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Abstract— This paper presents a novel vessel enhancement
method. By regarding a vessel segment as a local line and
exploiting the second order information along the line, our
method embeds a vessel model to capture vessel structures. The
vessel model is the key to better performances of our method
than the Hessian-based methods and makes the Hessian-based
methods fall in an extreme case of our method. It is experimen-
tally shown that our method gives more accurate “vesselness”
measures and vessel direction estimations. In particular, our
method achieves better background suppression, smoother
“vesselness” measures inside vessels and better responses at
crossings (where two relatively straight vessels meet).

I. INTRODUCTION

Vessel enhancement, either as a preprocessing step for ves-

sel segmentation or as a technique to improve visualization of

volumetric data, is widely used in computer-aided diagnosis.

The Hessian-based vessel enhancement methods refer to

those relying on eigenvalues and/or eigenvectors of the

Hessian matrix to distinguish vessels from background; and

they are widely used in literature because of the use of

second order information to capture local intensity geometry

and their high computational efficiency. To the best of our

knowledge, Koller et al. [1] were the first to propose to

use the Hessian matrix for estimation of vessel directions

and to use a matching filter in the direction of vessels to

produce a “vesselness” measure. Krissian et al. extended

Koller’s work in [2]. While the above two works only use

eigenvectors of the Hessian matrix, other works [3], [4],

[5], [6] use principal curvatures based on eigenvalues of

the Hessian matrix. These vessel enhancement filters rely

on combinations of eigenvalues of the Hessian matrix to

distinguish between vessel structures from blob-like and

plane-like structures. Among those works, Frangi’s vessel

enhancement filtering [4] is extensively used in practice.

It uses all three eigenvalues of the Hessian matrix instead

of just two eigenvalues [6], [3] and has intuitive geometric

interpretations.

However, it is known that second order derivatives are

sensitive to local intensity variations. This property is un-

desirable for vessel enhancement because noise will give

false positive responses while crossings (where two relatively

straight vessels meet) will produce false negative responses.

It is also noticed that responses inside a vessel in noisy

regions will tend to be discontinuous. These effects deteri-

orate visualization results and can create serious problems

for the subsequent segmentation methods, especially for
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the commonly used “flux-maximizing geometric flows” by

Vasilevskiy et al. [7], which depends greatly on local gradient

and hence is sensitive to local intensity variations.

The proposed method in our work embeds a vessel model

as prior knowledge by modeling a vessel segment as a local

line and exploiting the second order information of the local

line integrals in order to capture potentially existing line

structures with less sensitivity to local intensity variations

and local structure variations. Measures similar to eigenval-

ues and eigenvectors of the Hessian matrix are produced

in a multi-scale fashion and then combined to generate a

“vesselness” measure. By the use of this vessel model, our

approach is able to give better estimation of vessel directions

and better “vesselness” measures. Also, it should be pointed

out that the Hessian-based enhancement methods fall in an

extreme case of our method.

II. METHODOLOGY

Given a smooth N -dimensional image I : Ω → R, Ω ⊆
R

N , a local line integral transform can be defined as

R~v[I](x) =
1

d

∫ d
2

− d
2

I(L~v(t))dt, (1)

where L~v(t) = x + t · ~v is a line parameterized by t,
unit vector ~v represents the line direction, d is the integral

length and 1/d is a normalizing term. While R~v[I] gives the

intensity average of I along a local line, partial derivative of

R~v[I] gives the average of partial derivatives of I .

In particular, for the second derivative,

∂2

∂x2
i

R~v[I](x) =
1

d

∫ d
2

− d
2

∂2

∂x2
i

I(L~v(t))dt, (2)

where xi, i ∈ {1, 2, . . . ,N}, is a variable for both I and R~v.

