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Abstract

In this paper, we propose a graph-based method for 3D
vessel tree structure segmentation based on a new tubu-
larity Markov tree model (TMT ), which works as both
new energy function and graph construction method. With
the help of power-watershed implementation [7], a global
optimal segmentation can be obtained with low computa-
tional cost. Different with other graph-based vessel seg-
mentation methods, the proposed method does not depend
on any skeleton and ROI extraction method. The classical
issues of the graph-based methods, such as shrinking bias
and sensitivity to seed point location, can be solved with
the proposed method thanks to vessel data fidelity obtained
with TMT . The proposed method is compared with some
classical graph-based image segmentation methods and two
up-to-date 3D vessel segmentation methods, and is demon-
strated to be more accurate than these methods for 3D ves-
sel tree segmentation. Although the segmentation is done
without ROI extraction, the computational cost for the pro-
posed method is low (within 20 seconds for 256*256*144
image).

1. Introduction

In recent years, graph-based methods, such as graph cuts

[4, 5], random walker [9], power-watershed [7] and their

extensions [6, 10, 11, 17, 22, 23], have become a group of

popular image segmentation methods. These graph-based

methods can be used to obtain global optimal segmenta-

tion from computationally efficient energy optimization. A

unifying framework for graph-based energy optimization

methods for two-class image segmentation is proposed in

[7]. The objective functions of graph cuts, random walker,

power-watershed then can be seen as special cases of the

framework by employing particular parameters.

Vessel disease, which is one of the major causes of death

around the world, has become an important health prob-

lem. Vessel segmentation is very useful for the diagnosis,

visualization, treatment and surgery planning of vessel dis-

eases. With the advanced development of the medical image

acquisition modalities, such as CT and MRI, many vessel

segmentation methods have been developed in recent years

[12, 14, 16, 18, 19, 21]. However some classical segmen-

tation methods cannot achieve good performance on some

specific medical applications, such as vessel segmentation.

Here are some challenges for 3D vessel segmentation: a)

The segmentation of elongated structures of vessels may

suffer from the shrinking bias (Graph Cuts) and sensitiv-

ity of seed point locations (Random walker). These two

problems are easy to solve in 2D by providing more seed

points. However, for 3D images, especially for vessel struc-

tures which spread over a large area in the image, provid-

ing enough seed points is not an easy task. b) As can be

seen in Figures 1(a) and 1(b), vessels may be in or near

some other organs. This makes the segmentation more dif-

ficult. c) The intensity can change significantly along a ves-

sel branch. So the intensity feature which is widely used in

many segmentation methods is not a good choice for ves-

sel segmentation. Also, the distal part of some vessels may

be obscure (Figure 1(c)), and this may cause segmentation

leakage to the background area. As a result, despite of the

advantages of graph-based framework, only a few methods

[3, 8, 17, 20, 24], which combine graph cuts with vessel

shape priors, are used for vessel segmentation. Graph cuts

based methods in [17, 20, 24] are used to obtain global op-

timal segmentation for single branches. However, for the

whole vessel tree segmentation, the simple combination of

different branches may not be sufficient. Methods in [3, 8]

first detect the skeleton of vessel tree and then the graph

cuts method is used for whole tree optimization. All these

graph cuts based methods require obtaining vessel skeleton

as preprocessing and the region of interest (ROI) are then

extracted accordingly. As a result, the performance of these
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(a) Coronary artery on heart (b) Vessel near other object (c) Distal part of vessel

Figure 1. Difficulties for 3D Vessel Segmentation

methods rely heavily on the accuracy of skeleton detection.

Paper Contributions. In this paper, we propose a new

graph-based method for vessel tree structure segmentation

based on a new tubularity Markov tree model (TMT ),

which works as both new energy function and graph con-

struction method. The proposed method has four favorable

properties: (i) With the new TMT model, a good data fi-

delity is embedded in the new objective function (Equa-

tion 2) and is evaluated to be effective on increasing the ac-

curacy and reducing the risk of shrinking bias. (ii) The op-

timization is done on the whole 3D image without extract-

ing the ROI. As a result, the performance of the proposed

method does not depend on the skeleton extraction results.

