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Abstract— By utilizing the label dependencies among both the pass through low-density regions [4], [5]. Recently, ttgs i
labeled and unlabeled data, semi-supervised learning often has also extended to structured outputs [6]. Another popular
better generalization performance than supervised learning. In smoothness assumption is the manifold assumption, which

this paper, we extend a popular graph-based semi-supervised . . . .
learning method, namely, manifold regularization, to structured assumes that the data lie on a low-dimensional manifold.

outputs. This is performed via the joint kernel directly and ~ Often, this manifold is approximated by a weighted graph,
allows a unified manifold regularization framework for both  leading to a battery of graph-based semi-supervised lagrni

unstructured and structured data. Experimental results on algorithms [7], [8]. Besides these, techniques based on co-
various data sets with inter-dependent outputs demonstrate y4ining [9] and conditional random fields [10], [11] have
the usefulness of manifold information in improving prediction Iso b d f . ised | S tructured
performance. asto teen used for semi-supervised learning on structure
outputs.
|. INTRODUCTION In this paper, we will focus on the graph-based approach,
, and, in particular, the manifold regularization framework
Kernel methods, such as support vector machines, havf gy defining a data-dependent reproducing kernel Hilber
been highly successful in machine learning. Traditionallysn,ce (RKHS), manifold regularization incorporates an ad-
they are mainly focused on vectorial inputs and outpulgjisional regularizer to ensure that the learned function is
With the tremendous amount of structured data (€.9., S€mooth on the manifold. Moreover, in contrast to many
quences, trees, and graphs) available nowadays, there argysr graph-based transductive learning methods, this reg
lot of recent interests in extending kernel methods for MOI& 4rization framework is truly semi-supervised and allows
complex domains with these structured data. In general, t@%neralization to out-of-sample patterns.
structure information may be present in the inputs and/or Recently, an extension of manifold regularization to struc
outputs. For structured inputs, a wide variety of kemelg, eq outputs has been proposed in [12]. However, instead of
have been developed. Examples include the family of stringaming a smooth discriminant function over the inputpotit
kernels commonly used in bioinformatics. Here, we Willyairs directly, it learns oodnesgunction of each explicit
focus on kernel methods for structured outputs. In contragls i of the joint feature map. Moreover, the discriminant
to traditional kernels that are defined on the inputs only, 8fyction is a weighted sum of predictions from the indivitlua
essential ingredient in learning with structured outpstthat parts. Hence, this can be regarded as a “bag of parts” repre-
the kernel is c_)ften defir_le_d jointly on both the input_s andentation. Analogous to the commonly used “bag of words”
outputs [1]. This so-callefbint kernelallows the many-sided (g resentation for text, the structure information amoagsp
dependencies between inputs and outputs to be Capt“r%fost. Similarly, the smoothness of the discriminant tioyc
Empirically, it has been successfully used for solving manyer the data manifold is only indirectly enforced through
complex structured prediction problems in domains such ggese parts. Besides, it cannot be readily reduced to the
natural language processing and computational biology. - gtandard manifold regularization method for unstructured
On the other hand, while many of these structured dajgyig
are readily available (such as internet documents residing |, this paper, we perform manifold regularization on struc-
a hierarchy and_ bioinformatics databases containing DNA\eq outputs by using the joint kernel directly. The exiens
sequences), typically most of them are unlabeled and only formulated entirely in terms of the joint kernel and thas,
a small amount of the data is labeled. Semi-supervisg other kernel methods, does not require knowledge of the
learning [2], [3] thus aims at improving the generalizationsypicit (joint) feature map. Moreover, it includes stardia
performance by utilizing both the labeled and unlabeleganifold regularization as a special case and hence prvide
data. The label dependencies among patterns are captugednified framework for both unstructured and structured
by exploiting the intrinsic geometric structure of the datajgig
This can be implemented by using the so-called cluster Thg rest of this paper is organized as follows. Section I
assumption, which encourages the separating hyperplane{a; gives a brief review on the supervised learning of

S _ structured outputs. Section Il then extends manifold i&@gu
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[1,...,1) € R™, andR, is the set of non-negative real Ill. SEMI-SUPERVISEDLEARNING OF STRUCTURED
numbers. Moreovettr(A) is the trace of matrid, and A ® OUTPUTS

B is the Kronecker product of the two matrices. Besides
superscripts (or subscriptsy,) and XY will be used to
denote entities corresponding to the input, output and t
joint spaces, respectively.

