while computing the inverse of an n × n matrix takes O(n3) time.

vector machine with the Gaussian kernel can have perfect

classification result on this data set, kernel clustering using

the metric induced by the same Gaussian kernel leads to

disappointing results. This can be illustrated by projecting the

mapped patterns (in the feature space) to a three-dimensional

space obtained by kernel PCA (Figure 2). The first class has

both of its clusters in the upper part while the two clusters from

the other class are in the lower part, thus leading to perfect

classification. However, clusters belonging to the same class

are still not close together, thus explaining the poor clustering

result.

(a) After the KRCA
transform.
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Fig. 2. Projections of the transformed XOR data.

TABLE I

CLUSTERING RESULTS ON THE XOR DATA SET.

kernel (K)RCA Rand index
linear no 0.503

yes 0.502
Gaussian no 0.528

yes 1.000

B. Retrieval Experiment

In this Section, we perform retrieval experiments on the

Structural Classification of Proteins (SCOP) database (v.1.65)

[10]. The two most commonly requested sequence subsets

on the Astral database3 [6], namely the 40%-subset which
contains sequences with 40% or less identity to each other and

the 95%-subset with sequences having 95% or less identity to

each other, are used. From the 40%-subset, we choose the 47

largest superfamilies, resulting in a total of 1778 sequences.

Similarly, from the 95%-subset, we choose the 22 largest

superfamilies, with a total of 2540 sequences.

As protein sequences do not have a natural vectorial repre-

sentation, only kernel RCA, but not the traditional RCA, can

be performed. We adopt the spectrum kernel on sequences [9],

which is defined as

〈x, y〉 =
∑
s∈A∗

nums(x)nums(y),

3The Astral database can be downloaded from http://astral.berkeley.edu.
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where A∗ is the k-spectrum4 of the alphabet, and
nums(x), nums(y) are the numbers of occurrences of subse-
quence s in sequences x and y respectively. In this experiment,

we choose k = 3. Moreover, as in [18], this spectrum kernel
is further normalized as

k(x, y) =
〈x, y〉√

〈x, x〉〈y, y〉
, (12)

so that each feature vector has length 1.

The experimental setup is as follows. For each query in each

superfamily, we use the spectrum kernel in (12) to retrieve

varying numbers5 of nearest neighbors. These are then labeled
and grouped as chunklets for input to the kernel RCA. The

following metrics are compared:

1) metric induced by the spectrum kernel;

2) metric learned by kernel RCA with the spectrum kernel;

3) metric induced by spectrum kernel and a further nonlin-

ear map via the Gaussian kernel;

4) metric learned by kernel RCA using the combined kernel

in 3 above.

Performance is evaluated based on the ROC (receiver oper-

ating characteristic) graph [5], which plots the true positive

(TP) rate on the Y -axis and the false positive (FP) rate on the

X-axis6. To provide a single numerical measure, the AUC,
which is the area under the ROC curve, will be reported.

Table II shows the results. As can be seen, the use of kernel

RCA leads to substantial improvement over the original kernel

on both data sets.

TABLE II

RETRIEVAL RESULTS (AUC VALUES) ON THE SCOP DATA SET.

spectrum spectrum kernel
data set method kernel + Gaussian kernel
40%- no KRCA 0.568 0.539
subset w/ KRCA 20 neighbors 0.677 0.678

30 neighbors 0.682 0.685
40 neighbors 0.685 0.690
50 neighbors 0.687 0.694

95%- no KRCA 0.630 0.600
subset w/ KRCA 20 neighbors 0.769 0.771

30 neighbors 0.774 0.780
40 neighbors 0.778 0.787
50 neighbors 0.779 0.791

C. Clustering Experiments

In this Section, we perform clustering experiments by using

the constrained k-means clustering algorithm7 on the USPS
handwritten digits dataset and a number of data sets from

4For any given k ≥ 1, the k-spectrum of a sequence is the set of all the
length-k contiguous subsequences that it contains.
5In this experiment, we have experimented with 20, 30, 40 and 50 nearest
neighbors.

6TP and FP are defined by TP =
positives correctly classified

total positives
and FP =

positives incorrectly classified
total negatives

, respectively.