(iii) The optimal segmentation result can be obtained with

low computation cost. And (iv), the bifurcation of vessel

tree structure does not require particular consideration.

2. Background
In this section, some background definitions will be pro-

vided. For graph-based methods, graph construction and

energy function are two major factors affecting the segmen-

tation performance. Here we define the undirected graph as

𝐺𝑜 = (𝑉 𝑜, 𝐸𝑜) with node set 𝑉 𝑜 and edge set 𝐸𝑜. 𝑣𝑖 and

𝑒𝑖𝑗 are nodes and edges in 𝑉 𝑜 and 𝐸𝑜 respectively. 𝑤𝑖𝑗 is

the weight for edge 𝑒𝑖𝑗 . In this paper, we assume 𝐺 is a

undirected graph, so here we have 𝑤𝑖𝑗 = 𝑤𝑗𝑖. In [7], the

authors proposed a unifying framework for graph optimiza-

tion methods for two-class segmentation:

Step 1 : x =argmin
𝑥

∑

𝑒𝑖𝑗∈𝐸𝑜

𝑤𝑝
𝑖𝑗 ∣𝑥𝑖 − 𝑥𝑗 ∣𝑞

+
∑

𝑣𝑖∈𝑉 𝑜

𝑤𝑝
𝐹𝑖
∣𝑥𝑖∣𝑞 +

∑

𝑣𝑖∈𝑉 𝑜

𝑤𝑝
𝐵𝑖
∣𝑥𝑖 − 1∣𝑞

s.t. 𝑥(𝐹 ) = 1, 𝑥(𝐵) = 0,

Step 2 : 𝑠𝑖 =1 if 𝑥𝑖 ≥ 1

2
, 0 if 𝑥𝑖 <

1

2

(1)

Here 𝑥𝑖 and 𝑠𝑖 are the foreground probability and result la-

bel for node 𝑣𝑖 respectively. x is the probability set for all

the nodes in 𝑉 𝑜. As discussed in [7], when 𝑝 is a small fi-

nite number, the optimization for Equation 1 can be done

with graph cuts (𝑞 = 1) or random walker (𝑞 = 2). And for

𝑝→∞, the objective function can be optimized with power

watershed method proposed in [7] when 𝑞 is a finite num-

ber. This framework (Equation 1) actually summarizes all

the energy based graph optimization methods for two-class

object segmentation.

3. Proposed Method
In this section, the proposed method will be described

in two parts. First, a new framework will be created for

segmenting a particular class from multiple objects back-

ground. Then TMT based new energy function and graph

construction method for the objective function (Equation 2)

will be introduced.

3.1. Singular Object Segmentation Objective

As described in Section 2, the framework (Equation 1) is

designed for two-class object segmentation. As can be seen

in Figure 1(b), some blood vessels, e.g., the coronary ar-

teries, are surrounded with different objects, such as heart,

vertebra, tissue, and other types of vessels. However, coro-

nary artery is the only target we want to segment. Generally

speaking, in many applications, we may need to separate a

particular type of object out of a complex environment. And

the segmentation task for 3D images is especially important

and more difficult than that for 2D images. For vessel tree

segmentation, we modify the unifying framework (Equa-

tion 1) from [7] to the following objective function:

x = argmin
𝑥

lim
𝑝→∞

(
∑

𝑒𝑖𝑗∈𝐸𝑜

𝑤𝑝
𝑖𝑗 ∣𝑥𝑖 − 𝑥𝑗 ∣2 +

∑

𝑣𝑖∈𝑉𝑡𝑚𝑡

𝑇 𝑝
𝑤𝑖
∣𝑥𝑖 − 1∣2)

s.t. 𝑥(𝑆𝑉 ) = 1, 𝑥(𝑆𝐵) = 0.
(2)

Here TMT = (𝐸𝑡𝑚𝑡, 𝑉𝑡𝑚𝑡) is a tubularity Markov tree

structure with its edge set 𝐸𝑡𝑚𝑡 and node set 𝑉𝑡𝑚𝑡, and 𝑇𝑤𝑖

is the tubularity Markov response for 𝑣𝑖 ∈ 𝑉𝑡𝑚𝑡. 𝑆𝑉 and

𝑆𝐵 are the vessel seeds and background seeds. In this ob-

jective function, we delete the original region energy terms

for both foreground and background and add a new data fi-

delity term for the nodes in the set 𝑉𝑡𝑚𝑡. This is because

we are trying to segment the object out from multiple types
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of background objects and it is difficult to model the region

energy for foreground and background with single models.