' In semi-supervised learning, we have both labeled patterns
(z4,v:) ¢, drawn i.i.d. from the joint distributioiPx and

set of unlabeled exampl¢s;}?'_,. , drawn i.i.d. from the
marginal distributionPy. A typical smoothness assumption
used in many semi-supervised learning methods is that two
nearby patterns in a high-density region should share aimil

As mentioned in Section |, for learning with structuredabels [2]. When the data lie on a manifold, it is common to
outputs, it is often more convenient to use a joint featurgepresent this manifold by a weighted graph defined on all
representationy that is defined on both the input and the labeled and unlabeled data. The graph’s weight matrix
output V. The discriminant function is then linear in thisA = [ai;] encodes the similarities between data samples.

Il. SUPERVISEDLEARNING OF STRUCTUREDOQUTPUTS

joint feature map, as Label smoothness over the graph is then enforced by the so-
called manifold regularizer which controls the gradient of
flz,y) =w'o(x,y). (1) the target function w.r.t. the marginal distribution of teta.

) S Empirically, this manifold regularizer can be approxinthte
Moreover, as in other kernel methods, this joint featurgg

map is related to goint kernel k& as k((x,y), (Z,7)) = n
o(z, ) o(Z, 7). > ai(fl@) = f(x;)* = f'Lf, (4)

Given a set of training pattern§xz;,y;)}_, wherey; € L=l
Y, the desired discriminant function’¢(x,y) can be ob- wheref = [f(z1),..., f(z,)] andL is the graph Laplacian
tained by solving matrix.

‘ . .
i 1 A. Primal Formulation
min 23 &+ yallwl? @ o | -
et In this section, we extend the manifold regularization

. & . ~ framework to structured outputs via the use of the joint kern
st w'opi(y) > 1 - Ayiy) Vi, Yy # yi, & =0, Vi, introduced in Section II. Unlike traditional graph-basedns
v supervised learning methods where the nodes of the graph
where ¢;'s are slack variables for the errorgyp;(y) = are the labeled and unlabeled exampjesc X'}, here the
o(xi,yi) — p(xi,y), Alys,y) is a loss function penalizing nodes in this “joint manifold” are the tuple§z,y) : = €
the difference betweep; andy, and~, is a user-defined X y € )}. Consequently, smoothness on the manifold is
regularization parameter. Note that the slack variablg2)n also dependent on both the inputand outputy, and the
are scaled with the inverse loss, which is often calitatk similarity between two graph nodés;,y"*) and (z;,y') is
re-scaling Another approach, as advocated in [13], is calledow a((z;,y"), (z;,3')). Note that the similarities defined
margin re-scalingand scales the margin by the loss. on all the graph nodes can be put into a two-dimensional
Using the method of Lagrange multipliers, the dual of (2)natrix A, with entries
can be obtained as:

