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Abstract. Direct volume rendering (DVR) is an effective way to visualize 3D
vascular images for diagnosis of different vascular pathologies and planning of
surgical treatments. Angiograms are typically noisy, fuzzy, and contain thin ves-
sel structures. Therefore, some kinds of enhancements are usually needed before
direct volume rendering can start. However, without visualizing the 3D struc-
tures in angiograms, users may find it difficult to select appropriate parameters
and assess the effectiveness of the enhancement results. In addition, traditional
enhancement techniques cannot easily separate the vessel voxels from other con-
textual structures with the same or very similar intensity. In this paper, we pro-
pose a framework to integrate enhancement and direct volume rendering into one
visualization pipeline using multi-dimensional transfer function tailored for visu-
alizing the curvilinear and line structures in angiograms. Furthermore, we present
a feature preserving interpolation method to render very thin vessels which are
usually missed using traditional approaches. To ease the difficulty in vessel se-
lection, a MIP-guided method is suggested to assist the process.

1 Introduction

Prevention and treatment of vascular diseases can be improved if prompt and precise
diagnosis can be performed with the aid of sophisticated vascular image visualization
techniques. In practice, clinicians visualize the vascular images slice by slice or using
the MIP. However, it is time consuming and difficult to realize the 3D structures. Less
obvious structures may not be revealed because of other bright objects in the MIP. It
cannot give the perception of depth and thus physical reality is lost as a result. Sev-
eral recently published clinician studies [3] comparing DVR with surface rendering and
MIP confirm that it is a more effective technique for angiography. Unlike other images,
angiograms have several characteristics which make them difficult to visualize using
traditional methods. First, the vessel intensity value is not fixed and is different in dif-
ferent types of images. The contextual objects may appear as bright structures and the
intensity of vessels is suppressed after rescaling. Even the same vessel may have differ-
ent intensity values in different parts. This makes it difficult to classify the vessels by
mere intensity for visualization. Another challenge is the small vessels which are dim
and obscure. They can be barely recognized even with the help of MIP. As the contrast
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of the vessels is small, it is difficult to separate simply by thresholding. Thinning or
over-segmentation of vessels are common and noise is introduced into the final result.
Furthermore, the vessels are usually accompanied by background structures which are
not relevant but present an obstacle to classification. Removal of these contextual struc-
tures is difficult due to the potential overlapping between the intensity value intervals
of different objects and vessels.

In this paper, we integrate filtering techniques into the visualization process un-
der the framework of multi-dimensional transfer function. Segmentation and rendering
processes are combined so that various visualization goals can be achieved by users with
a higher flexibility. Besides, as we found that rendering of small vessels is problematic
using conventional approaches, we proposed a new interpolation method to preserve
the thin features. A MIP-guided selection method is suggested for vessel selection.

This paper is organized as follows: We introduce the previous work related to vas-
cular image visualization in Section 2 and describe our framework which integrates
both enhancement and visualization processes using multi-dimensional transfer func-
tion in Section 3. MIP-guided vessel selection method is explained in Section 4. A new
feature preserving rendering approach is covered in Section 5. We demonstrate some
experimental results in Section 6 and conclude our work in Section 7.

2 Previous Works

2.1 Extraction and Enhancement

Segmentation of vessels in medical images is important for diagnosis of the pathology
of vessels. There are many promising segmentation methods developed, although none
of them can outperform the others in every medical image modality. Recently, Kirbas
and Quek [9] have done a survey on vessel extraction techniques. However, most of
them are not fully automatic and require a certain degree of human interaction. For
better visualization and diagnosis, vessel enhancement is another important issue. Dif-
ferent techniques for enhancement are reviewed in [18].