Usually, the energy term is based on voxel intensity distri-

bution. However, it is impossible to identify the vessel voxel

from the others with only intensity since the background

body organs may have similar intensity. We will introduce

the details of the new data fidelity term in Section. 3.2.

In this objective function, we use 𝑝 → ∞ and 𝑞 = 2 in

the unifying framework. 𝑝 here represents to what extent

the weights are emphasized. For 3D vessel segmentation,

𝑝 → ∞ is the best choice since this can reduce the risk of

shrinking bias, and this is especially important for elongated

structure segmentation with small number of seed points.

3.2. Tubularity Markov Tree and Graph Construc-
tion

In this section, we propose a new graph-based optimiza-

tion method for vessel segmentation. A new energy func-

tion based on tubularity Markov tree model is proposed and

used as vessel fidelity, and accordingly a new graph con-

struction method is described.

To construct a good vessel data fidelity, the tubularity

Markov tree model is proposed. In this model, we make

use of the tubularity shape character of vessel structure with

a Markov tree representation. The method for tubularity

Markov tree construction is described in Algorithm 1. The

red lines in Figure 2 sketches the structure for the tubularity

Markov tree. The red tree in the figure is just a main struc-

ture showing the construction of TMT . In real application,

the tree may be much more dense, especially in the area

within and near the vessels. And the neighboring relation

of nodes is voxel-based. So different with that shown in the

figure, there may be many nodes on the path between the

root and the nodes outside the vessels. Given a start seed

node, the tubularity Markov tree is constructed by adding

the nodes with the largest weighted joint tubularity score

(shortened as tubularity score, 𝑇𝑠) iteratively. The imple-

mentation of TMT construction is similar with the classic

Prim’s minimal spanning tree in the manner of nodes span-

ning. One of the major differences is that the Prim’s al-

gorithm needs to reach all nodes in the graph. But in the

proposed method, the spanning will be stopped if there is

no candidate with high score (𝑇𝑠 ≥ 𝜏 ) in the stack. And

also, the spanning of the Prim’s tree actually can be seen

as the first order Markov process for adding nodes with the

least edge cost connecting with the spanning tree. While

in the proposed method, we aim at adding the nodes with

the largest weighted joint tubularity score (𝑇𝑠) into the tree.

The tubularity score is calculated according to the following

Algorithm 1 Tubularity Markov Tree

Require: 𝐼 – image voxels, 𝑆𝑉 – vessel seeds,

𝑚𝑎𝑥𝑤 – maximal weight

1: INITIALIZATION:
𝑉𝑡𝑚𝑡 = 𝜙,𝐸𝑡𝑚𝑡 = 𝜙.

2: for each tree 𝑦 do
3: find one seed point 𝑆𝑉𝑦 , calculate 𝑇𝑠(𝑆𝑉𝑦 ) according

to Equation 4.

4: 𝑆𝑡𝑎𝑐𝑘𝑦 = {(𝑆𝑉𝑦
,Null , 𝑇𝑠(𝑆𝑉𝑦

))}
5: while 𝑆𝑡𝑎𝑐𝑘𝑦! = 𝜙 do
6: find triple (curN , preN , 𝑇𝑠) ∈ 𝑆𝑡𝑎𝑐𝑘𝑦 with

largest 𝑇𝑠 and delete it from 𝑆𝑡𝑎𝑐𝑘𝑦 .

7: if preN ! = Null then
8: 𝐸𝑡𝑚𝑡 = 𝐸𝑡𝑚𝑡

∪
𝑒(preN , curN ),

9: 𝑉𝑡𝑚𝑡 = 𝑉𝑡𝑚𝑡

∪
curN ,

10: 𝑇𝑤(curN ) = exp(−1/𝑇𝑠) ∗𝑚𝑎𝑥𝑤.