max Y iy = 5 S gy () = a((zi,y"), (x,9")).
1,YFYi LYFYi J,07Y; . . L .
Y o ! yljy ’ As in Section IlI, the discriminant functiorf(z,y) for
sty Al - ) < g v structured data is dependent on batAndy. We require this
vy Y A f to be smooth on the (joint) manifold w.r.t. the similarity
agy > 0, Vi, Yy # v, matrix A. Let D be the diagonal matrix with elements
Diy = 3771 Y yey Aiyjg- The manifold regularizer in (4)
where can thus be extended to structured outputs as:
Jiyjg = 0pi(y) dp;(7) 1 o
’ B Z Aiia(flxi,y) — flzi,y))?
= M), (o)) — (i), (2,9)) 3 2 2 vl = fle0)
_k((xiay)v(xj’yj))+k(($i7y)a(xj7g))' 1 n , , )
= 35 Aiyjg(wip(zi, y) —w (e, y
It can be shown that; >, ¢ is an upper bound of the 2 Mzeymzzl ol el0,) (5,4)
empirical risk at optimality. Moreover, while the optimtiazn _ w’i)L@’w (5)
problem may potentially have an exponential number of ’
constraints, an arbitrarily close approximation to theisoh  where ® = [p(z;,y)]i=1,.. nyey aNd L = D — A is
can be efficiently obtained in polynomial time by the use othe corresponding (joint) graph Laplacian. Obviouslysthi
cutting plane methods [1]. includes the regularizer in (4) as a special case.



Recall from Section Il that for structured prediction, thewhere 8 = [B;y]i=1, .. tiyy;» @aNdJ = [e1 ® €y, ..., e @
loss function has to be incorporated into structural ris@,ﬂ([}@lm_l)—[e1®f1,...,e,@[}]. Moreover, the primal
minimization. In this paper, we will focus on the slackvariablea can be recovered from the dual varialieas
re-scaling formulation. Extension to margin re-scaling is 1
straight-forward and will not be discussed here. Adding the o= 5(7A1n\3’| +y LK) 1 JB. (20)
manifold regularizer in (5) to the supervised structuree- pr Proof: First, we obtain the Lagrangian of (8) as:
diction problem of (2), we obtain the following optimizatio
problem which corresponds to the manifold regularizatio

14
1 /
for structured outputs: rk i Z S+ (K + v KLK)a

i=1
4

1 ¢ ,
miny, ¢>0 7 Z &+ yaw'w + yrw' OLO w (6) + Z Zﬁiy[l —% —d'Ke; @e4a'Ke; @€,
i=1 c i1yt Yis Y
s.t. w/%):viay" — P\Ti, Y 21_777 ‘
(pless ) = ol ) Alyi, y) = vk, (11)
1=1,...,0,y # y. i=1

Here, & = [¢1,...,&) andy; > 0 is a tradeoff parameter Where 8, € Ry, € Ry (i = 1,..., 6y # y,) are the
for the manifold regularizer. Obviously, in the special easl-@grange multipliers. Setting its derivatives w.¢t.to zero,

where~; = 0, (6) reduces to (2). we have:
By using a similar orthogonality argument as in [7], it is oL 1 - Z Biy 0. i1 (. (12)
easy to obtain the following representer theorem: o6 4 Ayi,y) V= =Lk
Lemma 1:For problem (6), its optimalv is of the form S
w=3" 2yey Qiye(zi,y), whereay, € R. Moreover, using the fact that; ® ex,,...,e; @€k, = e; ®
In matrix form, this can be written as [€k,,- -, €k, then, in (11),
w = Pa, @)

¢
Z Z Biyei @€y = [ei ®€yli=1,... ey 8

where o = [a;y)i=1,... nyey. Substituting this into (6), we

: : )€y = i=1 y#y;
obtain the following optimization problem: Y B i i
Proposition 1: Problem (6) is equivalent to = [®h,...,e® LS.
1 & Similarly, the term_"_, >ty Biyei @ €y, in (11) can be
Wing,e20 > &+ (yaK +yKLK)a  (8) written as
=1
, & Zy#m Py
(e, —e,) >1-— ! = = .
st. dKe; ® (g, —€,) >1 N [e1 ®€y,, ... e @8y, :
i:17"'7£ay#yi7 Zy;éygﬁey
where K = ®'® is the kernel matrix defined using the joint = [e1®8y,...,e0 @8]l ® 1y 1)

kernel on the training data;; € R™Y! is a vector of all

zeroes except that thigh entry is one, and, € RV is a VON vi=1 L ; Y

vector of all zeroes except that tiy¢h entry is one. €y) in (11) can be simplified as’K'Jj3. Plugging these and
Proof: On using (7), thew'w and w/'®Ld"w terms in  (12) back into (11), we obtain