2.2 Visualization

Traditional approaches only show the planar cross-sections through the data volume.
However, it is inefficient as only a small portion of the vessels is revealed in each slice.
Curved Planar Reformation [7] tried to generate a cross-section through the centerline
of the vessels. The correctness of the plane depends on the accuracy of the estimation of
centerlines. Techniques based on the fusion of different rendering methods have been
proposed. They use adaptive methods on the vascular image according to certain prede-
fined criteria. In the two level volume rendering approach of Hauser et al. [4], different
rendering techniques are selectively used for different parts of a 3D image. All the re-
sults of subsequent object renderings are then combined. Zhou et al. [19] developed a
system to realistically render the region of focus, while data outside the region are ren-
dered by NPR approaches. VesselGlyph [15], on the other hand, fused DVR and CPR
in their solution according to the distance to the centerlines.
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2.3 Multi-Dimensional Transfer Function

Multi-dimensional transfer function (MDTF) was first proposed by Levoy [11] who
added the gradient as the second dimension to the transfer function in order to classify
the boundaries of different classes of objects. Various approaches focusing on the use
of the first and second derivatives in the design of the transfer function, such as semi-
automatic transfer function generation [8] and manipulation widget design [10] have
been investigated. Sato et al. [13] used more complicated classification rules to identify
different structures and incorporated them into the feature space design of transfer func-
tion. Huang et al. [6] recently proposed a shaped-based approach for the segmentation
of thin structures. Other related works like [5] tried to classify features using different
types of parameter.

2.4 Thin Structure Rendering

The width of the vessels from different image modalities and resolutions can be quite
different. Some of the small vessels can be as small as one voxel wide. In this case,
displayed image is not satisfactory using the typical rendering approach. Aliasing effect
and poor re-sampling results of the small vessels have to be handled. Dong et al. [1]
proposed to find the presence of fine structures in a preprocessing stage by gradient
estimation and render them with normal reconstruction. Their focus is on depiction of
fine details and texture on a surface. The work of Sen et al. [14], although not directly
related to fine structure rendering, tackled the aliasing problem of texture magnification
using some sophisticated interpolation method. It is similar to the aliasing problem of
small vessels.

3 Multi-Dimensional Transfer Function Design

Owing to the complexity of angiograms, they cannot be effectively visualized using 1D
transfer function. It is hard to determine the nature of the voxel by considering only the
intensity. Vessels and other contextual structures may be misinterpreted in this mapping.
Several ambiguous cases are summarized as follows.

First, two voxels with the same intensity are considered as the same class of objects
in 1D mapping. However, it is possible that voxels with the same intensity represent
different objects at different locations because of the overlapping of intensity interval of
different object classes. Second, even if the voxels with the same intensity are proximate
to each other, they may be of different classes. Due to the partial volume effect, a voxel
may consist of different classes of structures(vessel and context). The voxels with the
same intensity should not always be mapped to the same class. Lastly, in most cases,
the intensity range of vessels is very small and overlaps with other classes. It is very
difficult to distinguish the vessels in the intensity profile.

Therefore, we choose to extend the transfer function to higher dimension in order
to resolve the uncertainty and limitations in the 1D approach. Previous work of Kniss
et al. [10] indicated the importance of multi-dimensional transfer function in extracting
materials and boundaries. Simply using derivatives as the second dimension of feature
space [8] is not effective in our case. The gradient map of the angiogram can only
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show the boundary of different structures. The vessel response is relatively weak and
cannot be distinguished from other contextual structures. This indicates that we should
not only consider the boundaries of objects but also the contextual information or other
higher level details of the objects in order to reveal the object of interest. In this paper,
we focus on the problems arising from angiograms of different modalities and design a
proper feature space for effective visualization of the vascular structures.

3.1 Filtering Techniques

As mentioned in Section 2.1, various kinds of vessel filtering techniques have been
proposed mainly based on the characteristics of vascular structures. In this paper, we
use a curvilinear structure filter and a line filter to assist the process of visualization.