11: end if
12: for each neighbor voxel 𝑁𝑖 of curN do
13: if 𝑁𝑖 /∈ 𝑉𝑡𝑚𝑡 then
14: calculate 𝑇𝑠(𝑁𝑖) with Equation 3.

15: if 𝑁𝑖 /∈ 𝑆𝑡𝑎𝑐𝑘𝑦 and 𝑇𝑠(𝑁𝑖) ≥ 𝜏 then
16: add (𝑁𝑖, curN , 𝑇𝑠(𝑁𝑖)) into 𝑆𝑡𝑎𝑐𝑘𝑦 .

17: else if 𝑁𝑖 ∈ 𝑆𝑡𝑎𝑐𝑘𝑦 with current tubularity

response 𝑇𝑠𝑖 and 𝑇𝑠(𝑁𝑖) > 𝑇𝑠𝑖

18: replace triple with (𝑁𝑖, curN , 𝑇𝑠(𝑁𝑖)).
19: end if
20: end if
21: end for
22: end while
23: end for
24: return 𝑇𝑊𝑇 = (𝑉𝑡𝑚𝑡, 𝐸𝑡𝑚𝑡), 𝑇𝑤

equation when 𝑖 > 1:

𝑇𝑠(𝑣𝑖) = 𝜆 ∗ 𝑇𝑠(𝑣𝑖−1) + (1− 𝜆) ∗𝑚𝑓(𝑣𝑖, 𝑑𝑖)

= 𝜆𝑖−1 ∗ 𝑇𝑠(𝑣1) + (1− 𝜆) ∗
𝑖∑

𝑥=2

𝜆𝑖−𝑥 ∗𝑚𝑓(𝑣𝑥, 𝑑𝑖),
(3)

where 𝑑𝑖 = 𝑣𝑖 − 𝑣𝑖−1. When 𝑖 = 1, we assume

𝑇𝑠(𝑣1) = max
𝑑′
1

𝑚𝑓(𝑣1, 𝑑
′
1), (4)

in which 𝑑′1 represents the directions from 𝑣1 to its neigh-

bors. Here we use 𝑣𝑖−1 to represent the parent node for 𝑣𝑖
in the tree. Mflux is used in [13, 15] as the medialness fea-

ture for centerline tracking. Based on Mflux , we define a

Max -Mflux response as:

𝑚𝑓(𝑝𝑡, 𝑑) = max
𝑟
{ 2

𝑁

𝑁
2∑

𝑖=1

min((∇I(𝑎𝑖) ⋅ u𝑖), (∇I(𝑎𝜋𝑖 ) ⋅ u𝜋
𝑖 ))},

u𝑖 = (𝑝𝑡 − 𝑎𝑖)/∣𝑝𝑡 − 𝑎𝑖∣, 𝑎𝜋𝑖 = 𝑎 2
𝑁 +𝑖.
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Figure 2. TMT Graph

Given 𝑝𝑡 as the center point and 𝑟 as radius, 𝑎𝑖 is point

on the circle. ∇I(𝑎𝑖) is the gradient vector of 𝑎𝑖, and

the included angle between 𝑝𝑡 − 𝑎𝑖 and 𝑝𝑡 − 𝑎𝑖+1 for

𝑖 = 1, ..., 𝑁 − 1 are 2𝜋/𝑁 . Different with Mflux , Max -

Mflux search all the possible 𝑟 and return the largest Mflux
response. In [15], Mflux is seen as the response for a node

being candidate on the centerline. In this paper, we con-

struct a Markov tree with the tubularity score 𝑇𝑠 based on

Max -Mflux . For each node, all the ancestor nodes’ Max -

Mflux responses are considered with degradation weights

and the weights are summed to 1 (Equation 3). This is the

reason that we can make use of the changed medialness fea-

ture as the response of the node being candidate in the ves-

sel. For the nodes in the vessel but deviate from the center,

it may have a series of high Max -Mflux response ancestors.

