
Minimal Weighted Local Variance as Edge
Detector for Active Contour Models

W.K. Law and Albert C.S. Chung

Lo Kwee-Seong Medical Image Analysis Laboratory,
Department of Computer Science,

The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong

{maxlawwk, achung}@cs.ust.hk

Abstract. Performing segmentation of narrow, elongated structures
with low contrast boundaries is a challenging problem. Boundaries of
these structures are difficult to be located when noise exists or intensity
of objects and background is varying. Using the active contour methods,
this paper proposes a new vector field for detection of such structures.
In this paper, unlike other work, object boundaries are not defined by
intensity gradient but statistics obtained from a set of filters applied on
an image. The direction and magnitude of edges are estimated such that
the minimal weighted local variance condition is satisfied. This can effec-
tively prevent contour leakage and discontinuity by linking disconnected
boundaries with coherent orientation. It is experimentally shown that
our method is robust to intensity variation in the image, and very suit-
able to deal with images with narrow structures and blurry edges, such
as blood vessels.

1 Introduction

Active contour models are widely used in solving medical image segmentation
problems. For instance, blood vessel segmentation is one of the applications in
medical image segmentation. To separate vascular structures from the image
background, researchers consider utilizing image gradient as a criterion to la-
bel blood vessel boundaries. In the Gradient Vector Flow (GVF) method [1], a
moving parametric contour is driven by the minimization of energy E ,

E(C) =
∫ ∫

µ(u2
x + u2

y + v2
x + v2

y) + |∇f |2|v − ∇f |2dxdy,

where f = |∇I(x, y)|2 represents the edge map of an image I, v(x, y) =
(u(x, y), v(x, y))T denotes the flow vector, which is obtained using two diffu-
sion based partial differential equations in the whole image domain, µ∇2u −
(u − fx)(f2

x + f2
y ) = 0 and µ∇2v − (v − fy)(f2

x + f2
y ) = 0. As such, the diffusion

process creates a competition of forces exerting from the image gradient at dif-
ferent locations. The GVF method outperforms the classical Snakes [2] because
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the above diffusion processes enable GVF to have long range interaction between
boundaries and moving contours.

Apart from the parametric contours, Malladi et at. [3] have proposed to use the
level set framework [4] for modeling of moving curves. The level set formulation
can handle merging or splitting of contours naturally. One of the main ideas
in [3] is that there is an advection term, which keeps the front of the level set
function expanding (or contracting) with the speed controlled by a function,
namely edge detector, g(∇I(x, y)) = 1

1+|∇Gσ∗I(x,y)|p , p ≥ 1. This formulation
keeps the contours exploring the image and eventually halted on the object
boundaries, where the edge detector gives small value.

However, these methods are not suitable for elongated or low contrast objects
such as blood vessels in the brain. For example, for the GVF method, it favors the
conceptual edges and usually discards the narrow regions rather than including
them in the segmentation results. Also, the edge detector relies on high image
gradient magnitude to halt the moving contours, and can fail to detect low
contrast boundaries.

To deal with this problem, Vasilevskiy et al. proposed the use of flux max-
imizing geometric flows for image segmentation [5]. Different from the above
methods, object boundaries are detected by incorporating image gradient direc-
tion and magnitude. The contour motion is governed by

Ct = ∇(V(x, y))N , (1)

where V(x, y) is the gradient vector of an image and N is the normal direction on
the curve C. Contour evolution direction is guided by the direction perpendicular
to the image gradient. It does not fail in the situation where gradient magnitude
is small or object structures are elongated and thin.

Along the same line, Xiang et al. introduced an elastic model [6] for segmen-
tation of thin concave and convex structures. This method also integrates the
information of both the magnitude and direction of image gradient in the sim-
ilar fashion. In [6], the image gradient magnitude is extended to whole image
domain rather than locally defined, as in [5]. The dynamics of an active contour
is defined by minimizing the energy,

E(C) =
1
2

∫
w · wdxdydz, (2)

subject to the constraint,
∇ × w = δCt, (3)

where w is a three dimensional vector field, δC is Dirac delta-function which is
zero everywhere except on the curve C. δCt is approximated by δ(z)·(

∂(Gσ∗I)
∂y , −∂(Gσ∗I)

∂x , 0
)T

such that C can be attracted towards the object bound-
aries by minimizing the energy above.

