
Locality-Sensitive Hashing Scheme Based on Dynamic
Collision Counting

Junhao Gan Jianlin Feng
School of Software

Sun Yat-Sen University
Guangzhou, China

junhogan@gmail.com
fengjlin@mail.sysu.edu.cn

Qiong Fang Wilfred Ng
Dept of Computer Science and Engineering

Hong Kong University of Science and
Technology

HongKong, China
{fang, wilfred}@cse.ust.hk

ABSTRACT
Locality-Sensitive Hashing (LSH) and its variants are well-
known methods for solving the c-approximate NN Search
problem in high-dimensional space. Traditionally, several
LSH functions are concatenated to form a“static”compound
hash function for building a hash table. In this paper, we
propose to use a base of m single LSH functions to construct
“dynamic” compound hash functions, and define a new LSH
scheme called Collision Counting LSH (C2LSH). If the num-
ber of LSH functions under which a data object o collides
with a query object q is greater than a pre-specified collision
threhold l, then o can be regarded as a good candidate of
c-approximate NN of q. This is the basic idea of C2LSH.

Our theoretical studies show that, by appropriately choos-
ing the size of LSH function base m and the collision thresh-
old l, C2LSH can have a guarantee on query quality. No-
tably, the parameter m is not affected by dimensionality of
data objects, which makes C2LSH especially good for high
dimensional NN search. The experimental studies based on
synthetic datasets and four real datasets have shown that
C2LSH outperforms the state of the art method LSB-forest
in high dimensional space.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing Meth-
ods

Keywords
Locality Sensitive Hashing, Dynamic Collision Counting

1. INTRODUCTION
The problem of finding the nearest neighbors (NN) in the

Euclidean space has its wide applications in various fields,
such as artificial intelligence, information retrieval, pattern
recognition and so on. To solve the nearest neighbor search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

(NNS) problem, many methods have been proposed like R-
tree [6], and K-D tree [1]. Given a query object, these meth-
ods all return the exact results, that are the data objects
closest to the query according to some distance functions.
However, as the dimensionality of data objects increases,
the efficiency of these methods greatly decreases. When the
dimensionality is larger than 10, they even become slower
than the brute-force linear-scan approach [12, 13].

Due to the difficulty in finding an efficient method for
exact NNS in high-dimensional Euclidean space, an alterna-
tive problem, called c-approximate Nearest Neighbor search
(c-approximate NN search), has been widely studied [12, 2,
8, 10, 11, 13]. Formally, the goal of c-approximate NNS is
to find the data object(s) within the distance c × R from
a query object, where R is the distance between the query
and its true nearest neighbor.

Locality-Sensitive Hashing (LSH) [2, 8] and its variants
[11, 13] are well-known methods for solving the c-approximate
NNS problem in high-dimensional space. The LSH scheme
was first proposed by Indyk et al. [8] for use in binary Ham-

ming space {0, 1}d, and later was extended for use in Eu-
clidean space Rd by Datar et al [2], which leads to the E2LSH
package 1. The LSH scheme makes use of a set of “distance-
preserving” hash functions, also called LSH functions, to
cluster “closer” objects into the same bucket with higher
probabilities. Currently, the primary choice of constructing
an LSH function for Euclidean distance is to project data ob-
jects (represented as vectors ~o in Rd) along a randomly cho-
sen line (identified by a random vector ~a) which is segmented
into equi-width intervals with size w, and then data objects
projected to the same interval are viewed as “colliding” in
the hashing scheme, i.e., each interval is taken as a bucket.
Formally, an LSH function has the form h~a,b(o) = b~a·~o+b

w
c

where b is a real number chosen uniformly from [0, w].
The E2LSH exploits LSH functions in the following way:

First, a set of k LSH functions h1, . . . , hk are randomly
chosen from an LSH function family, and then they are
concatenated to form a compound hash function G(·), i.e.,
G(o) = (h1(o), . . . , hk(o)) for any object o. Then, the hash
function G(·) is adopted to hash all the data objects into
a hash table T . By using a compound hash function G(·)
instead of a single LSH function hi, the probability that
two “distant” data objects may collide can be largely re-
duced. All the LSH variants, including the Multi-Probe LSH
[11] and the LSB-tree/LSB-forest [13], follow the above ap-

1http://www.mit.edu/~andoni/LSH/



proach of using compound hash functions. However, By
using a compound hash function, the probability that two
“close” data objects fall in the same bucket is also reduced,
although with a small extent. To increase the “colliding”
probability of two “close” data objects, these methods tend
to use a relatively big w which is the interval size in an LSH
function. For example, the E2LSH uses the value w = 4.
In fact, to reduce the “colliding” probability of two “distant”
data objects, we can reduce the interval size w and thus
remove the need of using compound hash functions.

Note that the compound hash functionsG(·) are“static”in
the sense that, once a compound hash function is designed
based on a set of k randomly-chosen LSH functions, this
compound hash function is applied to all the data objects
to construct the corresponding hash table. It is always diffi-
cult to design good compound hash functions such that every
pair of “close” objects can fall in the same bucket at least
in one hash table. This is why usually more than one hun-
dred, and sometimes up to several hundred compound hash
functions and their corresponding hash tables are needed in
the E2LSH method to guarantee a good search accuracy. In
this paper, we propose to make use of “dynamic” compound
hash functions for c-approximate NN search, and define a
new LSH scheme, called Collision Counting LSH (C2LSH).

The C2LSH method first randomly chooses a set of m
LSH functions with appropriately small interval size w (say,
w = 1), which form a function base, denoted as B with
|B| = m. Intuitively, if a data object o is close to a query
object q, then the two objects are very likely to collide under
every single LSH function in B. Accordingly, o should collide
with q under a large number of LSH functions. Only data
objects with large enough collison counts need to have their
distances computed. More formally, by properly setting a
collision threshold l, if a data object o collides with a query
object q under at least l LSH functions in B, then it is a good
candidate of being the c-approximate NN of q. This is ac-
tually the principle for designing compound hash functions.
Given a query q, two different data objects i and j can both
collide with q under l LSH functions, but they may collide
with q under two different sets of l LSH functions. If two
compound hash functions are designed respectively based on
these two sets of l LSH functions, i and j will collide with
q in the corresponding hash tables, and both of them can
be identified as good candidates of being the c-approximate
NN for q. However, the two compound hash functions are
usually not known in advance. In this paper, we seek to
construct “dynamic” compound hash functions based on a
base B of LSH functions, in order to find at least one good
compound hash function for every data object that is close
to a query object. In essence, we consider

(
m
l

)
“dynamic”

compound hash functions that are the concatenations of ev-
ery possible set of l LSH functions in B. Interestingly, we
only need to physically build hash tables for each single LSH
function in the base B.

Our theoretical studies show that, by appropriately choos-
ing the cardinality m of the LSH function base B and the
collision threshold l, C2LSH can have a guarantee on query
quality. Notably, the parameter m is not affected by di-
mensionality of data objects, which makes C2LSH especially
good for high dimensional NN search. The experimental
studies based on synthetic datasets and four real datasets
have shown that C2LSH outperforms the state of the art
method LSB-forest in high dimensional space.

The rest of this paper is organized as follows. We first dis-
cuss preliminaries in Section 2, and then introduce C2LSH
in Section 3. The theoretical analysis of C2LSH is given in
Section 4. We describe experimental studies in Section 5.
Related work is discussed in Section 6. Finally, we conclude
our work in Section 7.

2. PRELIMINARIES

2.1 Problem Settings
In this paper we consider the c-approximate NN search

problem and its k-NN version in Euclidean space. Let D be
the database of n data objects in d-dimensional Euclidean
space Rd and let ‖o1, o2‖ denote the Euclidean distance be-
tween two objects o1 and o2. Formally, a data object o is
a c-approximate NN of a query object q if the distance be-
tween o and q is at most c times the distance between q and
its exact NN o∗, i.e., ‖o, q‖ ≤ c ‖o∗, q‖, where c ≥ 1 is the
approximation ratio. The c-approximate NN problem is to
find a data object that is a c-approximate NN of a query ob-
ject q. Similarly, the c-approximate k-NN problem is to find
k data objects that are respectively the c-approximation of
the exact k-NN objects of q.