As a result, although the response for the nodes itself may

not be high, the weighted joint tubularity score considering

all the ancestors may not be low. And for the points with

high Max -Mflux response for both the ancestors and itself,

it can have a high tubularity score and as a result has a high

data fidelity as foreground vessel point. The new tubularity

score is robust for the seed node position. Take a perfect

tube for example, the Max -Mflux response is the same on

centerline no matter where the seed point is located. Since

the weights in 𝑇𝑠 is summed to 1, the tubularity scores for

all centerline points are the same, regardless whatever 𝜆 is.

Then the spanning may reach the nodes near all centerline

points with the same ancestor’s score. The parameter 𝜆 can

be used to control the spanning range. Given threshold 𝜏
fixed, if 𝜆 is large, the impact of the ancestors is empha-

sized, and the spanning can go further thanks to ancestors’

good performance. Otherwise if 𝜆 is small, the node needs

to depend on itself and if it does not have good Max -Mflux ,

the spanning will not cover this node.

The proposed new model is named as tubularity Markov

tree model, here the “tree” represents the spanning struc-

ture, and the relationship between a particular node and its

ancestors is more likely a Markov chain. The spanning of

the tree is based on the new weighted joint tubularity score.

All these together with the graph construction accomplish

the proposed TMT model.

After obtaining the tree and tubularity response, the

graph is constructed according to Algorithm 2, which is the

main framework for the proposed method. 𝑣𝑝 is a virtual

graph node for implementation. 𝑒(𝑣𝑝, 𝑉𝑡𝑚𝑡) here represents

the edge set including all the edges connecting the node 𝑣𝑝
and nodes in 𝑉𝑡𝑚𝑡. These edges are represented by blue

dashed lines in Figure 2. Similarly, 𝑒(𝑣𝑝, 𝑆𝑣) represents all

the edges connecting 𝑣𝑝 and the vessel seed points. Green

dashed in Figure 2 line gives one example in this edge set.

The graph constructed with Algorithm 2 includes two parts,

the image lattices (𝐺𝑜) and the TMT part (𝐺′), which is

sketched in Figure 2 (dash lines and associate nodes). Af-

ter the graph construction, the power-watershed [7] method

is used to optimize the objective function (Equation 2).

Here we give a proof illustrating that the objective function

(Equation 2) can be optimized by Algorithm 2.

Algorithm 2 TMT -based vessel segmentation

1: INPUT:
𝐼 – image voxels, 𝑆𝑉 – vessel seeds, 𝑆𝐵 – background

seeds.

2: Notations:
𝐺𝑜 = (𝑉 𝑜, 𝐸𝑜), 𝑉 𝑜 is the set of voxels in 𝐼 . 𝐸𝑜 in-

cludes edges connecting neighboring voxels in 𝐼 .

𝜔 is a parameter for calculating weights.

𝐼𝑖 is the intensity of voxel 𝑣𝑖 in 𝐼 .

3: Calculate 𝑊 𝑜 = {𝑤𝑖𝑗 = exp(−(𝐼𝑖 − 𝐼𝑗)
2/(2𝜔2))},

and set 𝑚𝑎𝑥𝑤 = max{𝑤𝑖𝑗 ∈𝑊 𝑜}.
4: Given 𝐼 , 𝑆𝑣 and 𝑚𝑎𝑥𝑤, implement Algorithm. 1 to ob-

tain TMT and 𝑇𝑤.

5: 𝑉 ′ = 𝑆𝑣

∪
𝑣𝑝

∪
𝑉𝑡𝑚𝑡, 𝐸

′ = 𝑒(𝑣𝑝, 𝑉𝑡𝑚𝑡)
∪

𝑒(𝑣𝑝, 𝑆𝑣),
𝐺′ = (𝑉 ′, 𝐸′), 𝑊 ′(𝑒(𝑣𝑝, 𝑆𝑣)) = 𝑚𝑎𝑥𝑤.

𝑊 ′(𝑒(𝑣𝑝, 𝑉𝑡𝑚𝑡)) = 𝑇𝑤(𝑉𝑡𝑚𝑡),
6: 𝐺 = 𝐺𝑜

∪
𝐺′,𝑊 = 𝑊 𝑜

∪
𝑊 ′

7: Implement the power watershed method in [7] on G to

obtain X.