the obj(_ectlve of (6) can be written ar.s‘Ka ando/ KLK«, L=d'(yaK + v KLK)a — o' KJB+ B'lyy_1) (13)

respectively, As for its constraint, defing = e;®1)y. Then,

Moreover, the ternEf:1 >yt Piy(a/ Ke; @€y, —a'Ke; ®

, P BIE — oK IoVs — o K _ . Setting its derivative w.rt.a to zero, we obtaina =
wip(riy) = ORIy = alK(e: @ ly)ey = a’K(e: ©)- 1, g | 4 KLK)"'KJB and thus (10). Plugging (10)

Plugging all these back into (6), we obtain (8). m back into (13), we obtain (9). ]
B. Dual Problem C. Prediction
Denotel; = [¢,]yy,, and Iy = [e1, ..., e/]. The dual of  With the learnedh, one can perform prediction on a (seen
(8) can be obtained from the following proposition. or unseen) examplér, y) as
Proposition 2: The dual of (8) is N
1 = ST N 7l
maxy 30 (K L) I8 4 5 g -1f9) faw) =3, 2 cahl@u) o). (4
i 1 .
s.t. Z Aﬂf’ < 7 = 1,...,¢, This is clearly advantageous to other graph-based transduc
oz Aisy) tive learning algorithms that cannot be used on unseen test
57@207 Z'Zl,...,&y#y,j, data.



IV. DISCUSSIONS (f,9)% Yg € H. In particular, lety = k, , (-, -). We then have
A. Data-Dependent Kernel Deformed by the Joint Manifoqu kxy(' N = flz,y) = (f A y(' )>7:t =(f A y(' N

By defining a data-dependent kernel that captures the o -
underlying geometry of the data manifold, Sindhwani 7% € X:y € V. This implies(f, ky., (,-) =Kz y (-2 = 0,
al.[14] showed that the semi-supervised learning probleffhich meansi, , (-, -) — ks, (-,-) € P. In other words, there
with traditional manifold regularization is equivalent g €Xist coefficients;, (z, y) such that
supervised learning problem. This is also the case for the_ n
related approach of [12]. Here, we show that a similar kemel ka.y () = ke y () + > Y Biy (2, 9)ke, oy (). (A7)
defined over the joint space &f and), can also be obtained i=1y'€y
in our semi-supervised structured prediction setting. o - ) _

Let k((-,-), (-,-)) be the joint kernel function, an# the I[_Beif}vffj’yn_ Ey_“?ﬁ;’rg?“y)]lfl"“’”’yey’ and f(z.y)
corresponding reproducing kernel Hilbert space (RKHShwit TRy ~
inner product(-, ). Define a new space of functiofgwith  kzy(2;,7) = (kz, 5, ka5
the same elements &8, but with the modified inner product n

= <k$_7‘7?’ kﬂ?»y + Z Z ﬂiy/ (1'7 y)kfbmy/>7:t

v
(f.90 = (f.9bn+ - F'LG, (15) pr i
n
where F = [f(zi,y)li=1,.nyey, and G = = (kaygrkey + Y Y By (@, 9)ke,y )
l9(x, y)]7‘,=1,.i.}3z/;_yey- i=ly'€y
Lemma.z.ﬂ is an RKHS. _ +ﬂKxj,gL(Kw + KB(z,y)).
Proof: Since’H is an RKHS, there exists a constant YA

¢ > 0 that bounds the norm of the evaluation functionalgyajyating at allz; € {z1,...,2,} andg € Y, and on

e, [f(z,y)| < C||fll#. Thus, by (15), we havef(z,y)| < gathering all the equations together in matrix form, we have
C|lfllz » which ensures the boundedness of the evaluation

functional of H. Let Amax(-) be the maximum eigenvalue of KB(x,y) + LLKL(Ky, + KB(x,y)) =0
the matrix argument. From (15), we have T4 -1
YA
:> s = — 7[,” LK LKI .
LAIE=C P+ %F’LF Az, y) (W M ) v
VI 2 o' Az Substituting this back into (17), we can evaluate the kernel

< —Amax(L) || F'||* (as e Y .