2.2 Locality-Sensitive Hashing Functions
Our method depends on locality-sensitive hashing (LSH)

functions and hence we review the notion of LSH functions
first. LSH functions are hash functions that can hash closer
objects into the same bucket with higher probability. Let the
ball of radius r centered at a data object o ∈ D be defined
as B(o, r) =

{
q ∈ Rd| ‖o, q‖ ≤ r

}
. Then, an LSH family can

be formally defined as follows [2].

Definition 1. An LSH function family H = {h : Rd → U}
is called (r, cr, p1, p2)-sensitive if for any v, q ∈ Rd
• if v ∈ B(q, r), then PrH[h(v) = h(q)] ≥ p1;
• if v 6∈ B(q, cr), then PrH[h(v) = h(q)] ≤ p2.

An interesting LSH family for Euclidean distance consists
of LSH functions in the following form [2]:

h~a,b(o) = b~a · ~o+ b

w
c. (1)

Here ~o is the vector representation of a data object o ∈
Rd, ~a is a d-dimensional vector where each entry is drawn
independently from the standard normal distribution N(0,
1). w is a user-specified constant, and b is a real number
uniformly randomly drawn from [0, w).

Intuitively, an LSH function h~a,b(o) works in the following
way. It first projects the object o onto a line La whose di-
rection is identified by ~a. Then, the projection of o is shifted
by a constant b. With the line La being segmented into in-
tervals with size w, the hash function returns the number of
the interval that contains the shifted projection of o.

For two data objects o1 and o2, let s = ‖o1, o2‖. The prob-
ability that o1 and o2 collide under a uniformly randomly
chosen hash function h~a,b, denoted as p(s), can be computed
as follows [2]:

p(s) = Pr~a,b[h~a,b(o1) = h~a,b(o2)]

=

∫ w

0

1

s
f2(

t

s
)(1− t

w
)dt,



where f2(x) = 2√
2π
e
−x2

2 .

For a fixed w, the collision probability p(s) decreases mono-
tonically with s. Hence, the family of hash functions h~a,b is
(r, cr, p1, p2)-sensitive with p1 = p(r) and p2 = p(cr). When
r is set to 1, the function family is (1, c, p1, p2)-sensitive with
p1 = p(1) and p2 = p(c).

2.3 The E2LSH Method
The E2LSH method was proposed in [8, 2]. It does not

solve the c-approximate NN problem directly. Instead, it
tackles the (R, c)-NN problem, which is a decision version
of the c-approximate NN problem. Given a query object q
and a distance R, the (R, c)-NN problem is formally defined
as follows:

(1) A data object o1 within B(q, cR) is returned, if there
exists a data object o2 within B(q,R);

(2) no object is returned, if B(q, cR) does not contain any
data object in the database D.

To find the (R, c)-NN of a query object q, the E2LSH
method uses an (R, cR, p1, p2)-sensitive LSH function family
H. First, a set of k LSH functions h1, . . . , hk are randomly
chosen from H, and they are concatenated to form a com-
pound hash function G(·), with G(o) = (h1(o), . . . , hk(o))
for any object o. Then, the hash function G(·) is used to
hash all the data objects into a hash table T . The above
two steps are repeated for L times, and accordingly, L com-
pound hash functions G1(·), . . . , GL(·) and L hash tables are
generated.

Given a query object q, the E2LSH method checks 3L
data objects that collide with q under at least one of the
L compound hash functions. If there exists a data object
o such that the distance between o and q is smaller than
or equal to cR, object o is returned as the (R, c)-NN of
q; otherwise, no data object is returned even though there
may indeed exist an (R, c)-NN of q. In other words, the
E2LSH method has a nonzero error probability. Suppose
the upper bound of the error probability is denoted as δ.
The parameters k and L must be chosen to ensure that the
following two properties be held with a constant probability
at least 1

2
.

• P1: If there exists a data object o ∈ B(q,R), there
must exist at least one Gi(·) under which o and q col-
lide.

• P2: The total number of data objects, which collide
with q but their distances to q are greater than cR, is
less than 3L.

Note that only when both properties hold at the same
time, the E2LSH method is sound for solving the (R, c)-NN
problem.

The c-approximate NN problem can be solved by issuing
a series of (R, c)-NN search with increasing radius R. Ac-
cordingly, we have to build hash tables in advance by vary-
ing R to be {1, c, c2, c3, . . .}, which leads to extremely large
space consumption and expensive query cost. Gionis et al.[4]
proposed a heuristic method to tackle the large space con-
sumption problem by adopting a single “magic” radius rm
to process different query objects. However, as Tao et al.
[13] show that, the “magic” radius rm may not exist at all.
Instead, they propose the LSB-tree/LSB-forest methods to
avoid building hash tables at different radii.

2.4 The LSB-tree/LSB-forest Methods
The construction of an LSB-tree consists of the following

two steps:

• First, each data object o ∈ Rd is converted to a k-
dimensional data object G(o), using a compound hash
function G(·) = (h1(·), . . . , hk(·)), where hi(·) is an
(r, cr, p1, p2)-sensitive LSH function [13].

• Then, each G(o) is converted to a Z-order value z(o),
and a conventional B-tree is built over all the z(o) val-
ues.

The resultant B-tree is called an LSB-tree. To achieve
a theoretical guarantee for search accuracy, an LSB-forest
structure is proposed, which consists of L independent LSB-
trees with L =

√
dn/B. Here B is the size of page for storing

Z-order values and data coordinates in external memory.
The basic idea of the LSB-tree/LSB-forest methods is

that, “close”data objects tend to have“close”Z-order values.
The “closeness” between two Z-order values is captured by
the notion of Length of the Longest Common Prefix (LLCP).
For a query object q, the LSB-forest method first converts
it to a Z-order value z(q), and then uses z(q) to search the
LSB-forest. The Z-order values stored in leaf pages of all L
LSB-trees are visited in decreasing order of their LLCP with
z(q). Intuitively, visiting Z-order values z(o) in decreasing
order of their LLCP with z(q) simulates the process of issu-
ing a series of (R, c)-NN search with increasing radius R. In
this paper, our C2LSH method exploits a different way to
realize the same simulation.

3. COLLISION COUNTING LSH (C2LSH)
In this section we propose Collision Counting LSH (or

simply C2LSH) for both (R, c)-NN search and c-approximate
NN search.

For an (R, c)-NN search, C2LSH exploits only a single
base B of m LSH functions {h1, . . . , hm}, where each hi
is randomly selected from an (R, cR, p1, p2)-sensitive LSH
family. Here m is called the base cardinality of B. When
hi(·) is used to build a hash table Ti, each data object o in
the database D is hashed by hi(·) to an integer, i.e., hi(o),
which is taken as the bucket ID (or simply bid) of o. Then,
all the data objects are sorted in increasing order of their
bids along the real line. In other words, each hash table Ti
is indeed a sorted list of buckets, and each bucket contains
a set of object IDs representing the objects that fall in the
bucket. If two objects are hashed by hi(·) into the same
bucket, we say they collide with each other under hi(·) .
To search NN for a query object q, C2LSH only considers
distance computation for data objects that collide with q
under a large enough number of functions in B.

For a c-approximate NN search, C2LSH exploits a series
of LSH function bases Bi in order to simulate that E2LSH
issues a series of (R, c)-NN search with increasing radius
R = {1, c, c2, c3, . . .}. We only need to materialize m hash
tables which correspond to the m (1, c, p1, p2)-sensitive func-
tions in the initial base B1. By carefully deriving new LSH
functions from those in B1 to form each subsequent base B,
we can do virtual rehashing (referring to Section 3.4) with-
out physically building B’s corresponding hash tables.

In the following, we will illustrate in detail how the C2LSH
method solves the (R, c)-NN problem and the c-approximate
NN problem.



For ease of discussion, we first introduce the concept of
collision number and then describe the details of the LSH
functions used in C2LSH.

3.1 Collision Number and Frequent Object
The collision number of a data object o with respect to

a query q and a base B is the number of LSH functions
in B that hash o and q into the same bucket. Formally,
let #collision(o, q,B) (or simply, #collision(o)) denote the
collision number of o with respect to q and B, and it is
defined as follows:

#collision(o) = |{h|h ∈ B ∧ h(o) = h(q)}|. (2)

For each hi (i = 1, ...,m), o and q collide with a probability
p(‖o, q‖). A data object o is called frequent (with respect
to q and B) if its collision number #collision(o) is greater
than or equal to a pre-specified collision threshold l.