Filter for Curvilinear Structure. Vessels are considered as curvilinear structures by
the filter and strong responses are generated at locations where similar structures are
likely to be present. Among those filters in this category, vesselness measurement based
on Hessian is adopted as it is widely used [12][13] and we found that it can reveal the
tabular structures of vessels more precisely. The eigenvalues of the Hessian matrix are
used to determine locally the likelihood of the presence of vessels. This helps discrim-
inate the vessels from other contextual structures and recover those corrupted vessels.
The Hessian matrix is given by

H =

⎛
⎝

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞
⎠ (1)

where partial second derivative of image I(x) is represented by Ixx, Ixy, etc. For each
point of the image, the second order structure of intensity variation is captured by
the matrix and the corresponding eigenvalues and vectors which are represented by
λ1,λ2,λ3 and e1,e2,e3 (whereλ1 ≥ λ2 ≥ λ3), can be computed. By analyzing the eigen-
values, different local structures can be predicted. The thin line structure of vessels
results in a small λ1 and large negative λ2 and λ3. To signify the line-like structure of
vessels in the filter response, we use the line structure similarity measure suggested by
Sato et al. [12] which is given by L = f (λ1,λc)× λc, where λc = min(−λ2,λ3) and

f (λ1,λc) =

⎧⎪⎪⎨
⎪⎪⎩

exp(− λ 2
1

2(α1λc)2 ) if λ1 ≤ 0,λc �= 0

exp(− λ 2
1

2(α2λc)2 ) if λ1 > 0,λc �= 0

0 if λc = 0

(2)

By applying the filter, unrelated contextual structures can be removed. However, the
performance depends on whether the filter scale is proper or not. It turns out that only
vessels of a similar size can give a significantly high response. As we are dealing with
the problem of small vessels, the smallest filter size is chosen. Users can selectively
choose different filter sizes in their preferences for different visualization goals.

Filter for Line Structure. Although the result of structural filter is pretty good, there
are artifacts due to imperfect values of filter parameters or the variation of background
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tissue of the original image. These factors reduce the detectability of the small vessels.
Uneven or unclear response and fragmentation can be found along the vessel. Refine-
ments should be done on the response to connect those disconnected vessels and sup-
press those single bright voxels of noise. There are many line filters proposed which are
quite similar in nature. The enhancement method proposed by Sun and Parker [16] is a
simpler one and therefore can ease the burden of computation for real-time visualiza-
tion. The idea is to find out the local mean of every line segment passing through the
voxel of interest, while all the line segments are within a cubic kernel centered at the
voxel. The local maximum mean (LMM) is defined as the maximum of the local means.
By assigning the LMM to the previous response, the overall response is strengthened,
especially for the vessel voxels.

LMM(vecx) = max j=1,...,13 {Ld(vecx, j)} (3)

where

Ld(vecx, j) =
1
k

k/2

∑
l=−k/2

S(vecx, j, l)

However, the simplicity of the method comes with drawbacks. Bright vessels are widened
and small vessels at bifurcation are blurred. Besides, the improvement is less significant
for the dim vessels, therefore, an amendment is made to the original method.

To avoid the thickening of bright vessels, voxel intensity should not be raised signif-
icantly by a nearby single bright voxel. This can be done by lowering the intensity of
other context voxels during the mean calculation. The context voxel can be identified by
a threshold which is sufficiently lower than the intensity of the vessel. This can balance
and suppress the increase of the final result due to the bright voxel. The original vessel
is not affected as the highest mean does not change if it is connected with other bright
voxels along the vessel. To suppress the context intensity, we can use a simple formula

I′(x) =
{

I(x)× (T−I(x)
T )c if I(x) < T

I(x) if I(x) ≥ T
(4)

where T is the threshold value and c is the constant for the power function used in
the intensity transformation. After applying the filtering methods described in the last
two sections, we can get a clear filter response image which highlights and reveals the
structure of the vessels in the original image. It can be added to the feature space of the
vessel and participate in the transfer function and rendering process.

3.2 Interface

Recall that it is difficult to use a 1D transfer function to classify the vessels from the
context due to the overlapping of intensity interval. As the intensity interval of vessels
is small and not obvious compared with other background structures, it brings about
difficulties in finding an optimal transfer function for visualization. Therefore, we use
the multi-dimensional transfer function approach to ease the difficulties. Instead of us-
ing gradients [17] or derivatives [10], the aforementioned filtering response is treated
as the second feature. To allow easy manipulation, we provide a 2D transfer function
interface in which a user can define a transfer function by creating a polygonal region
on the plane (Fig. 1(a)).
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(a)
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Fig. 1. (a) Interfaces of our system; (b) 2D transfer function Interface