_<f7f>7-l + max( )H H (@asmax e max(A)) on any(z, 7) using (16). ] -

<IFI2 + x (D) (n V)C2||£|12 As in [12], [14], this modified kernet embodies information

<[7lhe vA mex( L) (VDO 112 from both the original kernek and the Laplaciarl. of the

joint data manifold. Moreover, as expected, kerhalan be
reduced to the deformed kernel in [14].

Recall that the above shows that semi-supervised learning
using both labeled and unlabeled data) with manifold regu-
arization is equivalent to supervised learning (usingydhke
abeled data) with a manifold-deformed kernel. Intuitiel
a similar relationship should also hold between the semi-
supervised learning problem in (9) and the supervised {earn
ing problem in (3). This will be proved in the following.

First, we define the matrix

. I
_<1 . 7AAmaX<L><ny|>02) T

Moreover, by (15) we havélf|ly; < || f[l5, then|/f[ls <
Ifllz < Cl|lfll%- Therefore, the Cauchy sequence in th
modified norm is also Cauchy in the original norm. Thiﬁ
ensures that{ is also complete and thug is an RKHS. m

Denote the kernel of{ by k. The following proposition
shows that the kernel functiok is deformed from the
original kernelk by the manifold.

Proposition 3: The kernel evaluation of on any (z,9) .
IS glj/en by I? _ (Kl + WL) (18)
k’((x,y),(i,g)):k((x,y),(@g)) A

Ya -1 which is in the objective function in (9). Note that each gntr
-K;, (In|y| + LK) LK, ,,(16) of K embodies information from both the original kerriel
o and the graph Laplaciah. Moreover, it is easy to see that
where K, , = [k((x,y), (i, 9))]i=1,... ngey- K can be regarded as a valid kernel matrix.

Proof: In the following, we usek, ,(-,-) as a short-  |Lemma 3: K is symmetric and positive semidefinite.
hand for k((z, ), (-,-)). DecomposeH asH = P & P+, The following proposition shows that the semi-supervised
whereP+ is the subspace it orthogonal to learning problem in (9) can be equivalently seen as a super-

. . ) vised learning problem (3) with thi&’.
P =span{ka y (o) [1= 1, mi y € Vs Proposition 4: Problem (9) is equivalent to problem (3),
Suppose thaf € PL. Thenf(zi,y) = (f, ks, 4(-,*))2¢ =0,  with the J matrix in (3) defined using the sub-matrix &f
fori=1,...,n,y € Y. Hence,F" = 0 in (15) and(f,g),; = corresponding to the labeled data only.



Proof: Define where K%, K are the input and output kernel matrices,
o respectively.
B=1Bis o Biyim1s= 3 By Birrs e s Bipllimt.e Similarly, the affinity matrix{A,;;] on the joint manifold
ad _ can also be constructed as a tensor product of the affinity
After some lengthy but standard algebra, it can be showRatrices of the input and output spaces. In other words,
that theJ in Theorem 4 is equal to Aiig = AXAg’y, where AX and Ay are the affinities
2 . in the input and output, respectlvely By defining® =
=U[®I My, -, M, -

J= (L ® Iy)) diag(M, -, My), diag(A¥1,) and DY = diag(4¥1y), the (joint) graph

where Laplacian matrix can be written as
y;-th column deleted

where L* and LY are the input and output Laplacian
M=, |1 ... 1 1 .1 . matrices, respectively.