To decide if a data object o is frequent, logically we need
to perform a scan of the base B. Of course we can choose to
stop the scan whenever we have collected enough collisions.
This collision counting procedure of o can be viewed as a
dynamic formation of a good compound hash function G(·)
which only consists of those LSH functions that put o and q
into the same bucket.

3.2 LSH Functions for C2LSH
The LSH functions used in C2LSH depend on an obser-

vation that has been proved in [13].

Observation 1. Given any integer x ≥ 1, hash function
h′(o) = b~a·~o+bwx

w
c is (1, c, p1, p2)-sensitive, where ~a, b and w

are the same as defined in Equation (1).

From Observation 1, it is trivial to check that

h(o) = b~a · ~o+ b∗

w
c (3)

is (1, c, p1, p2)-sensitive, where b∗ is uniformly drawn from

[0, cdlogc tdew2], c is the approximation ratio, t is the largest
coordinate value of data objects in the original space Rd and
d denotes the dimensionality of data objects.

We use m (1, c, p1, p2)-sensitive functions h(·) as defined in
Equation (3) to form the initial base B1, and we can derive
(R, cR, p1, p2)-sensitive functions from these h(·)’s based on
the following observation that will be proved in Section 4:

Observation 2. The hash function

HR(o) = bh(o)

R
c

is (R, cR, p1, p2)-sensitive, where R is an integer power of

c and R ≤ cdlogc tde, c, p1, p2, h(·), t and d are the same as
defined in Equation (3).

Buckets defined by an HR(·) function are called level-R
buckets. Specifically, h(·)’s in the initial base B1 are simply
H1(·) functions, and buckets defined by an h(·) are level-1
buckets. Accordingly, when an object o is hashed to the
level-R bucket identified by the integer HR(o), we call the
bucket ID HR(o) a level-R bid, and hence o’s level-1 bid is
H1(o), i.e., h(o).

From the definition of HR(·) function, for a given integer
x, it is easy to see the R consecutive level-1 bids xR, xR +
1, xR+2, . . . , xR+(R−1) are mapped to the same level-R bid

x. In other words, logically each level-R bucket x consists of
R consecutive level-1 buckets, and multiplying the level-R
bid x by R, we will get the level-1 bid xR, which identifies
the leftmost level-1 bucket (along the real line) of the level-R
bucket x. However, in practice, some of the level-1 buckets
may be empty, and hence a level-R bucket may physically
correspond to less than R level-1 buckets. In summary, we
have the following observation of HR(·) function which leads
to our Virtual Rehashing technique for solving the (R, c)-NN
problem without physically building hash tables at different
radii.

Observation 3. An object o’s level-R bucket identified

by the level-R bid bh(o)
R
c consists of R consecutive level-1

buckets identified by the level-1 bids bh(o)
R
c ∗R, bh(o)

R
c ∗R+

1, . . . , bh(o)
R
c ∗R+ (R− 1).

Interval Size w. For the efficiency of C2LSH, we should
only do collision counting for data objects which are most
promising to be an NN of a given query object q. Intuitively,
data objects colliding with a query object q are most promis-
ing ones. However, the bucket that q falls in may contain too
many data objects, hence we should exploit a small interval
size w such as w = 1 in the h(·)’s as defined in Equation (3)
in order to reduce the number of data objects colliding with
q in level-1 buckets.

3.3 C2LSH for (R, c)-NN Search
To find the (R, c)-NN of a query object q, C2LSH uses a

(R, cR, p1, p2)-sensitive familyH of LSH functions h’s. From
the family we randomly selectm LSH functions {h1, . . . , hm}
to construct an LSH function base B. To process the query
q, we first locate the buckets that q falls in by computing
hi(q) for i = 1, ...,m and hence find the union of data ob-
jects colliding with q. Intuitively, for every data object o we
can compute its collision number #collision(o) and hence
identify the set C of all the frequent objects. If C has less
than βn (where β is specified later and n is the cardinality of
the database D) frequent objects, we compute real distance
for each member of C; otherwise, we only need to identify
the “first” βn frequent objects and compute real distances
for them. In eithe case, if some frequent object is within
distance cR from q, then we return YES and the object;
otherwise, we return NO.

Let α denote the collision threshold percentage, δ denote
the error probability, β denote the allowable percentage of
false positives which are frequent objects whose distance to
q is greater than cR, and let l denote the collision threshold
where l = αm. The parameter m must be accordingly cho-
sen so as to ensure that with a constant probability at least
1
2

the following two properties hold:

P1: If there exists a data object o whose distance to q is
at most R, i.e., o ∈ B(q,R), then o’s collision number
is at least l. In other words, o is frequent if o is within
distance R from q.

P2: The total number of false positives is less than βn.

Note that if the two properties P1 and P2 hold at the
same time, then the C2LSH method is correct for solving
the (R, c)-NN problem.

The following lemma guarantees that for specific param-
eters, m can be chosen to ensure that P1 and P2 hold with
a constant probability.



Lemma 1. Given a collision threshold percentage p2 <
α < p1, where p1 and p2 are the same as defined in Equation
(3), a false positive percentage 0 < β < 1, and an error
probability 0 < δ < 1

2
,if the base cardinality m, satisfies:

m = dmax(
1

2(p1 − α)2
ln

1

δ
,

1

2(α− p2)2
ln

2

β
)e,

we have Pr[P1] ≥ 1− δ and Pr[P2] > 1
2

.

Proof. The proof is in the Appendix A.

3.3.1 Parameters for C2LSH
We now discuss the setting of the parameters for Lemma

1. We set w = 1, and with a given approximation ratio c, we
can then compute p1 and p2 respectively by p1 = p(1) and
p1 = p(c), where p(s) is the collision probability function
as defined in Section 2. We set δ = 0.01. At this moment,
we have three parameters β, α and m left for setting. We
manually set β = v/n , where v is a positive integer that
is much smaller than the database cardinality n, and thus
we have 0 < β < 1. Let m1 = d 1

2(p1−α)2
ln 1

δ
e and m2 =

d 1
2(α−p2)2

ln 2
β
e, and by letting m1 = m2, we can decide α

by the following formula:

α =
zp1 + p2

1 + z
,where z =

√
ln 2

β

ln 1
δ

.

In fact, with z > 0 and p1 > p2, we have

p2 =
zp2 + p2

1 + z
< α =

zp1 + p2
1 + z

< p1 =
zp1 + p1

1 + z
.

Therefore, α decided in the above approach satisfies the
requirement p2 < α < p1 of Lemma 1.

Replacing α in m1 by zp1+p2
1+z

, we can then decide m:

m = d
ln 1

δ

2(p1 − p2)2
(1 + z)2e.

Since z > 0, it is easy to know that m monotonically
increases with z and equivalently, mmonotonically decreases
with β = v/n. Intuitively, if v is too small, m will become
too large so that we have to maintain many more hash tables
and for processing each query C2LSH has to visit many more
hash tables. On the other hand, if v is too big, the cost to
maintain P2 will be too high since we should find and check
at least βn candidates before we finally return a result. In
this paper, we set v = 100 which seems to be a good trade-off
and hence we have β = 100/n.

3.4 C2LSH for c-Approximate NN Search
As mentioned at the beginning of this section, C2LSH only

materializes the m hash tables {T1, . . . , Tm} corresponding
to the m (1, c, p1, p2)-sensitive functions {h1, . . . , hm} in the
initial base B1. Note that each Ti (1 ≤ i ≤ m) is a sorted list
of level-1 buckets. We can use those {T1, . . . , Tm} to directly
support (1, c)-NN search; and exploits virtual rehashing to
use the same set of Ti’s to support (R, c)-NN search at other
radii {c, c2, . . .}. In this manner, we can do c-approximate
NN Search without presuming a“magic” radius rm for build-
ing hash tables. In the following, we first discuss the details
of virtual rehashing, and then give the k-NN algorithms of
C2LSH for c-approximate NN Search.

3.4.1 Virtual Rehashing
Given a query object q, there may not exist any data

object within the ball centered at q with the radius R =
1. In this case, C2LSH does not return any data object
as q’s c-approximate NN. Then, C2LSH enlarges the search
radius gradually, which simulates the search of E2LSH at
R = c, c2, . . ..