On the other hand, without considering image gradient, Chan and Vese sug-
gested to perform image segmentation by solving the minimal partition problem
in [7]. The segmentation result is the minimizer of an energy functional,
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F (c1, c2, C) = µCLength + νCArea + λ1

∫
Cin

|I − c1|2dxdy + λ2

∫
Cout

|I − c2|2dxdy,

where µ ≥ 0, ν ≥ 0, λ1 ≥ 0, λ2 ≥ 0 are fixed parameters, c1 and c2 are the
average intensity values of pixels inside and outside contour C respectively. This
approach is capable of dealing with low contrast objects, blurry edges or noisy
image that cause failure in many gradient based segmentation methods. Further-
more, choosing a large value for µ in the above formulation encourages linking
disconnected boundaries through conceptual edges. However, due to background
noise and overlapping of different structures which commonly exist in medical im-
ages, the intensity values of vascular structures and the background are varying
from regions to regions. Minimizing the energy functional can lead to a situation
that the bright regions of background and dark portions of vessels belong to the
same object.

Although approaches in [5] and [6] are robust to intensity variation of ob-
jects and background, they are confused by the fluctuating gradient of object
boundaries in such case. The locally defined flux cannot recover the weak edges
that are longer than the radius of the target object. Similarly, the elastic model
is insensitive to small gradient of weak edges. This can lead to contour leak-
age. Besides, noise also generates intensity gradient across thin objects. It cre-
ates small gaps (discontinuities) on those narrow structures. The approaches
above do not encode with the information about contour continuity. They tend
to regard those single objects with small gaps as separated and disconnected
structures.

In this paper, we propose a new vector field to incorporate with the active
contour models for image segmentation. Calculation of the vector field is based
on satisfying minimal weighted local variance calculated from the statistics after
applying a set of filters on the image. Under this formulation, the magnitude and
direction of an edge are not depending on its local gradient but the statistics
estimated from a local region. The advantage of our method is that edges are
extended along their direction so that the discontinued portion of the edges can
be recovered without blurring or shifting effect. It is essential to recover those
weak parts of edges in order to prevent contour leakage and discontinuity.

2 Methodology

2.1 The Proposed Model

Let g(x, y) be a spatial filter which has its peak value at the center and decays
gradually away from the center, for instance, Gaussian filter. We split the filter
g(x, y) into two filter sets according to a parameter θ, θ ∈ [0, π). Each filter
should be summed to one. Namely, g1(x, y, θ) and g2(x, y, θ) are defined as,

g1(x, y, θ) =
g′1(x, y, θ)∫

g′1(x′, y′, θ)dx′dy′ ,
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g2(x, y, θ) =
g′2(x, y, θ)∫

g′2(x′, y′, θ)dx′dy′ ,

g′1(x, y, θ) =
{

gθ(x, y) if (x, y)T · n̂θ < 0,
0 otherwise,

g′2(x, y, θ) =
{

gθ(x, y) if (x, y)T · n̂θ > 0,
0 otherwise, (4)

where n̂θ = (cos θ, sin θ)T , and gθ(x, y) = g(x cos(θ + π
2 ) − y sin(θ + π

2 ), x sin(θ +
π
2 ) + y cos(θ + π

2 )) is the rotated version of g(x, y) (Fig.1a).

(a) (b)

Fig. 1. (a) Top: Gσ=4. Second row: Corresponding filter set g1. Third row: Corre-
sponding filter set g2. From left to right, θ = 0, π
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8 . (b) First row:
Gσx=3,σy=1. Second row: Corresponding filter set g1. Third row: Corresponding filter
set g2. From left to right, θ = 0, π
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8 , 3π
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8 .

We obtain θ′(x, y) satisfying the following condition,

θ′(x, y) = arg min
θ

{∫ {
g1(x′ − x, y′ − y, θ) · (I(x′, y′) − µ1(x, y, θ))2

+g2(x′ − x, y′ − y, θ) · (I(x′, y′) − µ2(x, y, θ))2 } dx′dy′
}

. (5)

Here µ1 =
∫

g1(x′ − x, y′ − y, θ)I(x′, y′)dx′dy′ and µ2 =
∫

g2(x′ − x, y′−
y, θ)I(x′, y′)dx′dy′. The terms µ1(x, y) and µ2(x, y) are the weighted averages
of the neighboring pixels of (x, y) in different sides split by the line n̂⊥θ(x,y) =
(cos(θ(x, y) + π

2 ), sin(θ(x, y) + π
2 ))T . Equation (5) is the weighted sum variance

of the neighboring pixels from the both sides of the line n̂⊥θ(x,y). We call this
condition, minimal weighted local variance.