We can simplify the searching process by starting with a set of parameters. First,
we define an approximate intensity range R of the vessels. The semi-automatic transfer
function generation approach [8] can be a good initial guess which usually covers a
larger interval than we need. Another range R’, which is a smaller interval within R
and can be more confidently classified as vessels, is defined. As a vessel would give a
reasonably high response value, we can classify those voxels in the range R but not in
range R’ with a threshold defined by a curve or line. The transfer function is shown in
Fig. 1(b). The curve is controlled by a threshold value T and a constant c. Users can
manually change these parameters or directly manipulate the shape of the function in
order to get a better visualization result.

3.3 Framework

In a typical medical imaging system, the dataset is first preprocessed with different
image processing tools and is subsequently put into the pipeline of visualization. This
separated architecture reduces the users’ interactivity in the course of finding a proper
view for their visualization goals. Besides, the result of image processing cannot be

I I'

Anisotropic
Diffusion

Curvilinear
Filter

Line Filter

Parameter
Adjustment

Filter
Response

Multi-dimensional
Transfer Function

Rendering
Processing

Fig. 2. A diagram of the visualization framework
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accurate or proper for visualization without the interactive adjustments from users. For
example, the preprocessed image may be suitable for visualizing large structures but
not tiny vessels in certain regions. This indicates the need for better integration of both
processes in order to accomplish the visualization goals of different users. Fang et al.
[2] suggested a transfer function model in this spirit to fuse the processes. We adapt
their hybrid approach for our purpose (Fig. 2). Instead of applying the filtering oper-
ations directly to the displayed image, the operations are performed on the responses.
We consider the responses as the output of the image-based transfer function which is
defined by F:I→I’ where F = fn ⊗ fn−1 ⊗·· ·⊗ f1.

As users can interactively change the parameters of the filter, it provides higher flex-
ibility. Without this, the result would be affected by poor preprocessed results. To avoid
deterioration of performance due to filtering processes, the original method tries to re-
lieve the computational cost by restricting the processes only on visible regions and
voxels used for rendering. In our case, we restrict them by the first dimension of the
transfer function. As vessels occupy only a small intensity interval and region, which
are much less than 10% of the total number of voxels, this allows the process to be done
more efficiently in real-time.

4 MIP-Guided Selection

The visualization result depends on viewers’ concerns and therefore a proper user se-
lection is a critical starting point for conveying results in an expected way. However, it
is difficult to specify a region of interest in a volume data using a 2D interface. Instead
of performing the selection on each slice, we use the MIP to assist the process as it
can provide useful information about the location of vessels. The idea is that the small
vessels are usually projected on the MIP due to the relatively high intensity, but not on
the direct volume rendered images. By choosing pixels belonging to vessels on the MIP,
the corresponding voxels in the volume can be selected. Conventional region growing
techniques can be applied to the selected voxels and a proper region which can capture
the vessels is defined.

4.1 Depth Encoding

Vessels which are spatially close and have similar intensity values can lead to ambiguity.
Without the depth information, it is difficult to identify the vessels individually and they
are perceived as a clutter of connected vessels (Fig. 3(a)). To solve this problem, we
encode the depth information using a spectrum of colors. First, we generate a depth
map according to the distance of the voxels from the viewing plane. The depth map is
encoded with colors and then composited with the mono-color MIP. This allows users
to identify different vessels which overlap in the MIP. In our experiment, we use a color
spectrum between red and blue to deliver depth cues (Fig. 3(b)). The twisted vessels
in the MIP can be identified clearly. Without the aid of depth encoding, it is difficult
to classify a vessel in the fuzzy context. By considering the color difference, users
can select a vessel at different depth levels and understand the connectivity between
vessels.
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(a) (b) (c) (d)

Fig. 3. MIP images: (a) Original; (b) Color encoded; (c) User selection; (d) Region growing

4.2 Modification on MDTF

In addition to the scalar intensity and vesselness measure, the distance to the selected
voxels should be considered. We add this as another parameter to the MDTF. The
opacity is adjusted accordingly and is increase near the selected regions. This opacity
modulation can reflect the selection of users by highlighting the region of interest. The
structure of the selected vessel (Fig. 4) which is otherwise occluded by other vessels can
be shown clearly in the result. Actually, colors can also be adjusted based on the same
principle. This method is also very useful for rendering those thin vessels of interest.