Virtual rehashing first enlarges the search radius from
R = 1 to R = c, and exploits m (c, c2, p1, p2)-sensitive

functions Hc(·) = bh(·)
c
c where the h(·)’s are (1, c, p1, p2)-

sensitive functions as defined in Equation (3) in the initial
base B1. According to Observation 3 in Section 3.2, locating

the level-c bucket Hc(q) = bh(q)
c
c is equivalent to locating

c level-1 buckets in the m hash tables {T1, . . . , Tm}, whose
level-1 bids satisfy the following inequality with r = c:

bh(q)

r
c ∗ r ≤ bid ≤ bh(q)

r
c ∗ r + r − 1. (4)

If necessary, we can similarly do virtual rehashing at sub-
sequent radii R = c2, c3, . . ., until we find query result for
q.

For example, as shown in Figure 1, let approximation ratio
c = 3, when R = 1, we assume the bid of the bucket h(q) for
some fixed ~a and b∗ is 4. When R is enlarged to be 3, the

level-3 bucket H3(q) = bh(q)
3
c consists of 3 level-1 buckets

whose bids are respectively 3, 4, and 5, since these 3 bids
satisfy b 4

3
c ∗ 3 ≤ bid ≤ b 4

3
c ∗ 3 + 3− 1, i.e., 3 ≤ bid ≤ 5. And

similarly when R = 9, the level-9 bucket H9(q) consists of 9
level-1 buckets whose bids satisfy 0 ≤ bid ≤ 8.

Avoiding Duplicate Collision Counting. A useful
property of virtual rehashing for collision counting is that
when we check a level-cr bucket t, we can skip the checking
of the level-r bucket that is covered by t, since the bucket has
been checked in previous round of searching at radius R = r.
The formal proof will be given by Lemma 2 in Section 4.

3.4.2 Nearest Neighbor Algorithm
Given a k-NN query q, we traverse the m hash tables Ti

with 1 ≤ i ≤ m starting from the level-1 bucket H1
i (q) with

the radius R = 1. A candidate list C is used to store the
frequent data objects encountered during the traversal, and
is initialized to be an empty set. We first locate H1

i (q) in
each hash table Ti. Then, we count the collision numbers
for the data objects that appear in at least one of the m
buckets H1

i (q)’s, and add those frequent objects to C. At
level-R (i.e., the current radius is R), if all the level-1 buckets
that are covered by the m level-R buckets HR

i (q) have been
traversed, but the number of frequent objects in C is still not
big enough, we enlarge the radius R to cR and do collision
counting over the level-cR buckets HcR

i (q). This process is
repeated until enough candidates are found, and finally the
top k NN objects in C are returned.

Intuitively, with each hash table Ti as a sorted list of level-
1 buckets, we perform a round-robin scan over the m hash
tables for one level-1 bucket at a time. In Ti, the scan starts
from level-1 bucket H1

i (q), and always goes to the next“clos-
est” level-1 bucket of H1

i (q). The next closest level-1 bucket
of H1

i (q) can be chosen from the level-1 buckets covered
by the level-R buckets HR

i (q)’s. By doing collision count-
ing over those “closest” buckets first, we expect that enough
frequent objects can be found as soon as possible. This
round-robin scan is similar to that used by the MedRank



Algorithm 1: k-NN

Variable: C - a candidate list; P il , P
i
r , P

i
s , P

i
e - pointers

for traversing hash table Ti

1 R := 1, C := ∅;
2 while TRUE do
3 if |{o|o ∈ C ∧ ‖o, q‖ ≤ c×R}| ≥ k then
4 return top k NN objects in C;
5 end
6 for 1 ≤ i ≤ m do
7 if R = 1 then
8 P il , P

i
r , P

i
s , P

i
e → H1

i (q); // Initialization

9 next→ H1
i (q);

10 else // R > 1
11 Alternately move P il one step “left” or move

P ir one step “right”, providing P il ≥ P is or
P ir ≤ P ie ;

12 Set next to be updated P il or P ir ;

13 end
14 Count collision for objects in the bucket pointed

by next, and add frequent objects to C;
15 if |C| ≥ k + βn then
16 return top k NN objects in C;
17 end

18 end
19 if we still have unchecked level-1 buckets then
20 go to Line 6;
21 end
22 for 1 ≤ i ≤ m do
23 P il := P is ; P ir := P ie ;

24 P is → the leftmost level-1 bucket of HcR
i (q);

25 P ie → the rightmost level-1 bucket of HcR
i (q);

26 end
27 R := c×R;

28 end

algorithm [3]. The details of the k-NN algorithm is shown
in Algorithm 1.

Terminating condition. The k-NN Algorithm termi-
nates in two cases which are respectively supported by the
properties P1 and P2 of Lemma 1:

C1: At level-R, there exist at least k candidates whose dis-
tances to q are less than or equal to cR (referring to Line
3-5 in Algorithm 1).

C2: When collision counting over all the level-R buckets is
still ongoing, at least k+βn candidates have been found
(referring to Lines 15-17 in Algorithm 1).

Note that at level-R, we only check C1 for termination
at the very beginning. In this manner, we can avoid un-
necessary collision counting. Intuitively, we can check C1

for termination again at the end of level-R, specifically af-
ter collision counting over all the level-R buckets has been
finished, and if C1 is satisfied, then Algorithm 1 terminates
and we have no need to enlarge R to cR. Logically, if C1 is
satisfied at the end of level-R, it is surely satisified at the be-
ginning of level-cR. Therefore for simplicity, we only check
C1 for termination at the very beginning of each level.

Figure 1: Query processing over a hash table at dif-
ferent radius R by Virtual Rehashing (h(q) = 4).

4. THEORETICAL ANALYSIS
In this section, we discuss the theoretical support of vir-

tual rehashing, the bound on approximation ratio for 1-NN
search, the query and space complexities, and the setting of
collision threshold.

4.1 Theory of Virtual Rehashing
First, we list a simple observation of Floor function b·c [5].

Observation 4. b bxc
v
c = bx

v
c, where x is a real number

and v is a positive integer.

Using this observation, we now give the proof of Observa-
tion 2 mentioned in Section 3.2.

Proof. From Observation 4, we have HR(o) = bh(o)
R
c =

b b
~a·~o+b∗

w
c

R
c = b~a·~o+b

∗

Rw
c. Since b∗ is uniformly drawn from

[0, cdlogc tdew2], b∗/(cdlogc tdew) is uniformly distributed in
[0, w]. Hence,

HR(o) = b
~a · ~o+ b∗

cdlogc tdew
(cdlogc tdew)

Rw
c

= b
~a·~o
R

+ bcdlogc tdew
R

w
c = b

~a·~o
R

+ bxw

w
c,

where b = b∗

cdlogc tdew
is uniformly distributed in [0, w], x =

cdlogc tde

R
≥ 1 and x is an integer.

Let ~o′ = ~o
R

, HR(o) = b~a·~o′+bwx
w

c = h′(o′). By Obser-
vation 1, h′(o′) is (1, c, p1, p2)-sensitive. Since the distance
between o1 and o2 is R times the distance between the cor-
responding o′1 and o′2, HR(o) is (R, cR, p1, p2)-sensitive.

We now give Lemma 2 which are made use of to avoid du-
plicate collision counting in the process of virtual rehashing.

Lemma 2. For any query q, the level-R bucket identified
by HR(q) is always contained by the level-cR bucket identi-
fied by HcR(q).

Proof. According to Observation 3, for any query q, the
level-R bucket identified by HR(q) consists of R consecutive
level-1 buckets with the ID in the range of [bidR, bidR+R−1]

where bidR = bh(q)
R
c ∗ R. Similarly, the level-cR bucket

HcR(q) consists of cR consecutive level-1 buckets with the
ID in the range of [bidcR, bidcR + cR − 1] where bidcR =

bh(q)
cR
c ∗ cR. Hence, to establish Lemma 2, we need to prove

that bidR ≥ bidcR and bidR +R− 1 ≤ bidcR + cR− 1.
It is easy to know that h(q) = bh(q)

R
c ∗ R + x = bh(q)

cR
c ∗

cR + y, where x and y are respectively the integers in the



range of [0, R− 1] and [0, cR− 1]. By Observation 4,

bh(q)

cR
c = b

bh(q)
R
c

c
c ≤
bh(q)
R
c

c

=⇒y − x =

(
bh(q)
R
c

c
− bh(q)

cR
c

)
∗ cR ≥ 0

=⇒bidR − bidcR = h(q)− x− (h(q)− y) = y − x ≥ 0.

