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Abstract—Computer-assisted detection and segmentation of
blood vessels in angiography are crucial for endovascular treat-
ments and embolization. In this article, I give an overview of
the image segmentation methods using the features developed
recently at our laboratory. Our current research directions are
also highlighted.
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I. INTRODUCTION AND MOTIVATION

Segmentation of blood vessels is one of the essential
medical computing tools for clinical assessment of vascular
diseases. It is a process of partitioning an angiogram into non-
overlapping vascular and background regions. Based on the
partitioning results, surfaces of vasculatures can be extracted,
modeled, manipulated, measured and visualized. These are
very useful and play important roles for the endovascular
treatments of vascular diseases. Vascular diseases are one
of the major sources of morbidity and mortality worldwide.
Therefore, developing reliable and robust image segmentation
methods for angiography has been a priority in our group and
other research groups.

It is challenging to perform image segmentation in an-
giography. For example, blood vessels can contain low or
complex flow. This can lead to low signal-to-noise (SNR) ratio
in the angiograms. The conventional segmentation methods
based on image intensity alone may then fail when there is
a significant signal drop in the vascular region. Furthermore,
the intensity inhomogeneity violates the intensity piecewise
constant assumption in the segmentation process. Finally, the
intensity contrast between vessel and background regions, or
inside vessel regions can vary from region to region. Therefore,
the local intensity statistics in the vessel and background
regions may not be reliable, or the intensity gradient magnitude
may not be large enough on the vessel boundary for the
conventional image segmentation methods. Reviews on this
topic can be found in [1], [2]

This paper reports the image segmentation methods recently
developed at Lo Kwee-Seong Medical Image Analysis Labo-
ratory, The Hong Kong University of Science and Technology
for detecting blood vessels in angiography. In Section II,
the features for detecting blood vessels are discussed and
then frameworks for delineating the vasculatures are presented
(see Section III). Finally, the current research directions at

our laboratory using the image segmentation methods are
discussed in Section IV.

II. FEATURES FOR DETECTING BLOOD VESSELS

Detecting blood vessels in angiography is a core component
in segmentation of vasculatures. When analyzing angiograms
using the computer-assisted techniques, it is common to detect
the blood vessel boundary based on the magnitude of image
gradient. However, the gradient magnitude in the angiograms
may not provide sufficient information for locating blood ves-
sel boundary and performing reliable vascular segmentation.
To improve image segmentation quality, rather than using the
gradient magnitude alone, it is our focus to develop new image
features for blood vessel segmentation in angiography using
additional information about local blood flow coherence, local
iso-intensity structural orientation and weighted local variances
of image intensity.

A. Local Phase Coherence

Phase contrast magnetic resonance angiography (PC-MRA)
provides the speed-dependent images, in which the background
and vascular regions are given high intensity contrast. In
addition, PC-MRA gives the measured x, y and z velocity
components of the flow vectors on a voxel-by-voxel basis.
This measured information is presented in the form of phase
images along the three principle axes, x, y and z. Phase images
give directional information about the local blood flow velocity
field and blood motion in the brain. Using this information, we
have developed a measure using local phase coherence (LPC)
to quantify locally coherent flow patterns and random flow
patterns [3].

On the phase images, LPC measures the local flow co-
herence based on the sum of dot products of all adjacent
flow vector pairs inside a pre-defined image window. It is
effective for capturing the spatial relationship between adjacent
flow vectors in the image window, and thus distinguishing
the coherent and random flow patterns. Similar to the image
texture analysis, blood vessel boundary is then defined as
the discontinuity between locally coherent and random flow
patterns. The use of LPC in segmenting blood vessels and
related research work has been demonstrated by our group
and other groups [4], [5], [6], [7], [8], [9].
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Fig. 1. 3D surface of the filters.

B. Local Iso-Intensity Structural Orientation

Local image structure and its orientation can be estimated
using the orientation tensor, which combines the outputs from
a number of directional polar separable quadrature filters [10].
The quadrature filter is a complex valued filter in the spatial
domain. It can be constructed in the Fourier domain and makes
the implementation more efficient. The real part of the filter
can be treated as a line filter because of its symmetric filter
response and the imaginary part can be viewed as an edge
filter because of the asymmetric response. The filter can give
good responses to these local structures (i.e., lines and edges)
even though there is smooth intensity non-uniformity in the
images.

We believe that the local structures and their estimated
orientations are useful prior knowledge for the segmentation of
blood vessels [11]. This is so because, inside blood vessels in
the angiography, the local iso-intensity structures should exist
if the vessel surfaces are coherent. Since it is structureless in
the background regions due to the random noise, the estimated
orientations can only be applied to vascular regions. To im-
prove the quality of the binary segmentation of angiograms,
we have developed a method to exploit this local structural
coherence such that the piecewise homogeneous assumption
of image objects (i.e., blood vessels) can be relaxed in image
segmentation. Therefore, the blood vessel boundary is defined
along the coherent local structures. This feature has been tested
on synthetic and clinical PC-MRA images.