Let H(x) be the Hessian matrix for I at point x. Following

Eqns.1 and 2, the Hessian matrix H̄~v(x) for R~v[I] at point

x is then
H̄~v(x) =

1

d

∫ d
2

− d
2

H(L~v(t))dt. (3)

Eigenvectors ēi and corresponding eigenvalues λ̄i, where

|λ̄1| ≤ |λ̄2| ≤ · · · ≤ |λ̄N |, i ∈ {1, 2, . . . ,N} of H̄~v give

interesting measures of structures along the local line. Notice

that ēis and λ̄is are functions of ~v.

Consider N = 3. Let λ1, λ2, λ3(|λ1| ≤ |λ2| ≤ |λ3|) be

the eigenvalues of H(x) and e1, e2, e3 be the corresponding

eigenvectors, respectively.

In the Hessian-based methods like [4] and [5], assuming

the vessel intensity is brighter than the background intensity,

|λ1| ≪ |λ2| and |λ2| ≈ |λ3| along with λ1 ≈ 0, λ2 < 0,

λ3 < 0, these conditions signal a likely presence of vessel

structure at point x. Furthermore, e1 gives an estimation of

the vessel direction.
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At a vessel point x, when the line of integration L~v(t)
is aligned with the vessel direction, it will also have the

following relationships |λ̄1| ≪ |λ̄2|, |λ̄2| ≈ |λ̄3|, λ̄1 ≈ 0,

λ̄2 < 0, λ̄3 < 0, which are the same to the relationships

as listed above. This is because H̄~v becomes the average

of similar Hessian matrices along L~v(t) according to Eqn.

3, given the assumption that intensity structures are similar

along the vessel. Furthermore, ē1 will have the same di-

rection as ~v (ē1 = ±~v), the direction of the integral line.

Therefore, when L~v(t) and the vessel are aligned at a vessel

point x, |λ̄2λ̄3 · 〈~v, ē1〉 | will be maximized. We can obtain

an estimation of vessel direction when |λ̄2λ̄3 · 〈~v, ē1〉 | is

maximized. We denote
~v∗ = arg max

~v
|λ̄2λ̄3 · 〈~v, ē1〉 |,

and let λ̄∗
i s and ē∗i s be the eigenvalues and eigenvectors of

H̄~v∗

, respectively. We can then use ē∗i s to estimate the vessel

frame and λ̄∗
i s can be used to distinguish vessels from other

undesirable structures similarly as in [4] and [5]. Also, notice

that in order to get good estimations, ~v has to uniformly cover

the half unit sphere.

A. Vesselness Measure

Frangi et al. [4] proposed a multi-scale “vesselness”

measure to assign a value from 0 to 1 to each point of an

image. This assigned value reflects the confidence of a point

being inside a vessel. In 3D images, for a single scale σs, a

response at a point x is calculated as

F 3D
σs

(x) =







0 if λ2 ≥ 0 or λ3 ≥ 0,


1 − e
−

R2
a

2α2



 e
−

R2
b

2β2

(

1 − e
− S2

2c2

)

otherwise,

where λis are eigenvalues of the Hessian matrix H(x),
Ra = |λ2|/|λ3|, Rb = |λ1|/(|λ2λ3|)

1
2 , S = (λ2

1 +λ2
2 +λ2

3)
1
2 ,

and α, β, c are constant normalization factors. Given a set

of scales Ωσs
, responses of different scales are combined as

F (x) = maxσs
{Fσs

(x)|σs ∈ Ωσs
}. A similar “vesselness”

measure for 2D images can be developed as

F 2D
σs

(x) =

{

0 if λ2 ≥ 0,

e
−

R2
b

2β2

(

1 − e
− S2

2c2

)

otherwise,

where Rb = |λ1|/|λ2| and S = (λ2
1 + λ2

2)
1
2 .

We use Frangi’s “vesselness” measure in this work due to

its good performance but we then substitute λis with λ̄∗
i s to

reduce the sensitivity to local intensity variations. In all the

experiments presented in this paper, parameters α, β were

set to 0.5. c was set to half of max{S(x)|x ∈ Ω} for both

Frangi’s and our method.