On the other hand,

(bidcR + cR− 1)− (bidR +R− 1)

=bh(q)

cR
c ∗ cR+ cR− (bh(q)

R
c ∗R+R)

=[(bh(q)

cR
c+ 1) ∗ c− (bh(q)

R
c+ 1)] ∗R

=[(b
bh(q)
R
c

c
c ∗ c+ c− 1 + 1)− (bh(q)

R
c+ 1)] ∗R

≥[(bh(q)

R
c+ 1)− (bh(q)

R
c+ 1)] ∗R = 0.

4.2 Bound on Approximation Ratio
For 1-NN search, we now present the bound on approxi-

mation ratio for Algorithm 1.

Theorem 1. Algorithm 1 returns a c2-approximate NN
with at least constant probability.

Proof. Let o∗ be the real NN of query q, and r∗ =
‖o∗, q‖. Let R be the smallest power of c bounding r∗ such
that ci < r∗ ≤ ci+1 = R, where i is an integer. In other
words, B(q, R

c
) is empty but o∗ ∈ B(q,R). Then, we have

R < cr∗ and cR < c2r∗.
Assume the properties P1 and P2 of Lemma 1 hold at the

same time, Algorithm 1 terminates in either the C1 case or
in the C2 case as described in Section 3.4.

Suppose Algorithm 1 terminates in case C1 at the begin-
ning of level-R or even smaller level, it is guaranteed that
Algorithm 1 returns a data object o1 belonging to B(q, cR).
Hence, the distance of o1 to q is at most c2r∗, i.e., ‖o1, q‖ ≤
cR < c2r∗. Otherwise, the situation that Algorithm 1 termi-
nates in case C1 must happen at the beginning of level-cR.
This is because P1 of Lemma 1 guarantees there must exist
an object o ∈ B(q,R) among the candidates identified at
level-R. When Algorithm 1 returns an object o2, o2 is as
least as good as o. The distance of o2 to q is then at most
c2r∗, i.e., ‖o2, q‖ ≤ ‖o, q‖ ≤ R < cr∗ < c2r∗.

If Algorithm 1 terminates in case C2, since P2 of Lemma
1 is true, there are no more than βn false positives. Thus,
when Algorithm 1 returns the top 1 NN object o, we can
assure that o ∈ B(q, cR) and ‖o, q‖ ≤ cR < c2r∗.

Hence, in either case, the object returned by Algorithm 1
has a distance to q at most c2r∗. From Lemma 1, the prop-
erties P1 and P2 hold at the same time with at least constant
probability. Therefore, Theorem 1 is established.

4.3 Query Time and Space Complexities
As mentioned in Section 3.3, we set β = 100/n for C2LSH

where n is the cardinality of the database D, and hence we
have m = O(logn).

The query time of C2LSH consists of three parts. The
first part is the time of locating the m = O(logn) buckets

of the query object, and it is md = O(d logn) where d is
the dimensionality of data objects. The second part is the
time of collision counting. Obviously, we have to do colli-
sion counting for at most n objects over each hash table.
Hence, the time of collision counting over m hash tables is
O(n logn). The third part is the time of computing real dis-
tances for at most k + βn candidates. So the query time of
this part is (k + βn)d = O(d). Therefore, the total query
time is O(d logn+ n logn).

The space consumption of C2LSH consists of both the
space consumption of dataset and the space of m = O(logn)
hash tables. For the space of dataset, the space consumption
is O(dn). The space of m hash tables is O(n logn) because
in each hash table, there are n data object ID’s. Therefore,
the total space consumption of C2LSH is O(dn+ n logn).

4.4 Collision Threshold vs Candidate Criteria
For a data object o, if its distance to a query object q

is larger than R but less than cR, i.e., o 6∈ B(q,R) but
o ∈ B(q, cR), we call it a level-cR-only object. By P1 of
Lemma 1, at level-cR, a level-cR-only object will be frequent
and hence taken as a candidate for q with probability at
least 1− δ. If we can identify some level-cR-only objects as
candidates at level-R, we may be able to speed up C2LSH.
In fact, it is possible to identify both level-cR-only and level-
c2R-only objects as candidates at level-R by using a smaller
candidate criteria Ct to replace the collision threshold l =
αm in Lemma 1. The Ct is chosen so as to ensure that with
a constant probability P1 of Lemma 1 still holds.

At level-r, the collision probability that a data object o

collides with a query object q is p( ‖o,q‖
r

), where the collision
probability function p(·) is as follows according to Section 2:

p(s) = 1− 2norm(−w/s)− 2√
2πw/s

(1− e−
w2

2s2 ).

For a level-c2r-only object oc2r, where r is some integer
power of c, let s = ‖oc2r, q‖, then cr < s ≤ c2r. The collision
probabilities of oc2r at level-c2r, level-cr and level-r are given
by p( s

c2r
), p( s

cr
) and p( s

r
) respectively. By P1 of Lemma 1,

the collision number #collision(oc2r) exceeds l at level-c2r
with probability at least 1− δ. Let A denote the event “oc2r
collides with q at level-c2r” and B denote the event “oc2r
collides with q at level-S”, where S is an integer power of
c and S ≤ c2r. By Lemma 2, we know that Pr[A|B] = 1.
The probability that oc2r collides with q at level-S given
that oc2r collides with q at level-c2r is given by

Pr[B|A] =
Pr[A|B] · Pr[B]

Pr[A]
=
Pr[B]

Pr[A]
.

Hence, the expected collision number of oc2r at level-cr, de-

noted by Ecr(oc2r), is at least
p( s

cr
)

p( s
c2r

)
l; and the expected

collision number of oc2r at level-r, denoted by Er(oc2r),

is at least
p( s

r
)

p( s
c2r

)
l. Furthermore, by running Matlab, it is

easy to know that
p( s

cr
)

p( s
c2r

)
≥ p(c)

p(1)
and

p( s
r
)

p( s
c2r

)
≥ p(c2)

p(1)
, where

cr < s ≤ c2r for both c = 2 and c = 3. In other words,

Ecr(oc2r) ≥
p(c)
p(1)

l and Er(oc2r) ≥
p(c2)
p(1)

l.

From above analyses, we set Ct = p(c2)
p(1)

l = p(c2)
p(1)

αm. Since

for object oc2r, the collision probability at level-r is p( s
r
) ≥

p(c2)
p(1)

p( s
c2r

) ≥ p(c2)
p(1)

p(1) > p(c2)
p(1)

α, where s = ‖oc2r, q‖, we



can construct a new P1 to replace the old P1 of Lemma 1
as follows:

At level-r, for level-S object oS , where S is a power of
c and S ≤ c2r (specifically S = c2r or S = cr), for given

parameters: collision threshold percentage p(c2)
p(1)

α, base car-

dinality m and false positive percentage β, the error proba-
bility δS satisfies:

Pr[#collsion(oS) ≥ Ct] ≥ 1− exp(−2(p(
S

r
)− p(c2)

p(1)
α)2m)

= 1− δS ,

where α, β and m are the same as defined in Lemma 1.

Proof. The proof is the same as that of Pr[P1] ≥ 1 − δ
in Lemma 1 in Appendix A.

Therefore, δS = exp(−2(p(S
r

) − p(c2)
p(1)

α)2m) ≤ δc2r =

exp(−2(p(c2) − p(c2)
p(1)

α)2m) = δ
(
p(c2)
p(1)

)2
, which is a constant

for given c, p(c2), p(1) and δ. Thus, the new P1 holds with
at least constant probability.

When Algorithm 1 runs with candidate criteria Ct, intu-
itively we can expect objects closer to q can be found earlier
with higher probability. Thus, those objects should appear
in the first k + βn candidates with higher probability. In
fact, at level-r, the expected collision numbers of a level-r-
only object or, a level-cr-only object ocr and a level-c2r-only
object oc2r, i.e., Er[or], Er[ocr] and Er[oc2r], satisfy:

Ct =
p(c2)

p(1)
l ≤ Er[oc2r] <

p(c)

p(1)
l ≤ Er[ocr] < l ≤ Er[or].