. C. Output Structure is Absent

In the special case when there is no structure on the

! T/
Then, for the,@ J KJﬂ term in the objective of (9), we have outputs, the tensor-product joint kernel reduces to

ﬁ’J’KJﬁ ﬁ’[ ]|bﬁ where [K ].b is the sub-matrix off{
composed of the first|)| columns and rows (i.e., the part (e o NS (0. 7
corresponding to the labeled data). It can then be seen that (,9), (2,9)) = £(2,2)d(y,9)
(9) is equivalent to (3) by equating;, = 2y y.

Clearly, this kernel mgtrixf( should also be consistent
with the deformed kernet in (16), as is confirmed by the
following proposition.

Proposition 5: On evaluating the deformed joint kerrel
on both the labeled and unlabeled data, the resultant kerr?0
matrix is the K defined in (18).

Proof: By fixing =,y and evaluating’cw(f,g) on all

(19)

and K = K% ® Ipy. Similarly, L = LY ® I}y. In this
case, the problem reduces to standard manifold regulemizat
in the multiclass setting. As is expected, the structured
manifold-deformed kernel in (16) reduces to the unstr@ctur
manifold-deformed kernel in [14]. This is confirmed by the
lowing proposition.

Proposition 6: If there is no output structure, kernel
(16) reduces to the unstructured manifold-deformed data-

T € ,...,xp} andy € Y, we have i

ZN {o on} gey dependent kernel in [14].

[kz,y(xhg)];:l,...,n;yey Proof: Let k, = [k(z,21),...,k(z,z,)] andd, =
[kl7y(xi,g)]gzlwn;yey [0(y,7)]gey. The RHS of (16) becomes

-1
-K (’Y n|Y| +LK> L[k%y(xj?g)yj:lﬁ...,n;yey'

Evaluating onz € {z1,...,2,} andy € ), we can write in
matrix form as

-1
k(x,2)0(y,y) — (K, ® (5'5) (7;[71 + LXKX> ®

Iy (LY @ 1y)) (ke ® 6y)

) . = Ii( 7)5(:'4737)
K = K—K@‘I‘IHWJFLK) L% nly] ( (”‘I + LYKY)” 1LXﬁz>®(5'yfy|5y)
_ -1 -1
= ya(vaK™" +71L)". . _ < Kz, ) — #, %j] + LYKY) 1LY )> 6(y, ),
= #&(z,2)5(y, 7). (20)

B. Tensor Product Decomposition of the Joint Kernel and

Laplacian Here (-, -) is the unstructured manifold-deformed kernel in

In general, there can be different ways of defining the joirfi4]. ]
kernel and the corresponding joint feature mapA popular  Moreover, as the outputs are now independent of each
construction is via the tensor produgtr, y) = () @A(y),  other, the regularizet| |2 corresponding the manifold-
where ¢ and A are feature maps defined okl and Y, deformed RKHSH is just a summation of all the un-

respectively [1]. It can be shown that the resultant jOIn%tructured manifold-deformed regularizers in the indisat
kernel is simply a product of the corresponding input kerne ) spaces.
gffbs@ ueqr:(tf) ?ée)kzr;ge(l)t:;zlz:itei;nﬁég ) = AW)A®)- Proposition 7: Let the RKHS corresponding -, -), the
g Y. unstructured manifold-deformed kernel in [14], By If there
K=KY®KY, is no output structur&lf”f{ = ey ||f(-,y)||%



Proof: On using (14) and (20), ring structures in [17]. The ring loss, which is defined as the

n B distance between the true and predicted labels along tge rin
(Lha = Z Z aiyaigk((xi,y), (x5, 9)) is used on training. Moreover, to reduce statistical valitgp
ij=1y,gey the experiment is repeated 200 times.
n Results on the remaining unlabeled training data and
= > > aaR(zi )iy, 9) unseen test data are shown in Tables | and II, respectively.
4,j=1y,g€y Besides using the zero-one loss and ring loss as performance
- . measures, we also report the commonly used information
- Z Z Qiyjy R (23, 25) retrieval metrics including precisiof?, recall R and F1 =
yeyii=1 2PR/(P + R). As can be seen, the use of manifold infor-
= Z IIf(,v) i mation significantly improves the performance (with 95%
yey confidence according to the paired studetést).