It should also be noted that, same as Frangi’s method, we

use the concept of normalized derivatives proposed by Lin-

deberg [8] to deal with multi-scale normalization. Therefore,

numerical differentiation of an image at a scale σs is defined

as ∂
∂xi

Iσs
= σγ

s · I ∗ ∂
∂xi

Gσs
, where γ is a normalizing term.

In this work, γ was set to 1 for all methods.

B. Vessel Model as Prior Knowledge

By probing all local lines of length d, our method can

determine whether a point belongs to a vessel based on

more information than mere local intensity structures. At

crossings, since local line structures are also present, the

proposed method improves responses when the selected

integral line is long enough to cover the crossing and extend

to vessel portions that are not on the crossing. This reduces

false negatives that the Hessian-based enhancement methods

produce.

The choice of d depends on image resolution and curva-

tures of vessels in the image. If d is too large, responses

at vessel structures with high curvature will decline. On the

other hand, if d is too small, noise will not be effectively

reduced and response at junctions will still be low.

C. Hessian as Extreme Case

It is interesting to notice that, for any unit vector ~v,

limd→0 H̄~v(x) = H(x), Therefore, taking limit d → 0,

λ̄∗
i = λi and ē∗i = ei for i = {1, 2, . . . ,N}. Hence, the

conventional Hessian-based enhancement methods fall in an

extreme case of the proposed method.

III. EXPERIMENTAL RESULTS

In this section, we compare our method with two other

vesselness filters proposed by Frangi et al. [4] and Li et

al. [5]. The evaluations include enhancement results on all

2D retinal images from the DRIVE database [9] and a 3D

time-of-flight magnetic resonance angiographic (TOF-MRA)

image. Both qualitative and quantitative results are shown.

The reason why Frangi’s method was chosen to compare

with is its extensive use in practice and its better performance

than most of the other methods due to its efficient use of

eigenvalues of the Hessian matrix. Li’s method was also

chosen as a representative of other vessel enhancement filters

based on eigenvalues.

The reported filters above use eigenvalues |λ1| ≤ |λ2| ≤
|λ3| of the Hessian matrix. Our method differs from Frangi’s

method in the use of λ̄∗
i s. Frangi’s method has an different

“vesselness” measure from Li’s method.

In [5], Li et al. proposed a different measure. The response

L3D
σs

(x) for a single scale σs is given by

L3D
σs

(x) =

{

0 if λ2 ≥ 0 or λ3 ≥ 0,
|λ2|(|λ2|−|λ1|)

|λ3|
otherwise

.

A 2D version can be formed as

L2D
σs

(x) =
{

0 if λ2 ≥ 0,

|λ2| − |λ1| otherwise
.

A. Benchmarks

Let Ω be the image domain and Ωv ⊆ Ω be the ves-

sel region, given the ground truth of an image I∗(x) =
{

1 if x ∈ Ωv,

0 otherwise,
and V ∗ : Ωv → R

2, the true vessel

directions, an angular discrepancy measure can be defined

as
AD =

1

Nv

∑

x∈Ωv

∣

∣

∣

〈

V (x),
[

0 −1
1 0

]

V ∗(x)
〉∣

∣

∣ ,

where Nv = |Ωv|, V (x) is the estimated vessel direction at

point x. The more consistent between the estimated direc-

tions and the true directions are, the less angular discrepancy

there will be. Also, L1 norm is used to measure the errors

from the rescaled enhanced results to I∗.
∥

∥

∥
Ẽ − I∗

∥

∥

∥

L1

=
1

N

∑

x∈Ω

∣

∣

∣
(Ẽ(x) − I∗(x))

∣

∣

∣
,
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where N = |Ω|, and Ẽ is the rescaled result to [0, 1]. We use

these two benchmarks to evaluate performances of different

enhancement methods.
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Fig. 1. (a) Angular discrepancy of each method for different images. (b) L1 norm

of errors of each method for different images.