(a) (b)

Fig. 4. Results of DVR: (a) Original; (b) Result of opacity modulation based on user selection

5 Feature Preserving Interpolation

The intensity along the narrow and weakly connected part of the vessel is uneven and
it is rendered in a ripple shape. Thin vessels may become invisible at certain viewing
angles although they actually exist in the image. The reason for this artifact is that we
cannot guarantee that a good sampling point can always be found along the rays from
all angles. Although a ray passes through the vessel, the distance of the sampling point
to the vessel varies from different viewing angles. We cannot guarantee that the sam-
pling value is always close to the vessel’s intensity. Therefore, part of a small vessel
occasionally darkens or even becomes invisible from certain viewing angles. The arti-
facts can be attributed to the interpolation method used in the rendering process and can
be reduced by increasing the sampling rate so that the chance of getting a representative
sample point is increased. However, this is expensive and still cannot solve the prob-
lem of uneven density distribution. The basic problem is that the trilinear interpolation
method in a typical rendering process has no idea of the existence of vessels (or more
precisely, it does not know whether the voxels are connected within a cell). For exam-
ple, the two diagonal voxels are weakly connected in the cell in Fig 5. The sampling
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value cannot truly reflect the situation if they are actually connected. This is a serious
problem for small vessels. Inspired by Sen [14], we use a new interpolation method to
preserve the connectivity of thin vessels.

C1

C6

C7

C5

C4 C8

C3

C2

(a)

S1

S2

(b)

S1

S2

(c)

Fig. 5. Shaded voxels are the diagonal vessel voxels in a cell. The arrows are the rays passing
through the cell and the circles on the rays are the sample points. A representative sample point
S1 is found in (b) but not in (c). However, intensity of S1 in (b) still falls out of the intensity range
of vessel after interpolation.

5.1 Interpolation Method

Our proposed rendering method takes weak connectivity into consideration. For the
weakly connected vessels, we render them using a special interpolation method. Our
objective is to ensure that the sampled intensity does not drop to a value lower than
those of the connected voxels. A simple solution is to perform a linear interpolation
between the two connected voxels for every connectivity. The intensity along the line
changes smoothly from one voxel to another. Then, the intensity of the sampling point
is the value of the projected point of the sampling point on the line.

I(Ps) =

{
I(ci)×dist(P′

s ,ci)+I(c j)×dist(P′
s ,c j)

dist(P′
s ,ci)+dist(P′

s ,c j)
if dist(P′

s ,Ps) ≤ R0

ITrilinear(c1, . . . ,c8) if dist(P′
s ,Ps) > R0

(5)

where c1, . . . ,c8 are the voxels of the cell, Ps is the sampling point and P′
s is the projected

point of Ps on line cic j of the vessel. R0 is the radius parameter used to control the width
of the vessel. It should be a value large enough to ensure that at least one sampling
point can be found in this cell when a ray passes through this vessel volume from any
angles. For the volume outside the defined region, we can use the trilinear interpolation
method.

5.2 Connectivity

We have to define the connectivity between voxels such that the vessels can be rendered
accurately. If we only consider the intensity of the voxels, ambiguity may arise. For
example, two voxels may be from two separate vessels or the same vessel. Therefore, we
try to use the filter responses to predict the existence of connectivity. First, we identify
the vessel voxels according to their response values. Then, we check the likelihood of
connectivity by measuring the similarity of their structures. If these voxels have similar
response value, we treat them as connected vessels. This criterion can be written like
this:
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Definition 1. Cell C = [c1, . . . , c8], where ci is a corner of C. For every pair of ci and

c j, find Rdi f f (i, j) = |R(ci)−R(c j)|
min(R(ci),R(c, j)) where ci and c j, are in diagonal. If Rdi f f (i, j) <

T hreshold, connectivity exists between i and j.