8: OUTPUT: 𝑋

Proof: Since 𝑥(𝑆𝑣) = 1, we have

∑

𝑣𝑖∈𝑉𝑡𝑚𝑡

𝑇 𝑝
𝑤𝑖
∣𝑥𝑖 − 1∣2 =

∑

𝑣𝑖∈𝑉𝑡𝑚𝑡

𝑇 𝑝
𝑤𝑖
∣𝑥𝑖 − 𝑥(𝑆𝑣)∣2.

According to the implementation of power watershed

method [7], since 𝑊 ′(𝑒(𝑣𝑝, 𝑆𝑣)) = 𝑚𝑎𝑥𝑤, 𝑣𝑝 and all the

seeds in 𝑆𝑣 will be merged to one node first, then we have

𝑥(𝑆𝑣) = 𝑥(𝑣𝑝). Let 𝐸′′ be the sets of edges 𝑒(𝑣𝑝, 𝑉𝑡𝑚𝑡),
and 𝑊 ′′(𝑒(𝑣𝑝, 𝑉𝑡𝑚𝑡)) = 𝑇𝑤(𝑉𝑡𝑚𝑡) be the weights of 𝐸′′,
then we have,

∑

𝑣𝑖∈𝑉𝑡𝑚𝑡

𝑇 𝑝
𝑤𝑖
∣𝑥𝑖 − 1∣2 =

∑

𝑒𝑖𝑗∈𝐸′′
𝑤𝑝

𝑖𝑗 ∣𝑥𝑖 − 𝑥𝑗 ∣2.

And 𝐸 = 𝐸′′
∪

𝐸𝑜 after the merging 𝑣𝑝 and 𝑆𝑣 , so finally,
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(a) Synthetic Image 1 (b) proposed method(sigma=100) (c) Paraview(sigma=100)

Figure 3. Experiments on Synthetic Image 1

(a) Synthetic Image 2 (b) proposed method(sigma=200) (c) Paraview(sigma=200)

Figure 4. Experiments on Synthetic Image 2

the objective function (Equation 2) is same with the follow-

ing one after first step node merging.

𝑥 =argmin
𝑥

lim
𝑝→∞

∑

𝑒𝑖𝑗∈𝐸
𝑤𝑝

𝑖𝑗 ∣𝑥𝑖 − 𝑥𝑗 ∣2

s.t. 𝑥(𝑆𝑉 ) = 1, 𝑥(𝑆𝐵) = 0,

(5)

It is proved that this objective function can be optimized

with power watershed method in [7]. As a result, the orig-

inal objective function (Equation 2) can be optimized with

the proposed method presented in Algorithm 2.

In this section, a new model named TMT is proposed,

and new data fidelity and graph construction method based

on the model is also introduced. Based on the new weighted

joint tubularity score in Equation 3, and the tree spanning

method described in Algorithm 1, the TMT model provides

good data fidelity, and perform preliminary graph construc-

tion. Algorithm 2 is then used to construct the whole graph

for energy optimization of the new singular object segmen-

tation objective function (Equation 2).