Now we define the vector field, V , using the θ′(x, y) obtained from minimal
weighted local variance, V(x, y) is found as follows,

V(x, y) = {µ2(x, y, θ′(x, y)) − µ1(x, y, θ′(x, y))} · n̂θ′(x,y) (6)

By finding θ′(x, y) that satisfies the minimal weighted local variance condition,
the direction of V(x, y) is pointing from one region to another region such that
the weighted sum variance of these two regions is minimized. Its magnitude is
determined by the difference of weighted averages of these two regions.
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2.2 Properties

The main goal of defining θ′(x, y) is to find the direction pointed by the vector
n̂⊥θ′(x,y), that is the best choice to partition the neighborhood of the pixel (x, y)
into two regions. For an ideal sharp edge that separates two regions with distinct
constant intensity, V(x, y) gives similar results to the smoothed intensity gradient
vector of the edge.

The major difference of the above formulation and Chan’s [7] minimal par-
tition problem is that we localized the calculation of variance and the contour
evolution is guided by the direction of n̂⊥θ′(x,y) at every point. For medical im-
ages, intensity of an object such as blood vessel is largely varying from regions
to regions. Therefore, the sum variance of objects and background is not nec-
essary to be minimal for correct segmentation result in those situations. Since
the intensity variance of objects themselves is also large, minimizing the sum
variance of inside and outside contours causes oversensitivity on those objects
whose intensity is varying. In contrast, calculation of sum variance in a localized
manner avoids this problem.

The localized sum variance of every pixel does not depend on the topology
of contours. Instead, it depends only on the neighborhood of pixel. Obviously,
the calculation of localized sum variance should be more sensitive to those pixels
nearby and less sensitive to those pixels far away. The neighborhood is defined
by the filter g(x, y). A filter which has its peak value at the center and decays
gradually away from the center is a good choice of g(x, y), for example, Gaussian
function.

In Equation (6), |V(x, y)| is given by µ2(x, y, θ′(x, y)) − µ1(x, y, θ′(x, y)),
which is the difference of weighted intensity average of the regions separated
by n̂⊥θ′(x,y). Such difference reflects how well the direction n̂⊥θ′(x,y) partitions
the regions around (x, y).

Considering a vascular structure with fluctuating intensity value (Fig.2a,b),
the intensity of some segments of blood vessel is very similar to the background.
Distinguishing those regions from background is difficult without referring to the
neighbors. That’s the reason why leakage problem commonly exists in different
active contour models.

Those confusing regions can be recovered by referring to the intensity of pixel
neighbors. In our formulation, |V| depends on the weighted intensity average
difference of pixel neighbors. The filters g1(·, θ′(x, y)) and g2(·, θ′(x, y)) in (4)
are chosen to be split along direction of n̂⊥θ′(x,y), which is the tangent direction
of boundaries extracted from minimal weighted local variance condition. Thus,
|V(x, y)| are referring to two regions that are separated by a straight line along
the direction of n̂⊥θ′(x,y). It plays an important role in extending edges along
their direction and links the boundaries that have coherent orientation.

On the other hand, for those weak edges having no coherent orientation
to their neighbors, their field magnitude is suppressed by smoothing effect of
weighted average. Linking weak edges are only performed for those boundaries
with coherent edge direction. Thus, noise is suppressed which has weak interac-
tion with its neighbors.
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In addition, our formulation only recovers those low contrast boundaries with
high contrast edges along analogous direction in its neighborhood. Without con-
siderable prior knowledge on the shape of target regions, the information ex-
tracted in minimal weighted local variance is not going to reconstruct those
structures that are significantly confused with the background.