5. EXPERIMENTS
In this section, we study the performance of C2LSH us-

ing both synthetic and real datasets. Comparisons with the
state-of-the-art LSH based algorithms for external memory,
i.e., LSB-tree and LSB-forest, are also conducted.

5.1 Datasets and Queries
In our experiments, we use four real data sets: Mnist2,

Color3, Audio4, and LabelMe5. A synthetic dataset called
RandInt is also used. When the dimension values are real
numbers, we normalize them to integers by proper scaling.

Mnist. The Mnist dataset contains 60,000 handwritten
pictures. Each picture has 28 × 28 pixels with each pixel
corresponding to an integer in the range of [0, 255]. Hence,
every data object (i.e., a picture) has 784 dimensions. Since
many pixels take zero-values, we follow Tao et al. [13] and
take the top 50 dimensions with the largest variance to con-
struct a dataset of 60,000 50-dimensional objects. In addi-
tion, there is a test set of 10,000 data objects, from which
we randomly choose 50 data objects to form a query set,
and apply the same dimensionality reduction for each query
object.

Color. The Color dataset contains 68,040 32-dimensional
data objects, which are the color histograms of images in the
Corel collection [9]. The dimension values are real numbers
with at most 6 decimal digits, and hence we scale them by

2http://yann.lecun.com/exdb/mnist/
3http://kdd.ics.uci.edu/databases/CorelFeatures/
4http://www.cs.princeton.edu/cass/audio.tar.gz
5http://labelme.csail.mit.edu/instructions.html

multiplying 106. We randomly choose 50 data objects to
form a query set and remove them from the dataset. As a
result, in our experiments, the size of Color dataset is 67,990.

Audio. The Audio dataset contains 54,387 192-dimensional
data objects. It is extracted from the LDC SWITCHBOARD-
1 collection, which contains 2,400 two-sided telephone con-
versations among 543 speakers from all areas of the United
States. We normalize dimension values to be integers in the
range of [0, 100, 000] and randomly pick 50 data objects from
the dataset to form a query set. Therefore, the size of Audio
is 54,337.

LabelMe. The LabelMe dataset contains 181,093 images
with annotations provided by CSAIL Laboratory of MIT.
We obtain the GIST feature of each image and generate
a corresponding 512-dimensional data object. The dimen-
sion values are normalized to be integers in the range of
[0, 58, 104]. We randomly pick 50 data objects as a query
set. Hence, the size of LabelMe is 181,043.

RandInt. We use synthetic datasets to study the influ-
ences of dimensionality and dataset size. We first fix the
dataset size to be 10K, vary the dimensionality from 100
to 2,000, and generate a set of datasets called RI n10K. We
then fix the dimensionality to be 1,000, vary the size among
{10K, 20K, 40K, 80K, 160K}, and generate another set of
datasets called RI d1000. The dimension values are integers
randomly and uniformly chosen from [0, 10, 000]. For each
synthetic dataset, we also randomly generate a query set
with 50 data objects.

5.2 Evaluation Metrics
We adopt three metrics to evaluate a c-approximate NN

search method in the experiments.
Query Efficiency. Since c-approximate NN search is

I/O intensive, we evaluate the query efficiency in terms of
I/O cost. The I/O cost consists of two parts: the cost for
finding candidates and the cost for distance computation in
the original space Rd.

Query Accuracy. We adopt the same metric used in
[13] to measure the quality of query results. Specifically, for
a query object q, denote the k-NN query results returned by
a method as o1, . . . , ok, which are sorted in nondecreasing
order of their distances to q. Let o∗1, . . . , o

∗
k be the actual

k-NN objects of q and they are also sorted in the same way.
Then, the rank-i approximation ratio is defined as

Ri(q) =
‖oi, q‖
‖o∗i , q‖

,

where i = 1, . . . , k and ‖ · ‖ denotes the Euclidean Dis-

tance. The overall ratio is defined as 1
k

∑k
i=1Ri(q). The

more closely the overall ratio approaches 1, the more accu-
rate the reults are, and when it equals to 1, the results are
exact. Given a query set Q, we use the mean of the overall
ratios of all the query objects in Q as the final measurement
for query accuracy. This mean is called the average overall
ratio. For simplicity, we may just call it ratio.

Space Consumption. The space consumption is the size
of index file.

5.3 Parameter Settings of C2LSH
In this section, we discuss the performance of C2LSH

when different criteria l or Ct are adopted for determining
candidates. The approximation ratio c is set to be 2 or 3. We
manually set the interval size w = 1, false positive percent-



Table 1: Performance of C2LSH for 1-NN query
C2LSH Color Mnist Audio LabelMe

c = 2

m 390 386 383 419

l
I/O 2245 2813 3479 5068
Ratio 1.00 1.01 1.00 1.03

Ct
I/O 697 937 1080 1440
Ratio 1.00 1.00 1.02 1.07

c = 3

m 208 206 205 224

l
I/O 1069 1428 1541 2337
Ratio 1.02 1.01 1.01 1.02

Ct
I/O 185 187 187 232
Ratio 1.06 1.13 1.13 1.19

age β = 100/n, error probability δ = 0.01. The remaining
parameters including p1, p2, collision threshold percentage
α, and base cardinality m are calculated based on the anal-
yses in section 3.3. Then, l or Ct can be computed based on
the above settings.

5.3.1 Approximation Ratio c

Table 1 shows the performances of C2LSH on four real
datasets for 1-NN query. We can see that the base cardinal-
ity m of case c = 2 is larger than that of case c = 3. The
average overall ratio of case c = 2 is very close to 1, which
means the 1-NN results returned in case c = 2 are very close
to the real NNs. The ratio of case c = 3 is a bit larger than
that of case c = 2, yet it is still very good. Notably, the I/O
cost of case c = 3 is only about one half and 1

6
of those of

case c = 2 using l and Ct respectively. Therefore, it is good
to use c = 3 to trade a little accuracy for a much higher
query efficiency.

5.3.2 Candidate Criteria Ct

From Table 1, the l version of C2LSH is more accurate
than the Ct version. The l version theoretically guarantees
that the returned object is at most c2-approximate of the
real NN with at least constant probability, while the Ct ver-
sion does not have such a guarantee. However, to achieve the
theoretical guarantee, the l version pays higher I/O cost. As
discussed in Section 4.4, the Ct version can look ahead for
at most two levels. For instance, for an object o ∈ B(q,R),
it will be returned at level-R in the l version but the Ct
version can return it at level- R

c2
by chance. Since a level-R

bucket logically consists of c2 level- R
c2

buckets, the I/O cost

for counting a level-R bucket can be almost c2 times the cost
for counting a level- R

c2
one. Such difference in I/O cost can

be observed from Table 1. Actually, although the Ct version
can not provide a theoretical guarantee, its accuracy is prac-
tically high and its efficiency is very satisfactory. Therefore,
in the following experiments, we set c = 3 and adopt the Ct
criterion for C2LSH.

5.4 Comparisons on Synthetic datasets
We use RI n10K and RI d1000 datasets to study the in-

fluences of dimensionality and dataset size. Figure 2 shows
the I/O cost and average overall ratio for 50-NN queries,
and Table 2 shows the space consumption.

We need a pre-specified page size B for constructing an
LSB-tree, and, with different dimensionality, the page size
required is different. Hence in the experiments on RI n10K
as shown in Figures 2(a) and 2(b), B is set to be 4KB when
d varies from 100 to 300, 8KB when d varies from 400 to 600,
16KB when d varies from 700 to 1000, and 32KB when d is
2000. Our C2LSH method takes the same B setting in each
corresponding experiment. From Figure 2(a), for a fixed B
with the dimensionality d varying in a certain range, as d

Table 2: Space consumption on RandInt
(a) Space consumption vs. dimensionality d (n = 10K)

d 100 400 800 1000 2000
m 176 176 176 176 176

C2LSH 20MB 21MB 21MB 22MB 24MB

LSB-tree 4MB 38MB 37MB 66MB 132MB
L 32 45 45 50 50

LSB-forest 130MB 1.66GB 1.64GB 3.22GB 6.43GB

(b) Space consumption vs. dataset size n (d = 1000)

n 10K 20K 40K 80K 160K
m 176 188 200 211 222

C2LSH 22MB 44MB 90MB 181MB 353MB

LSB-tree 66MB 133MB 267MB 535MB 1.0GB
L 50 70 99 140 198

LSB-forest 3.2GB 9.1GB 25.8GB 73.2GB 206.8GB

increases, the I/O cost of LSB-forest increases notably, and
that of LSB-tree shows a similar trend. In contrast, the I/O
cost of C2LSH is stable with d. The I/O cost of LSB-tree is
lower than that of C2LSH, which is further lower than that
of LSB-forest. From Figure 2(b), the average overall ratio
of C2LSH is the best, and the ratio of LSB-forest is slightly
better than that of LSB-tree.