4. Experiments
For method evaluation, we have compared the proposed

method with some other segmentation methods on both syn-

thetic images and clinical CTA images. First, an group of

experiments have been carried out on synthetic images (Fig-

ure 3(a) and Figure 4(a)). As stated in Section 1, two im-

portant challenges for vessel segmentation are: a) the ves-

sels are surrounded by human organs with similar intensity

(Figure 1(b)), b) the distal part of vessel may be obscure

(Figure 1(c)). In the synthetic experiments, the images are

designed to simulate these two problem and different meth-

ods are evaluated on these images. The first synthetic image

is shown in Figure 3(a). The intensity of the tubular struc-

ture ranges from 1200 to 850, and the background intensity

is set to 800. Similar with real vessels, the radius of the

synthetic vessel is also decreased gradually. The size of

the image is 200*200*150 voxels. In the second synthetic

image (Figure 4(a)), the intensity of synthetic vessel and

nearby objects are set to 1200 and that of background is set

to 800. The smallest distance between the objects and the

tube ranges from 1-3 voxels, and the size of this image is

100*100*100 voxels. Gaussian noise was added to the syn-

thetic images to generate a series of noisy synthetic images

for the evaluation.
The proposed method was compared with power-

watershed method [7], graph cuts [4] on the two groups of

synthetic images, and to be fair, we also conduct the com-

parison with the graph cuts method by providing the same

graph constructed with the proposed method. Here a widely

used segmentation measure DICE is employed for evaluat-

ing the accuracy of segmentation results. As can be seen in

Table 1, the segmentation accuracy of the proposed method

is good even for highly noisy image. However, the accuracy

of the other three methods drops dramatically down. Syn-

thetic image 1 is generated with the intensity of its distal

222122212223



Table 1. DICE and Computation Time on Synthetic Image 1
𝜎 (noise level) WithoutNoise 20 40 60 100 Time(Seconds)

Our method 100% 100% 99.9996% 98.4314% 97.6359% 17.931

Power WaterShed [7] 100% 99.9996% 99.9982% 97.6285% 4.5408% 11.472

GraphCut [4] 100% 100% 4.5762% 4.5762% 4.5762% 29.523

GraphCut With TMT 100% 100% 100% 4.5762% 4.5762% 31.742

Table 2. DICE on Synthetic Image 2
𝜎 (noise level) WithoutNoise 100 200 400

Our method 100% 95.9341% 88.1162% 70.2263%

Power WaterShed [7] 100% 96.0211% 6.2724% 6.4620%

GraphCut [4] 100% 100% 6.3913% 6.3913%

GraphCut With TMT 100% 95.9341% 83.7718% 6.3913%

part dark and when the noise level increases, the leakage to

the background for both graph cut methods and watershed

method may happen. The segmentation result then shrink

to the background seeds points and all the other voxels in

the image are labeled as foreground object. The results for

synthetic image 2 are shown in Table 2. All methods per-

forms perfectly on the image without noise. However, when

the noise level increases, the background results of the other

three methods again shrink to the background seed points.

The accuracy of the graph cuts method with TMT graph

drops later than the other two methods, which means with

TMT , a better performance on noisy images is obtained

for the graph cuts method. This may be a indicator of the

good performance for TMT graph. By providing reason-

able data fidelity which can reduce the shrinking risk, the

proposed method can have good performance on noisy im-

ages. Different with the graph cuts method with TMT , our

method emphasizes more on the weights by 𝑝 → ∞ and

does not suffer from the shrinking bias.

In all experiments, the weight 𝜆 for calculating the tubu-

larity score was set to 0.5. While 𝜔 in Algorithm 2 was

set to 200 in the synthetic experiments and 20 for the real

images because this parameter is closely related to bound-

ary intensity change. 𝜏 in Algorithm 1 was set to 80 for

synthetic images and 40 for real images. 𝑟 in Equation. 5

ranges from 0.6mm to 4.8mm.

The average computation time was recorded for syn-

thetic image 1 and listed in Table 1. The experiments are

carried out on a server with 4xAMD Opteron 844 (1.8GHz)

CPU and 8GB RAM. With the proposed method, the seg-

mentation can be finished within 18 seconds on average for

the synthetic image with size 200*200*150 voxels. The

18 seconds includes the TMT construction time (about 8

seconds) and optimization time. The TMT construction is

the reason that the proposed methods and the Graph Cuts

method with TMT require more the computation time than

watershed and graph cuts method respectively. Actually,

although it takes a few seconds to obtain TMT and the

graph can be a little larger than that in watershed and graph

cuts method, the optimization procedure for the proposed

method and graph cuts with TMT may be accelerated with

the help of TMT construction.

Figures 3(b) and 4(b) show the surface obtained with

the proposed method for noisy image with 𝜎 = 100 and

𝜎 = 200. Since the obtained surface of the other meth-

ods shrinks to points, here we present the contours obtained

with Paraview software [1] as a supplement. Figures 3(c)

and 4(c) presents the contours obtained with Paraview [1]

software on the noisy image with 𝜎 = 100 and 𝜎 = 200.