For vascular segmentation, target regions consist of elongated and thin struc-
tures. To make the field sensitive to these structures, we suggest to use a Gaussian
kernel with different standard deviation in x and y directions, Gσx,σy (x, y) =

1
2πσxσy

exp{− x2

2σ2
x

− y2

2σ2
y
}. The value of σx controls the strength to extend bound-

aries along their direction, and σy controls the width scale of the objects to be
detected which should be set roughly smaller than the width of target structure.
Large ratio of σx

σy
(Fig.1b) makes calculation of weighted average and weighted

variance consider less pixels along the direction of n̂θ′(x,y) than direction of edges,
n̂⊥θ′(x,y). As a result, the vector field V calculated by such filter favors elongated
objects such as blood vessels.

2.3 Implementation

The crucial step to estimate V(x, y) is to find θ′(x, y). It can be achieved by
defining a set of discrete values, θk, where k ∈ {0, . . . , K − 1} and θk = kπ

K . The
θ′(x, y) is obtained in discrete fashion,

θ′(x, y) = argmin
θk

⎧⎨
⎩

∑
x′,y′

{
g1(x′ − x, y′ − y, θk) · (I(x′, y′) − µ1(x, y, θk))2

+g2(x′ − x, y′ − y, θk) · (I(x′, y′) − µ2(x, y, θk))2
} }

. (7)

In our experiments, we have used K = 36 for θk ∈ [0, π). Therefore, there are
totally 36 filters for both g1(x, y, θk) and g2(x, y, θk) to detect 72 distinct edge
orientations.

The vector field V(x, y) is then calculated by Equation (6). It is defined in the
whole image domain and is not affected by the dynamics of moving contours.
We utilize the elastic model proposed in [6] to model the interaction between
boundaries detected by the minimal weighted local variance. This model is used
because of its long range interaction ability and high sensitivity to both concave
and convex regions. Resulting contour is the minimizer of energy associated with
moving contours and a vector field, w, as stated in Equation (2) subject to the
constraint in Equation (3). Here we approximate δCt with δ(z) · (v2, −v1, 0)T

where V = (v1, v2)T and use zero level of level set surface to represent moving
contours [4], which is evolving according to the following equation,

φt = F |∇φ|, (8)

where F is the normal velocity that the curve evolves.
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We can solve F in frequency domain similar to [6]. m, n, l denote the fre-
quencies in x, y and z directions respectively and F̃ (m, n, l) is the frequency
component of F (x, y) · δ(z),

F̃ (m, n, l) = i
m · a1(m, n) + n · a2(m, n)

m2 + n2 + l2
, (9)

where a1(m, n) and a2(m, n) are frequency components of v1(x, y) and v2(x, y),
respectively. Assume that the 3D space is continuous and extending to infinity
in z direction, discrete and periodic in both x and y directions,

F (x, y) =
1
2π

∫ l=∞

l=−∞

{∑
m,n

i · (ma1(m, n) + na2(m, n)) · eimx+iny

m2 + n2 + l2

}
dl,

=
∑
m,n

i(ma1(m, n) + na2(m, n))
2
√

m2 + n2
eimx+iny. (10)

Note that we have added a very small constant into the variable m and n in
our implementation, which avoids singularity of the solution when m and n
are both zero. The above formulation find (v1x + v2y) and diffuses it to whole
image domain with inverse square decay rate. The opposite sign of (v1x + v2y)
on two different sides over an edge creates zero-crossing boundary that halts the
evolution of contour.

In [6], intensity gradient vector is used instead of V(x, y) in Equation (9). In
this case, a1 and a2 are replaced with the frequency components of −Ix and Iy

respectively. Finding the corresponding F̃ is equivalent to applying the Laplacian
filter on the image and diffusing it with inverse square decay rate. As a result,
[6] is similar to the work in [8] about edge integration by finding zero-crossing
after applying Laplacian filter on an image. It also has a close relationship with
[5] , where the Equation (1) is equivalent to Ct = (∇2 · I)N .

Neither the inverse square decay rate of [6] nor discrete summation of Equa-
tion (1) over circular disc proposed in [5] carries information about contour
continuity. In contrast, the minimal weighted local variance added those infor-
mation by extending edges along their direction which is useful for segmentation
of narrow and low contrast structures in noisy images.

Finally, to speed up evolution process, we replace F (x, y) in Equation (8)
with a sigmoid function 2

1−e−F (x,y)/σF
−1 in our implementation, where σF is the

standard deviation of F (x, y). This function has similar effect of sign(F ) when
magnitude of F is very large while keeping increasing linearly as magnitude of
F is small.