7Here, k is set to the number of classes in each data set.

the UCI machine learning repository8 (Table III) [4]. The
experimental setup is similar to that in [20]. The similarity

information is generated as a random subset of all pairs of

patterns belonging to the same class. In the case of “little”

side information, its size is chosen such that the number of

resulting connected components is roughly 70% of the size

of the original data set; whereas in the case of “much” side

information, this is increased to 90%. The following distance

metrics are compared:

1) Euclidean metric on the input space;

2) metric learned by RCA;

3) metric induced by the Gaussian kernel;

4) metric learned by kernel RCA with the Gaussian kernel.

TABLE III

DATA SETS USED IN THE CLUSTERING EXPERIMENTS.

data set #features #classes #patterns
USPS 88 10 2500

breast-cancer 9 2 683
german 20 2 1000
glass 9 6 214
heart 13 2 270
image 18 7 2310

ionosphere 33 2 351
letter 16 26 2600
pima 8 2 768
satellite 36 6 2400
sonar 60 2 208
vehicle 18 4 846

Results are shown in Table IV. As can be seen, the use

of (kernel) RCA in both the input space and kernel-induced

feature space leads to improvements over the original metric.

Moreover, the combined use of kernels and RCA as in kernel

RCA yields the best performance on most data sets. This is

particularly the case on data sets with many input features, in

which it is likely that some of them are not related to the class

labels.

D. Incremental Update

In this Section, we demonstrate the performance gains that

can result from adopting the incremental update procedure in

Section III-B. As an illustration, we only perform experiments

on the USPS data set used in Section IV-C. We keep on adding

chunklets of size 2, and measure the CPU time required to

compute the expression in (8). The procedure is implemented

in MATLAB and the experiment is run on a Pentium-4 3.2GHz

machine, with 512MB RAM, running Windows XP. Results

here are based on averages over 20 random repetitions.

Results are shown in Figure 3. As expected, the incremental

updating approach leads to significant speedup.

V. CONCLUSION

In this paper, we showed that RCA, which is a simple

yet powerful distance metric learning method capable of

8For the letter and satellite data sets, we only use random subsets with
2,600 and 2,400 patterns (with equal number of patterns in each class)
respectively.
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TABLE IV

CLUSTERING RESULTS (AS MEASURED BY THE RAND INDEX) ON THE

USPS AND UCI DATA SETS (ASTERISKS MEAN THAT THE MARKED

METHOD OUTPERFORMS THE OTHER THREE AT A 95% LEVEL OF

SIGNIFICANCE).

input space Gaussian kernel
data side no with no with
set info RCA RCA KRCA KRCA
USPS much 0.843 0.895 0.846 0.927∗

little 0.785 0.810 0.793 0.896∗

breast- much 0.955 0.955 0.961∗ 0.948
cancer little 0.934 0.921 0.945

∗ 0.899
german much 0.515 0.549

∗ 0.518 0.517
little 0.501 0.511 0.503 0.512

glass much 0.635 0.644 0.636 0.691
∗

little 0.614 0.616 0.616 0.651∗

heart much 0.799∗ 0.738 0.784 0.627
little 0.737∗ 0.580 0.718 0.623

image much 0.790 0.837∗ 0.789 0.818
little 0.746 0.814 0.749 0.811

ionosph much 0.624 0.690 0.682 0.807∗

little 0.586 0.661 0.632 0.830
∗

letter much 0.637 0.724 0.641 0.777
∗

little 0.602 0.671 0.607 0.701∗

pima much 0.636 0.661∗ 0.636 0.557
little 0.577 0.567 0.585∗ 0.548

satellite much 0.795 0.817 0.800 0.857∗

little 0.758 0.765 0.756 0.824∗

sonar much 0.529 0.517 0.521 0.626∗

little 0.511 0.532 0.509 0.543
∗

vehicle much 0.557 0.800 0.566 0.834
∗

little 0.540 0.761 0.544 0.792∗
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Fig. 3. CPU time (in seconds) vs the total number of patterns in the chunklets.

utilizing similarity information, can be efficiently kernelized.

This not only extends the ability of RCA to produce nonlinear

transforms of the input space, but also allows learning of dis-

tance metrics for structural objects, such as protein sequences.

Moreover, the proposed incremental update procedure allows

the kernel RCA transform to be computed efficiently in an

adaptive environment. Experiments on a number of real-world

data sets yield improved performance on both retrieval and

clustering tasks.

Here, we have focused on finding a global metric which is

used for all patterns. More generally, the metric can be local

in nature and adaptive to the query or even to each individual

pattern. This will be further investigated in the future.
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