Figures 2(c) and 2(d) illustrate the trends of I/O cost and
average overall ratio of different methods on the RI d1000
datasets. As the dataset size n increases, the I/O cost of
LSB-forest increases very fast. The reason is that, the num-
ber of trees L in LSB-forest is

√
dn/B which increases with

n, and accessing more trees leads to bigger I/O cost. On
the other hand, for a fixed n, L also gets larger as d in-
creases. That’s why the I/O cost of LSB-forest increases as
d increases in Figure 2(a). In contrast, although the cardi-
nality base m of C2LSH also increases with n, the I/O cost
remains stable and lower than that of LSB-forest. The I/O
cost of LSB-tree is still the lowest. Figure 2(d) shows that
the accuracy of C2LSH is the best among the three methods.

Table 2(a) shows the space consumption with respect to
d. As d increases from 100 to 2000, the space consumed by
C2LSH remains small and only shows a slight increase, i.e.,
from 20MB to 24MB. In contrast, the spaces consumed by
LSB-tree and LSB-forest respectively increase by about 30
and 50 times. When d equals to 2000, the space consump-
tion of C2LSH is two magnitudes smaller than that of LSB-
forest, i.e., 24MB vs. 6.43GB, and is one fifth of the space
consumed by LSB-tree. The space consumption of C2LSH is
more influenced by the dataset size n, which however is still
significantly smaller than those of LSB-tree and LSB-forest,
as shown in Table 2(b). On the largest dataset with n equal
to 160K, the space consumed by C2LSH is 353MB while the
spaces consumed by LSB-tree and LSB-forest are respec-
tively 1.0GB and 206.8GB. In fact, the space consumption
of C2LSH (for index file) is O(n logn), while that of LSB-

tree is O( dn
B

) and that of LSB-forest is O(
(
dn
B

) 3
2 ). When d

is large, the space consumption of LSB-tree and LSB-forest
increases significantly while that of C2LSH is not affected
by d.

From this set of experiments, we can see C2LSH outper-
forms LSB-forest in terms of all the three metrics, i.e., query
efficiency, query accuracy and space consumption, especially
on the datasets with high dimensions. LSB-tree always has
the lowest I/O cost. However, its accuracy is lower than that
of C2LSH and its space consumption is larger than that of
C2LSH on high dimensional datasets.



(a) I/O Cost vs. d (b) Ratio vs. d (c) I/O Cost vs. n (d) Ratio vs. n

Figure 2: Performance on RandInt

(a) Audio (b) LabelMe

Figure 4: Rank-i Ratio on Audio and LabelMe

5.5 Comparisons on Real Datasets
In this set of experiments, we use four real datasets to

compare the performance of C2LSH, LSB-tree and LSB-
forest. On each dataset, we conduct a series of k-NN searches
by varying k in {1, 10, 20, 30, . . . , 100}.

5.5.1 Comparison on High Dimensional Datasets
We first study the performance on two high-dimensional

datasets, i.e., Audio with 192 dimensions and LabelMe with
512 dimensions.

Figures 3(a) and 3(c) respectively show the I/O cost on
Audio and LabelMe, where the page sizes are respectively
set to be 4KB for Audio and 8KB for LabelMe. On both
datasets, the I/O cost of LSB-tree is the lowest, and the I/O
cost of C2LSH is less than that of LSB-forest. As shown in
Figures 3(b) and 3(d), the overall ratios of both C2LSH and
LSB-forest are much smaller than that of LSB-tree. On La-
belMe, C2LSH is more accurate than LSB-forest. While on
Audio, the ratio of C2LSH is smaller than that of LSB-forest
when k ≤ 70. Note that the ratio of C2LSH increases with
k while that of LSB-forest does not. The reason is that, the
Ct version of C2LSH usually stops at terminating condition
C2 when k+βn candidates have been found. Since β = 100

n
,

C2LSH will return top k objects out of k+βn = k+100 can-
didates. For instance, for 1-NN search, C2LSH picks a top 1
result out of 1+100 candidates, while for 100-NN search, it
returns top 100 results out of 100+100 candidates. Because
relatively more number of candidates have been checked for
picking one result when k is smaller, the results of C2LSH
are more accurate.

We also show the Rank-i Approximation Ratio of 10-NN
search on Audio and LabelMe in Figures 4(a) and 4(b). We
can see that the quality of the objects returned by C2LSH
is well maintained at every rank. In contrast, the quality of
the rank-i objects returned by both LSB-forest and LSB-tree
decrease apparently as i increases.

5.5.2 Comparison on Low Dimensional Datasets
In this section, we show the experiment results on two

low-dimensional datasets, i.e., Color with 32 dimensions and
Minst with 50 dimensions.

According to Figures 5(a) and 5(c), both LSB-tree and
LSB-forest outperform C2LSH in terms of I/O cost. The
reason is that, on low-dimensional datasets, the number of
LSB-trees needed for constructing an LSB-forest is small.
Moreover, the Z-order value for each data object is also short
so that a leaf page can store more Z-order values. However,
the number of hash tables m of C2LSH does not depend on
dimensionality d, but depends on n. For example, m equals
to 205 for the 192-dimensional Audio dataset, and equals to
208 for the 32-dimensional Color dataset, because the size
of Audio is 54,337 and the size of Color is 67,990. Because
the size of Color is large, the I/O cost of C2LSH increases.
On the other hand, C2LSH outperforms both LSB-tree and
LSB-forest in terms of query accuracy, as shown in Figure
5(b) and 5(d).

5.5.3 Space consumption
The space consumption of C2LSH, LSB-tree and LSB-

forest on the four real datasets is listed in Table 3. C2LSH
needs less space compared to LSB-forest, and its space con-
sumption is even about two or three magnitude orders smaller
than that of LSB-forest on the high dimensional datasets like
Audio and LabelMe. LSB-tree consumes less space than
C2LSH on low dimensional datasets, but much more space
is needed by LSB-tree as the dimensionality increases.

Table 3: Space consumption on datasets
Dataset Color Mnist Audio LabelMe

m 208 206 205 224
C2LSH 159MB 53.7MB 122.5MB 373.6MB

LSB-tree 13.5MB 13.0MB 106MB 1.06GB
L 47 55 101 213

LSB-forest 633MB 714MB 10.5GB 224.8GB

5.6 Summary
In summary, the performance of LSB-tree and LSB-forest

is affected by the dimensionality d of datasets. They per-
form very well on the low dimensional datasets Color and
Mnist. Although LSB-tree always performs well in terms
of efficiency, the query quality is not so satisfying. On low
dimensional datasets, C2LSH generally has a better average
overall ratio than both LSB-tree and LSB-forest. Notably,
the performance of C2LSH is not affected by d. On high di-
mensional datasets, C2LSH outperforms LSB-forest in terms
of all three metrics. Specifically, the space consumption of
C2LSH is two or three magnitude orders lower than that of
LSB-forest on high dimensional datasets. Therefore, C2LSH



(a) Cost on Audio (b) Ratio on Audio (c) Cost on LabelMe (d) Ratio on LabelMe

Figure 3: Performance on Audio and LabelMe

(a) Cost on Color (b) Ratio on Color (c) Cost on Mnist (d) Ratio on Mnist

Figure 5: Performance on Color and Mnist

has a better overall performance than LSB-tree and LSB-
forest, especially on high dimensional datasets. However, it
should be noted that the LSB-forest has a theoretical guar-
antee that is different from our structure’s guarantee. In
particular, the LSB-forest ensures worst-case I/O cost sub-
linear to both n and d. Most of the overhead in LSB-forest
is incurred due to this guarantee.