3 Experimental Results

This section presents results obtained from real images (Fig.2) consisting of
two digital subtraction angiography (DSA) obtained from the Department of
Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, Hong Kong,
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(a) (b) (c)

Fig. 2. (a) 128 × 128 retinal angiography. The intensity variation of vessel and back-
ground causes the gradient of vessel boundaries varying in different regions (top and
bottom portion of the image). (b) 80 × 128 DSA. Intensity of the object is dropped at
the Y-shape and circular structure at the middle of the image. (c) 128 × 128 DSA. A
portion of the vessel has relatively lower intensity than the other parts.

(a) (b) (c)

Fig. 3. Left: Initial contours. Right: Final results. (a): FM with r = 1, 2, 3, image is
preprocessed with Gσ=0.8, initial contour obtained automatically from regions with the
highest 5% inward flux which is further smoothed under curvature flows for 200 steps.
(b): ACM-EI, the image is preprocessed with Gσ=0.8, manually selected initial contour.
(c): ACWE with µ = 0.000 01 · 2552, λ1 = λ2 = 1, ν = 0, h = 1, manually selected
initial contour.

and one retinal angiography [9]. Comparison is performed between the proposed
method with three different approaches including ”Flux Maximizing Geometric
Flows” (FM) [5], ”A New Active Contour Method based on Elastic Interaction”
(ACM-EI) [6] and ”Active Contours without Edges” (ACWE) [7].

The first example (Fig.2a) shows a retinal angiography. The background in-
tensity is generally lower in left-bottom, left-top and right-top regions. Since the
ACWE method partitions the image into high intensity group and low intensity

Fig. 4. Result of the proposed method using σx = 1.6 and σy = 0.8. Left: Initial
contour obtained automatically from regions with the highest 5% field value which
is further smoothed under curvature flows for 200 steps. Middle: Intermediate step.
Right: Final result.



630 W.K. Law and A.C.S. Chung

(a) (b) (c)

Fig. 5. Left: Initial contours. Right: Final results. (a): FM with r = 1, 2, 3, image
preprocessed with G0.8, initial contour obtained automatically from regions with the
highest 10% inward flux which is further smoothed under curvature flows for 200 steps.
(b): ACM-EI initial contour obtained automatically using the heuristic approach pre-
sented in [6] with σ1 = 0.8 and σ2 = 10. (c): ACWE with µ = 0.000 01 · 2552, λ1 =
λ2 = 1, ν = 0, h = 1, manually selected initial contour.

group, it cannot give a satisfactory result as the low intensity vessel is excluded
from the contour while high intensity background is included (Fig.3c).

On the other hand, ACM-EI tends to ignore weak edges when strong edges
are present. Therefore, the contour is guided by noise and leaks through blurred
boundaries at the bottom of the image (Fig.3b). We have manually placed the
initial contour of ACM-EI inside the blood vessel as the heuristic approach in
[6] cannot locate the vessel position in this low contrast situation. FM selects
initial contour correctly and indicates side vessel as well (Fig.3a). In contrast,
our method favors smooth contour and keeps branches be connected without
leakage. Fig.4 shows that our method locates the main vessel correctly, and can
handle intensity variation in the object and background regions because of the
calculation of minimal variance in a localized manner. It also avoids leakages in
the low contrast regions since edges are extended along its direction.

In Fig.2b, we have shown a DSA where the intensity of the object is dropped
significantly at two positions (the Y-shape structure and the circular structure
at the middle of the image). As shown in Fig.5c, similar to the results previously
shown, ACWE cannot capture objects in the dim regions. Besides, as shown

Fig. 6. Result of the proposed method using σx = 1.6 and σy = 0.8. Left: Initial
contour obtained automatically from regions with the highest 10% field value which is
further smoothed under curvature flows for 200 steps. Middle: Two intermediate steps,
the contour is propagating through the narrow and dim segments. Right: Final result.
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(a) (b) (c)

Fig. 7. Left: Initial contours. Right: Final results. (a): FM with r = 4, 5, 6, 7, image pre-
processed with Gσ=3, initial contour obtained automatically from regions with the high-
est 5% inward flux which is further smoothed under curvature flows for 200 steps. (b):
ACM-EI, initial contour obtained automatically using the heuristic approach presented
in [6] with σ1 = 3, σ2 = 10. (c): ACWE with µ = 0.4 · 2552, λ1 = λ2 = 1, ν = 0, h = 1,
manually selected initial contour.

in Fig.5a, the contour of FM is halted when the gradient along the vessel is
comparable to the gradient of object boundaries.