As the diagonal voxels may be connected indirectly with a voxel which is on the same
edge with each connected voxel, the connectivity is preserved in the original interpo-
lation method. Therefore, we can ignore these connectivity cases. There may be more
than one connectivity in a cell. Performing interpolation for all the lines of connectivity
is expensive and unnecessary. We only perform interpolation on the nearest edge to the
sample point. For example, if the number of vessel voxels in a cell is quite a few (say,
more than 4), we can assume that the vessels dominate the cell and the original inter-
polation can reveal the connectivity among them. In practice, we can get an improved
result by considering only the case of 2-3 voxels.

6 Experimental Results

In order to demonstrate that our approach can reveal the thin vessel structures and dis-
card the unrelated structures and noises, two medical datasets are tested in our experi-
ment. The first medical dataset is a 3D rotational X-ray angiographic image (3DRA) of
size 256×256×256. It shows the abdominal region of a patient. In the MIP (Fig. 6(a)),
we find many thin vessels which are obscured by the other tissues. Fig. 6(b) and 6(c)
show the results of applying 1D TF and no suitable transfer function can be found af-
ter many trials. In Fig. 6(b) we adjust the transfer function to a higher intensity range
so that noise is minimized. It can clearly show the large vessels but thin vessels are

(a) (b) (c)

(d)

Fig. 6. 3DRA images: (a) MIP image; (b)(c) Results using 1D TF; (d) Result using MDTF
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missed. In the right image, all the missing thin structures are revealed by broadening
the intensity range. However, it is accompanied with noise and other tissues. This is
due to the overlapping of the intensity intervals between vessels and soft tissues, which
make it difficult to classify the vessels using 1D TF. We apply the MDTF with enhanced
features to visualize the data (Fig. 6(d)). The feature response allows us to classify am-
biguous voxels with similar intensity. By choosing a proper transfer function using the
2D interface, the result is better than the previous images. The noise, which has low
response value, is greatly suppressed. Most of the small vessels are revealed clearly in
the image.

(a) (b) (c) (d)

Fig. 7. Brain MRA: (a) MIP image; (b)(c) Results of using 1D TF; (d) Result using MDTF

(a) (b) (c) (d) (e)

Fig. 8. Results using conventional approach (a) (b) (d) and feature preserving approach (c)(e)

In addition, a more complicated TOF MRA image is tested (Fig. 7). It is a 512 ×
512 × 52 brain image consisting of skull and brain matters. The vessels are small and
dim and are embedded in different locations of the brain. Similar to the previous case,
1D TF cannot give a good result (Fig. 7(b) and 7(c)). Our result preserves more details of
the vessels while keeping the noise at minimum. As the brain image is noisy and fuzzy
(Fig. 7(a)), some regions of the brain with similar structures may be misinterpreted as
vessels and introduce noise. It is impossible to remove them completely. However, the
improvement is obvious in the comparison of our result with the original one.

Finally, we show the result of our feature preserving rendering method. Fig. 8(a)
shows a small vessel extracted from the 3DRA data. The width of the vessel is about
1-4 voxels. In the conventional approach, vessels which are actually connected become
broken or even invisible at certain viewing angles due to a poor sampling value being
retrieved with the interpolation scheme (Fig. 8(b) and 8(d)). By using our method, the
thin and weakly connected vessels can be seen clearly at any angle (Fig. 8(c) and 8(e)).
As a representative sampling point is guaranteed to be found within a pre-defined radius,
a strong connectivity is established without thickening the vessel.
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7 Conclusion

This work presents a framework for visualization of vascular images. We integrate the
enhancement process and visualization pipeline using multi-dimensional transfer func-
tion. Segmentation of small vessels is difficult and cannot be easily achieved by using
1D transfer function. The enhancement techniques help classify the curvilinear and line
structures of vessels during the interactive visualization process. Thin vessels are high-
lighted and visualized. Also, we use a new feature preserving interpolation method to
render the thin vessels. This ensures that the thin vessels can be seen clearly at any
viewing angle and are not affected by poor sampling results of conventional interpola-
tion methods. Moreover, we suggest a MIP-guided selection of vessel which helps users
specify the structure of interest and deliver a better result based on the selection.
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