In Figure 3(c), a slice of distal part of the synthetic vessel

is also presented. As shown in the figure, Paraview does

well in the parts with high contrast and large vascular ra-

dius, while it cannot track the distal parts with low contrast

and high noise level. And in Figure 4(c), since there is no

seed point given to Paraview, it finds all the objects while in

the proposed method, we aim at finding the vascular struc-

ture. The surface obtained with the proposed method is

more smoother than the ones obtained with Paraview.

The experiments was also carried out on clinical images

for coronary artery segmentation. As can be seen in Fig-

ure 5, the proposed method is compared with classic re-

gion growing [2] (Figure 5(a)), graph cuts [4] (Figure 5(b)),

graph cuts with TMT graph (Figure 5(c)) and power wa-

tershed method [7] (Figure 5(d)) on a 256*256*144 clinical

image. As shown in these figures, region growing and graph

cuts methods suffer a lot from leakage since the distal parts

of the vessel are obscure and have no clear boundary. Given

a seed point (red point in Figure 5(a)), the region growing

method grows to the whole heart area and also spread to

some other vessels nearby. And the tracking of real objec-

tive coronary artery (green part in Figure 5(a)) stops ear-

lier so the distal parts are missing. Since the distal parts of

the real vessels are not clear, the obtained results of graph

cuts methods leak to other organs and vessels near the coro-

nary arteries. As for the power watershed method, although

it emphasizes more on weights which may reduce the risk

of shrinking, the unpredictable intensity changes along the

vessels makes it difficult to track the distal parts. As a re-

sult, it encounters with the problem of shrinkage. For the

proposed method, with the vessel fidelity from TMT , the
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(a) Region Growing (b) Graph Cuts[4] (c) Graph Cuts with TMT

(d) Power Watershed[7] (e) Proposed Method

Figure 5. Segmentation Results on Clinical Image 1

(a) Proposed method (b) Surface obtained with [3] (c) Surface obtained with[8]

Figure 6. Segmentation Results on Clinical Image 2

segmentation does not suffer from either shrinking bias or

leakage. The computation time of the proposed method in

this experiment is 19.384 seconds.

The proposed method was also compared with two

graph-based vessel segmentation methods [8, 3]. In these

two methods, the skeletons are first detected and the graph

cuts methods are applied on the region of interest. So in

this group of experiments, we first detect the centerline of

the vessels with the method in [25] and find the region of in-

terest according to the associated radius obtained. With the

same ROI, and seed points, the segmentation results of the

three methods are shown in Figure 6. As shown in the fig-

ure, the surfaces for [3] seem smoother. However, without

the help of regional energy, the method in [3] suffers from

shrinking problem, which makes some distal parts thinner

than the real segmentation. The segmentation results in this

group seem better than the the results in Figure 5(e). How-

ever, they require the skeleton of the vessels as premise. As

a result, the performance of these methods depends on the

accuracy of the skeleton detection for the vessel structures.

Given a good estimation of skeleton, these methods will be

good choices. While in the cases that skeletons are not ob-

tainable or not accurate, methods that do not require accu-

rate skeleton are needed. The proposed method, as may be

noticed in these experiments, can adapt in both situations.

Without ROI, it works well for obtaining the objective ves-

sels; while given accurate skeleton, it performs better since

the neighboring objects with same intensity are eliminated.

5. Conclusion

In this paper, we propose a graph-based method for 3D

vessel tree structure segmentation based on a new tubu-

larity Markov tree model (TMT ), which works as both

new energy function and graph construction method. With

the help of power-watershed implementation, a global opti-

mal segmentation can be obtained with low computational

cost. Different with all other graph-based vessel segmen-
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tation methods, the proposed method does not depend on

any skeleton and ROI extraction method. The classical is-

sues of the graph-based method, such as shrinking bias and

sensitivity to seed point position, can be solved with the

proposed method thanks to the TMT model as vessel data

fidelity in the graph-based unifying framework. The pro-

posed method is compared with some classical graph-based

image segmentation methods and two up-to-date 3D vessel

segmentation methods. The experiments show that the pro-

posed method is more accurate than these methods for 3D

vessel tree segmentation. The computational time for the

whole tree segmentation is within 20 seconds although the

whole 3D image is included in the algorithm.
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