C. Weighted Local Variances

Low-contrast and thin vascular regions in the angiograms
are not easy to handle in the segmentation process. To deal with
this problem, a number of approaches have been proposed.
In the low-contrast regions, rather than using the unreliable
intensity gradient alone, contours can also be evolved based
on the shape prior. For example, there are methods which use
tubular template matching for vessel detection, [12], [13], [14].

Instead of employing shape priors, the CURVE algorithm
[15] proposed by Lorigo et al. uses the smaller principal
curvature to keep the curve evolving in tubular shape along the
orientation of blood vessels. Also, Yan and Kassim proposed
the use of “capillary force” in the geodesic active contours

[16]. This force is capable of pulling the evolving curves into
low-contrast and thin vascular regions. Vasilevskiy and Siddiqi
proposed the ”Flux Maximizing Geometric Flows” [17], in
which the flux is computed in a multi-scale fashion and the
maximum response is chosen to be the value of flux.

We have developed a new blood vessel boundary detection
scheme. This new scheme is independent of image intensity
contrast for segmentation of low-contrast and thin vessels. The
new feature is based on the weighted local variance (WLV).
WLV estimates the local intensity variance weighted by the
first derivative of a Gaussian function, which is rotated to align
with a given orientation. The first derivative of a 3D Gaussian
function is shown in Figure 1. At each voxel, WLVs can be
estimated along different discrete orientations.

WLVs are useful in extracting blood vessel boundary infor-
mation consisting of both boundary orientation and boundary
magnitude. The boundary orientation can be estimated in
a continuous fashion using the relationship between WLVs
obtained along different discrete orientations. Boundary mag-
nitude estimated using the WLVs depends on the clarity of
the boundary. The advantage is that the estimated magnitude
does not depend on image intensity contrast. This feature
can help prevent contours from being trapped inside high-
contrast and low-contrast transition regions. Thus, the evolving
contours can continue to propagate from high-contrast regions
to low-contrast regions. This feature has been tested in digital
subtraction angiography (DSA), PC-MRA and 3D rotational
angiography (3DRA). As an example, Figure 2 shows the
results on a PC-MRA data set. Figures 2(a) and 2(b) show
an image slice and its boundary magnitude response based on
WLV respectively. Figure 2(c) shows the maximum intensity
projection of the data set. 3D extracted boundary surfaces are
shown in Figure 2(d).

III. SEGMENTATION ALGORITHMS USING IMAGE

FEATURES

A. Statistical Segmentation

Image segmentation problem can be formulated in the
Bayesian framework. This is a probabilistic framework for
estimating the posterior probability based on the product of
observation model and prior model. The observation model
embodies the knowledge of image formation and noise prop-
erties. The prior model represents the prior beliefs about the
image. Our group has proposed new observation models and
prior models based on the aforementioned features [18], [3],
[11], as discussed in Section II.

We exploited the physics of PC-MRA image formation in
the formulation of the observation model using the finite statis-
tical mixture models. The overall probabilistic density function
of a PC-MRA speed-dependent image can be described as
either a Maxwell-uniform (MU) or Maxwell-Gaussian-uniform
(MGU) mixture model. Experimental results show that the
proposed statistical mixture models can provide a better mod-
eling of the statistical properties of the underlying background
and vascular signals. This is very useful in the segmentation
process. Works have been proposed by our group and other
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(a) A slice of the data set (b) WLV response
magnitude

(c) MIP (d) 3D surfaces
Fig. 2. Results on a PC-MRA data set. (a) A slice of the data set. (b)
The boundary magnitude response of WLV. (c) Maximum Intensity Projection
(MIP). (d) 3D surfaces of the segmented vessels.

groups [19], [20], [21], [22] using similar research principles
based on different statistical mixture models.

The prior model using the local phase coherence was ex-
plored to encourage flow coherence in the segmented vascular
regions. This gives better delineation of the blood vessel
boundary between vascular regions and background regions
[3]. Along the same research line, another new prior model
using the local iso-intensity structural orientations was pro-
posed. The model ensures the local structural coherence of the
vascular surface and constrains the binary segmentation within
the Bayesian framework [11]. It is experimentally shown that
the new observation models and prior models can further
improve the robustness of the segmentation methods when
SNR is low in the images.

B. Segmentation using Active Contour Model

Apart from using the statistics of image intensity, image
segmentation methods using the active contour models have
been an active research area. Given the estimated boundary
information using the weighted local variance, we have formu-
lated an active contour model for vessel boundary delineation.
The model performs segmentation by minimizing the weighted
angular discrepancy between contour and boundary orienta-
tion. The weights are determined by the boundary magnitude.
The level set method is used for the ease of implementation
and handling of topological changes.

(a) Vessel image (b) WLV response
magnitude

(c) Image with noise (d) Initial contours

(e) Final contour
Fig. 3. Results on a synthetic image. (a) The synthetic image slice containing
a U-shape tube. (b) The boundary magnitude response of WLV. (c) Noise
corrupted synthetic image. (d) Initial contours (top right portion of the U-
shape tube). (e) Final contour.