B. 2D Retinal Images

We tested our method against the other two methods on a

publicly available retinal image database, DRIVE [9]. All im-

ages in the DRIVE database were tested. In the experiments,

our method gives promising results that the enhancement

performance can be improved, especially for low contrast and

noisy vessels. We set Ωσs
= {0.5, 1, 2, 2.4, 3} for smoothing

the input images for all methods, and d was set to 7 for our

method. ~v was set to have an angular resolution of 10◦. Fig.

1 shows the angular discrepancy and L1 norm of errors for

all 20 testing images in the DRIVE database, which provides

manually segmented results to serve as the ground truths.

Fig. 1 shows that our method provides the lowest angular

discrepancy and L1 norm of errors among all three methods.

While Fig. 1a shows that our method significantly improves

vessel direction estimations than the other two methods,

it is noticed in Fig. 1b, L1 norm of errors of our results

are comparable to those of Frangi’s method. It is because

vessels in noisy and low contrast regions where our method

surpasses the other two methods give quite low responses

when rescaled to [0, 1], since there are particularly strong

vessels in each image in the DRIVE database. Besides,

crossings only occupy a small portion of the entire image.

Figs. 2 and 3 show two regions of interest (ROI) along

with enhancement responses for each method and the ground

truths. Estimated vessel directions scaled by “vesselness” are

also shown. It is observed that our method produces accurate

vessel direction estimations and responses. In particular, our

method has smoother measures inside vessels and is more

robust against noise. Also, it is shown in Fig. 3 that our

method has a better response at the crossing.

C. 3D Real Images

One 3D time-of-flight magnetic resonance angiographic

(TOF-MRA) brain image volume, obtained from the Uni-

versity Hospital of Zurich, Switzerland, with the size of

512×512×100 voxels and voxel size 0.35mm×0.35mm×
0.75mm, was enhanced using all three methods. The com-

parisons are shown as maximum intensity projections (MIP).

d = 7 for our method. The set of sample directions ~vs

are taken as {~v = [cos φ cos θ, cos φ sin θ, sin φ] | θ, φ ∈
{0◦, 10◦, . . . , 170◦}}.

Results from our method are shown in Figures 4(d). Com-

paring with those results from the Li’s method (Figure 4(b))

and the Frangi’s method (Figure 4(c)), better background

suppression obtained from our method is observed while

small vessels are also preserved.

IV. CONCLUSION

In this paper we have presented a novel vessel enhance-

ment technique. The main contributions of this work can be

summarized as follows:

• A vessel model is embedded as prior knowledge by

regarding a vessel segment as a local line and using

the second order information of the local line integrals.

The proposed method is less sensitive to local intensity

variations and local structure variations. Therefore, it

can produce more accurate “vesselness” measures and

vessel direction estimations.

• Better vessel directions and “vesselness” measures gen-

erated by our method can benefit various applications,

like vessel tracking and vessel segmentation.

• The vessel model in the proposed method is general in

nature. It is shown that the Hessian-based enhancement

methods fall in an extreme case of the proposed method.
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(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 2. (a)ROI. Enhancement results obtained by using (b) Li’s method, (c) Frangi’s method, and (d) the proposed method with d = 7. (e) Ground truth of ROI. (f),(g),(h)

Estimated vessel directions scaled by corresponding “vesselness” measures from Li’s, Frangi’s and the proposed method respectively.

(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 3. (a)ROI. Enhancement results obtained by using (b) Li’s method, (c) Frangi’s method, and (d) the proposed method with d = 7. (e) Ground truth of ROI. (f),(g),(h)

Estimated vessel directions scaled by corresponding “vesselness” measures from Li’s, Frangi’s and the proposed method respectively.

(a) (b) (c) (d)

Fig. 4. (a) Sagittal MIP of ROI. Enhancement results obtained by using (b) Li’s method, (c) Frangi’s method, and (d) the proposed method with d = 7. (b) (c) (d) are

rescaled to [0, .5] for better illustration of noise level.
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