6. RELATED WORK
There is a large body of literature on the topic of NN

search [1, 6, 9, 10, 13, 14, 15]. A good survey on techniques
before year 2006 can be found in [12]. Recent work includes
HashFile [15] and ATLAS [14]. The HashFile method is
mainly designed for exact NN search in L1 norm. The AT-
LAS method is a probabilistic algorithm for high dimen-
sional similarity search over binary vectors with low similar-
ity thresholds.

The LSH method is originally proposed by Indyk et al. for
internal memory dataset in the Hamming space [8]. Later
it is adapted for external memory use by Gionis et al. [4],
and they propose to use a “magic radius” to reduce space
consumption. The locality-sensitive hash functions based on
p-stable distribution are proposed by Datar et al. [2]. The
multi-probe LSH method, proposed by Lv et al. [11], not
only checks the data objects that fall in the same bucket
as the query object, but also checks the data objects falling
in the “nearby” buckets. However, the multi-probe method
still suffers from the need of building hash tables at different
radiuses in order to achieve a theoretical gurantee of query
quality.

The spirit of virtual rehashing is first proposed in the work
on the LSB-tree/LSB-forest method[13]. Since the LSB-
tree/LSB-forest method exploits compound hash functions,
their virtual rehashing can be viewed as imposing multi-
dimensional level-cR buckets over multi-dimensional level-
R buckets. In contrast, we consider 1-dimensional buck-
ets. Our k-NN Algorithm scans sorted lists of level-1 buck-

ets in a round-robin way, which is similar to the MedRank
method[3].

7. CONCLUSION
In this paper, we present the C2LSH method for c-approximate

NN search. Our theoretical studies show that C2LSH can
have a guarantee on query quality. Importantly, the per-
formance of C2LSH is not affected by the dimensionality of
data objects. The experimental studies based on synthetic
datasets and four real datasets have shown that C2LSH out-
performs the state of the art method LSB-forest in terms of
all the three performance metrics: query efficiency, query ac-
curacy and space consumption on high dimensional datasets.
In addition, C2LSH can be straightforwardly implemented
in relational database systems.

8. ACKNOWLEDGEMENTS
This work is partially supported by China NSF Grant

60970043 and Hong Kong RGC GRF project grant 617610.
We would like to thank SIGMOD reviewers and especially
the shepherd for giving us insightful comments. We thank
Xingjia Ma, Qiang Huang, and Huaping Zhong for helping
with the experiments.

9. REFERENCES
[1] J. L. Bentley. K-D trees for semi-dynamic point sets.

In Symposium on Computational Geometry, 1990.

[2] M. Datar, P. Indyk, N. Immorlica, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SoCG, pages 253–262, 2004.

[3] R. Fagin, R. Kumar, and D. Sivakumar. Efficient
similarity search and classification via rank
aggregation. In SIGMOD, pages 301–312, 2003.

[4] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB,
pages 518–529, 1999.



[5] R. Graham, D. Knuth, and O. Patashnik. Concrete
Mathematics: A Foundation for Computer Science.
1994.

[6] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[7] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association 58 (301), pages 13–30, 1963.

[8] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In STOC, 1998.

[9] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and
R. Zhang. idistance: An adaptive b+-tree based
indexing method for nearest neighbor search. ACM
TODS, pages 364–397, 2005.

[10] J. M. Kleinberg. Two algorithms for nearest-neighbor
search in high dimensions. In STOC, 1997.

[11] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and
K. Li. Multi-probe LSH: Efficient indexing for
high-dimensional similarity search. In VLDB, pages
950–961, 2007.

[12] H. Samet. Foundations of Multidimensional and
Metric Data Structures. 2006.

[13] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Efficient and
accurate nearest neighbor and closest pair search in
high dimensional space. ACM TODS, 35, 2010.

[14] J. Zhai, Y. Lou, and J. Gehrke. Atlas: A probabilistic
algorithm for high dimensional similarity search. In
SIGMOD, pages 997–1008, 2011.

[15] D. Zhang, D. Agrawal, G. Chen, and A. K. H. Tung.
Hashfile: An efficient index structure for multimedia
data. In ICDE, pages 1103–1114, 2011.

APPENDIX
A. PROOF OF LEMMA 1
Proof: First, we prove that Pr[P1] ≥ 1− δ.

For ∀o ∈ B(q,R),

Pr[#collision(o) ≥ αm] =

m∑
i=αm

Cimp
i(1− p)m−i,

where p = Pr[hj(o) = hj(q)] ≥ p1, j = 1, 2, . . . ,m.
We define m Bernoulli random variables Xi ∼ B(m, 1−p)

with 1 ≤ i ≤ m. We let Xi equal 1 if o does not collide with
q, i.e., Pr[Xi = 1] = 1− p. Let Xi equal 0 if o collides with
q, i.e., Pr[Xi = 0] = p.

Since E(Xi) = 1− p, by linearity of expectation, we have

E(X) = 1 − p where X =
∑m

i=1Xi

m
. From Hoeffding’s In-

equality [7], for any t = p− α > 0,

Pr[X − E(X) ≥ t] = Pr[
1

m

m∑
i=1

Xi − (1− p) ≥ t]

= Pr[

m∑
i=1

Xi ≥ (1− α)m] ≤ exp(− 2(p− α)2m2∑m
i=1(1− 0)2

)

= exp(−2(p− α)2m) ≤ exp(−2(p1 − α)2m).

Since the event “#collision(o) ≥ αm” is equivalent to the

event“o misses the collision with q less than (1−α)m times”,

Pr[#collision(o) ≥ αm] = Pr[

m∑
i=1

Xi < (1− α)m]

= 1− Pr[
m∑
i=1

Xi ≥ (1− α)m] ≥ 1− exp(−2(p1 − α)2m).

Therefore, when m = dmax( 1
2(p1−α)2

ln 1
δ
, 1
2(α−p2)2

ln 2
β

)e,

Pr[P1] = Pr[#collision(o) ≥ αm] ≥ 1− δ > 1

2
.

Second, we show that Pr[P2] > 1
2
.

For any data object o 6∈ B(q, cR),

Pr[#collision(o) ≥ αm] =

k∑
i=αm

Cimp
i(1− p)m−i,

where p = Pr[hj(o) = hj(q)] ≤ p2 < α, j = 1, . . . ,m.
Let f(p) = pi(1 − p)m−i with αm ≤ i ≤ m. We take the

derivative of f(p), which is f ′(p) = pi−1(1−p)m−i−1(i−pm).
When 0 < p < α < 1, we have f ′(p) > 0, which means that
f(p) is a monotonic function and it monotonically increases
with p. Therefore, when p ≤ p2 < α,

Pr[#collision(o) ≥ αm] ≤
m∑

i=αm

Cimp
i
2(1− p2)m−i.

Similarly, we define m Bernoulli random variables Yi ∼
B(m, 1 − p2) with 1 ≤ i ≤ m, where Pr[Yi = 1] = 1 − p2
and Pr[Yi = 0] = p2. Since E(Yi) = 1− p2, E(Y ) = 1− p2
where Y =

∑m
i=1 Yi

m
. Based on Hoeffding’s Inequality, for

any t = α− p2 > 0, we have

Pr[#collision(o) ≥ αm] ≤
m∑

i=αm

Cimp
i
2(1− p2)m−i

= Pr[

m∑
i=1

Yi < (1− α)m] = Pr[
1

m

m∑
i=1

Yi < (1− p2 − t)]

= Pr[(1− p2)− 1

m

m∑
i=1

Yi > t)] = Pr[E(Y )− Y > t]

(There exists ∆t > 0 such that E(Y )− Y ≥ t+ ∆t.)

≤ exp(−2(α− p2 + ∆t)2m)

< exp(−2(α− p2)2m).

We define S = {o|#collision(o) ≥ αm ∧ o 6∈ B(q, cR)}
and have |S| ≤ n. Hence, the expectation of the size of S
satisfies E(|S|) < n ∗ exp(−2(α− p2)2m).

From Markov’s Inequality, we have

Pr[|S| ≥ βn] ≤ E[|S|]
βn

<
1

β
∗ exp(−2(α− p2)2m).

Therefore, when m = dmax( 1
2(p1−α)2

ln 1
δ
, 1
2(α−p2)2

ln 2
β

)e,

Pr[|S| < βn] = 1− Pr[|S| ≥ βn]

> 1− 1

β
∗ exp(−2(α− p2)2m) >

1

2
.

Thus, Lemma 1 is established. 2