For a further illustration, a synthetic image was generated.
The image is shown in Figure 3(a). It contains a U-shape tube
in the image. The estimated boundary magnitude is displayed
in Figure 3(b). The synthetic image was then corrupted by
a Gaussian noise (see Figure 3(c)). The initial contours and
final contour are drawn in Figures 3(d) and 3(e) respectively.
It is observed that even though the intensity values in the U-
shape tube have high-contrast and low-contrast transitions, the
contour can still be able to propagate through these regions.

IV. CONCLUSION AND RESEARCH DIRECTIONS

To conclude, while it is common to use gradient magnitude
for detecting the blood vessel boundary and performing image
segmentation in angiography, there are additional features
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that can be used for more robust and reliable blood vessel
segmentation in angiography. We have demonstrated the in-
corporation of additional blood flow information provided by
the imaging devices and the use of physics of the image
formation in the statistical segmentation process such that
the uncertainty about image intensity can be better modeled.
Moreover, the coherence of local iso-intensity structures in the
vascular regions can impose an additional structural smooth-
ness constraint in image segmentation. Finally, the problem of
segmenting low-contrast vascular regions can be handled by
using intensity independent features, such as weighted local
variance, and an active contour model based on weighted
angular discrepancy minimization. The immediate next step
is to develop a unified image segmentation framework for
effectively combining different image features.

In general, using the image segmentation methods presented
in this paper, the segmented brain vessels in the angiogra-
phy should be used and it is demonstrated to give useful
information for the endovascular treatments. We will discuss
two current research directions using the image segmentation
methods developed at our laboratory.

The first work is related to the identification and quanti-
tative analysis of vascular abnormalities. An augment vessel
[23] refers to a computer-generated vessel for estimating a
portion of post-treatment vessel lumens under conditions that
either (1) a stent successfully restores the width of a stenotic
lumen which is comparable to the widths of normal lumen
segments that are proximal and distal to the coarctation, (2)
an aneurysmal sac is completely packed with GDC, or (3) an
aneurysmal lumen is occluded perfectly by stent grafts [24].
Those conditions are regarded as clinically ideal, since the
post-treatment vessel lumens approximated are very similar to
normal lumens.

We are developing a new unified framework which uses
the recently developed augmented vessel method to identify
and quantify a variety of vascular abnormalities, e.g. stenotic
atherosclerotic plaque, saccular and fusiform aneurysmal lu-
mens, from segmented vasculatures. Different from other
methods, our method models the opposite of the abnormal-
ities to locate the lesion lumens in an indirect fashion. The
advantage is that the normal vessel models (i.e., augmented
vessels) are easier to manipulate as compared with the model
of the complex shaped disease lumens.

For example, Figure 4 shows how the augmented vessels
can be applied to the detachment of aneurysmal lumens from
the segmented vasculatures. Figure 4(a) shows our result on
a 3DRA data set that contains a wide-neck aneurysm at the
bifurcation of ACA and ACoA. Figure 4(b) illustrates the
centerlines of the augmented vessels estimated. Figures 4(c)
and 4(d) show the manually delineated approximation of post-
treatment lumens under the condition of a perfect embolization
and the manually drawn cardinal splines. From Figure 4,
high similarity between the augmented vessel centerlines and
the trajectories of the approximated post-treatment lumens is
noticed. Figure 5 shows an encouraging result on a 3DRA data
set that contains a coarctation of the MCA.

(a) Our method (b) Centerlines of the
augmented vessels estimated

(c) Manual delineation (d) Manually drawn splines
Fig. 4. (a) Our result on a 3DRA data set that contains a wide-neck aneurysm
at the bifurcation of ACA and ACoA. (b) The estimated centerlines of the
augmented vessels. (c) Manually delineated approximation of post-treatment
lumens under the condition of a perfect embolization. (d) Manually drawn
cardinal splines.

The second research direction is the enhanced visualization
of the angiograms using vessel boundary information. For
diagnosis of vascular diseases and effective endovascular plan-
ning, direct volume rendering (DVR) is an effective and widely
used technique for vascular image volume visualization. In
[25], we proposed a framework that uses the Hessian-based
image enhancement methods to achieve better DVR quality.
Figure 6 shows the results on a 3DRA data set. Figure 6(a)
shows a maximum intensity projection (MIP) of the data
set. Figures 6(b) and 6(c) show the results based on the
conventional one-dimensional DVR transfer function. Finally,
results obtained using the new multi-dimensional transfer
function are illustrated in Figure 6(d). We believe that with
better delineation of blood vessel boundary based on accurate
image segmentation methods the DVR quality can be further
improved.
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(a) Our method (b) Centerlines of the
augmented vessels estimated

Fig. 5. (a) Our result on a 3DRA data set that contains a coarctation of the
MCA. The estimated atherosclerotic plaque volumes are presented by semi-
transparent surface. (b) The estimated centerlines of the augmented vessels.
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