[ |
By this proposition, it is worth noting that our model (6) Wil _ _
turn into the multiclass SVM [15] with the data-dependent 'N€ second experiment is performed on the popular 20-
kernelx (-, -) for the input space. Hence, the proposed formy2&WSgroups dg%a We select 7 of these newsgroups which
lation naturally extends the multiclass manifold-regizied have a clear hierarchical structure (Figure 1(b)). Fromheac

SVM to the case when the outputs have structure. newsgroup, 100 examples are randomly selected to form
a partially labeled training set and another 50 are used as

V. EXPERIMENTS unseen test data. The number of labeled examples from each
In this section, we demonstrate the usefulness of manifoltewsgroup is varied as 1,2,4,8 and 16. We use the linear
information on two popular data setigapot and news-  kernel on the input. As for the output kernel, we use the
groups. The data manifold is approximated by a weightedollowing feature map defined in [1]. Le¥ be the set of
graph, which is constructed by using the 8-nearest-neighbaodes in the hierarchy, and let the hierarchy structure be
of each pattern. The weight;; between two neighbors;  represented by the partial order, wherez < z means that
andz; is defined in a similar manner as in [16]: nodez is a parent of node. A feature ), is then defined
d(z, ;)2 ) with every nodez, as

a;; = exp <max{h($i),h($j)} \ (2)_ { 1 z<zorz=z
where d(z;,z;) is the distance between;, z;, and h(z;) : 0 otherwise
is the 8-nearest-neighbor distance .9f Moreover, we fix The tree loss, which is defined as half of the length of the
v4 =5x 1075 and~; = 5 x 1075 for all data sets. shortest (undirected) path connectingndz in the hierarchy,

In the experiments, we use the popularly-used tens@ used on training. Again, to reduce statistical vari@ithe
product kernel and Laplacian as described as Section I¥xperiment is repeated 200 times.
B. Moreover, for the data sets in Sections V-A and V-B, Results on the unlabeled training data and unseen test data
the structure is in the output but not in the input. Henceare shown in Tables IIl and IV, respectively. Again, the use
unlike the data sets used in [12], the input cannot be furthef manifold information significant boosts the performance
decomposed into sub-components. In this case, it is natural
to define eacHz,y) (for all possibley’s) as a “part”, the

method in [12] then becomes a special case of our approachl!n this paper, we extend manifold regularization to struc-
tured outputs via the joint kernel. This allows a uni-

A. Teapot Data fied framework for both unstructured and structured data.
The teapot datacontains 400 teapot images (each of siz¢yesirable properties of traditional manifold regulariaat
76x 101) rotated froml® —360° to form a ring (Figure 1(a)). such as the equivalence between semi-supervised learning
In this experiment, we group the images into 10 clusterd) eagnd supervised learning with a data-dependent, manifold-
with 30 images. 100 images are removed from the data sg&formed kernel, are also shown. Experimental results on
to ensure that the clusters are well separated. Then, fragg|.world data sets with ring-structured and hierardhica
each cluster, 20 images are randomly selected to form @tputs demonstrate that the prediction performance am bot
partially labeled training set and the remaining 10 are usgfle ynlabeled training data and unseen test data can be

as unseen test data. The number of labeled examples frafgnificantly improved (across all the metrics) with the use
each cluster is varied from 1 to 5. We use the Gaussig§ manifold information.

kernel on the input. As for the output kernel matrix, we use
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B. Newsgroups Data

VI. CONCLUSION

the 10 x 10 matrix as suggested for

Ihttp://iwww.it.usyd.edu.au/~lesong/cluhsic_datasets.html 2http://people.csail.mit.edu/jrennie/20Newsgroups/



PERFORMANCE ON THE UNLABELED TRAINING DATA OF THE TEAPOT DATASET.