ACM-EI can capture the vessel but the result is noisy (Fig.5b), although it
is the best results obtained among different combinations of parameters. The
contour follows the noisy regions attached to the vessels rather than the weak
vessel boundaries. Increasing either the σ of the Gaussian filter or curvature term
as authors suggested in [6] dose not help and results in contour halted at dim or
narrow parts. In contrast, our method extends boundaries along their direction
to recover the discontinued boundaries over dim and tiny segments. Thus, the
contour can propagate through the dim and narrow regions (Fig.6).

The last example (Fig.2c) shows a vessel with a dim portion. It aims to
examine the ability of different approaches to connect a gap, which has size
comparable to the object width. FM, ACM-EI and ACWE cannot merge the
contours across the portion with low intensity value (Figs.7a, b and c). The
value of σ of the Gaussian filter being used in ACM-EI and FM cannot be too
large. Otherwise, they cannot handle the narrow branch at the right portion

Fig. 8. Results of the proposed method using σx = σy = 3 in the top row and σx =
1, σy = 3 in the bottom row. Left: Initial contour obtained automatically from regions
with the highest 5% field value which is further smoothed under curvature flows for
200 steps. Middle: Intermediate step. Right: Final result.
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of the image. ACWE fails to detect the narrow branch using different values
of µ because of the significant intensity variation. Therefore, we only show the
result with a large value of µ, in which contour is not halted far away from
vessel boundaries, as shown in Fig.7c. It shows that ACWE cannot recognize
the vessel as a single object. Here the proposed method is able to connect the
top and bottom portions of the vessel (Fig.8a). As mentioned in Section 2.2, a
small value of σx can be used to reduce the strength of boundary extension. We
have demonstrated to use a small value of σx for identifying the target region as
separated objects in (Fig.8b).

4 Conclusion

This paper proposed a new vector field for the detection of objects with narrow
and elongated structures. The field is incorporated in the active contour models.
The direction of boundaries is estimated based on the minimal weighted local
variance condition, which extrapolates edges along their direction so that dis-
connected boundaries can be linked. In the experiments, the proposed method
has been validated and compared to three different approaches. It is shown that
the proposed method can effectively prevent contour leakage or discontinuity,
which may happen in the segmentation of narrow structures with low contrast
boundaries. Finally, our method is robust to intensity variation inside objects
and background regions.

Acknowledgment. The authors would like to thank Dr. Yu of the Department
of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, Hong
Kong, for providing the DSA images.

References

1. C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,” IEEE T. Image
Processing, (7):359-369, 1998.

2. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Intern.
J. Computer Vision, (1):321-331, 1988.

3. R. Malladi, J. Sethian, B. Vemuri, “Shape modeling with front propgagtion: A level
set approach,” IEEE T. PAMI., (17):158-175, 1995.

4. S. Osher, J. Sethian, “Fronts propagating with curvature dependent speed: algo-
rithms based on hamilton-jacobi formulations,” J. Comp. Phys., (79):12-49, 1988

5. A. Vasilevskiy, K. Siddiqi, “Flux Maximizing Geometric Flows” IEEE T. PAMI.,
(24):1565-1578, 2002.

6. Y. Xiang, A.C.S. Chung, J. Ye, “A New Active Contour Method based on Elastic
Interaction,” IEEE Conf. CVPR., (1):452-457, 2005.

7. T.F. Chan, L.A. Vese, “Active Contours without Edges,” IEEE T. Image Processing,
(10):266-277, 2001.

8. D. Marr, E. Hildreth, “Theory of Edge Detection,” Proc. Royal Soc. of London,
(B207):187-217, 1980.

9. Bonnie M. Gauer, OD, MS, “Using Fluorescein Angiography To Assess Retinal
Disease,” http://www.opt.pacificu.edu/ce/catalog/12059-PS/FA.html


	Introduction
	Methodology
	The Proposed Model
	Properties
	Implementation

	Experimental Results
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