TABLE |

0-1 loss| ring loss | precision| recall F1
#labeled = 5| w/ manifold | 0.055 0.041 0.953 0.945 | 0.949
w/o manifold | 0.111 0.092 0.908 0.889 | 0.898
#labeled = 4| w/ manifold | 0.076 0.058 0.935 0.924 | 0.930
w/o manifold | 0.145 0.122 0.881 0.855 | 0.868
#labeled = 3| w/ manifold | 0.113 0.088 0.903 0.887 | 0.895
w/o manifold | 0.200 0.166 0.837 0.800 | 0.818
#labeled = 2| w/ manifold | 0.171 0.135 0.853 0.829 | 0.841
w/o manifold | 0.281 0.229 0.772 0.719 | 0.744
#labeled = 1| w/ manifold | 0.276 0.226 0.760 0.724 | 0.741
w/o manifold | 0.385 0.312 0.684 0.615 | 0.647

TABLE I
PERFORMANCE ON THE UNSEEN TEST DATA OF THE TEAPOT DATA SET

0-1 loss| ring loss | precision| recall F1
#labeled = 5| w/ manifold | 0.057 0.043 0.950 0.943 | 0.947
w/o manifold | 0.100 0.081 0.916 0.900 | 0.908
#labeled = 4| w/ manifold | 0.075 0.059 0.935 0.925 | 0.930
w/o manifold | 0.127 0.104 0.893 0.873 | 0.883

#labeled = 3| w/ manifold | 0.111 0.088 0.904 0.889 | 0.897
w/o manifold | 0.184 0.147 0.848 0.816 | 0.831

#labeled = 2| w/ manifold | 0.164 0.134 0.858 0.836 | 0.847
w/o manifold | 0.262 0.209 0.784 0.738 | 0.760

#labeled = 1| w/ manifold | 0.266 0.221 0.766 0.734 | 0.750
w/o manifold | 0.370 0.295 0.696 0.630 | 0.661

TABLE IlI
PERFORMANCE ON THE UNLABELED TRAINING DATA OF THE NEWSGROUP®ATA SET.

0-1 loss| tree loss| precision| recall F1
#labeled = 16| w/ manifold | 0.099 0.128 0.885 0.883 | 0.884
w/o manifold | 0.120 0.145 0.859 0.861 | 0.860
#labeled = 8| w/ manifold | 0.132 0.166 0.845 0.848 | 0.846
w/o manifold | 0.188 0.221 0.786 0.791 | 0.788
#labeled = 4| w/ manifold | 0.186 0.226 0.803 0.781 | 0.791
w/o manifold | 0.278 0.329 0.701 0.693 | 0.696
#labeled = 2| w/ manifold | 0.247 0.307 0.769 0.703 | 0.733
w/o manifold | 0.355 0.430 0.626 0.607 | 0.616
#labeled = 1| w/ manifold | 0.342 0.430 0.704 0.607 | 0.648
w/o manifold | 0.419 0.516 0.563 0.539 | 0.549
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(a) Teapot data.

Fig. 1.

TABLE IV

(b) Newsgroup data.

Output structures of the data sets.

PERFORMANCE ON THE UNSEEN TEST DATA OF THE NEWSGROUPS DATA SET

0-1 loss| tree loss| precision| recall F1
#labeled = 16| w/ manifold | 0.110 0.145 0.879 0.873 | 0.876
w/o manifold | 0.132 0.171 0.852 0.850 | 0.851
#labeled = 8| w/ manifold | 0.155 0.197 0.823 0.820 | 0.822
w/o manifold | 0.200 0.250 0.776 0.774 | 0.774
#labeled = 4| w/ manifold | 0.220 0.278 0.762 0.738 | 0.749
w/o manifold | 0.292 0.355 0.681 0.669 | 0.674
#labeled = 2| w/ manifold | 0.288 0.364 0.708 0.657 | 0.680
w/o manifold | 0.364 0.446 0.612 0.589 | 0.599
#labeled = 1| w/ manifold | 0.375 0.477 0.628 0.565 | 0.593
w/o manifold | 0.422 0.528 0.547 0.530 | 0.537
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