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Abstract. In this paper, a novel one-element voxel attribute, namely
distance-intensity (DI), is defined for associating spatial information with
image intensity for registration tasks. For each voxel in an image, the DI
feature encodes spatial information at a global level, and is about the
distance of the voxel to its closest object boundary, together with the
original intensity information. Without the help of image segmentations,
the computation of the DI map is carried out by applying a Poisson pro-
cess on a vector field that combines both gradient and distance-gradient.
Mutual information (MI) is adopted as a similarity measure on the DI
feature space. A multi-resolution registration method is then used for
aligning multi-modal images. Experimental results show that, as com-
pared with the conventional MI-based method, the proposed method has
longer capture ranges at different image resolutions. This leads to more
robust registrations. Randomized registration experiments on clinical 3D
CT, MR-T1 and MR-T2 datasets demonstrate that the new method gives
higher success rates than the traditional MI-based method.

1 Introduction

General promising results have shown that mutual information (MI) as a voxel
intensity-based similarity measure is well-suited for multi-modal image regis-
tration [1,2]. However, it has been suggested that the conventional MI-based
registration can result in misalignment for some cases [3,4] and then room for
improvement exists. The standard MI measure only takes intensity information
into account. Therefore, a known disadvantage is the lack of concern on any
spatial information (neither local nor global) which may be present in individual
images to be registered [5,6]. As a simple illustration, a random perturbation of
image points identically on both images results in unchanged MI value as that
of the original images.

Several researchers have proposed adaptations of the standard MI-based reg-
istration framework to incorporate spatial information. Pluim et al. [4] multiplies
the conventional MI measure with an external local gradient term to ensure the
alignment of locations of tissue transitions. The probing results indicated that
the registration function of the combined measure is smoother than that of the
standard MI measure. But this approach does not directly extend the MI based
similarity measure. Butz et al. [7] applies MI to edge measure (e.g., gradient
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magnitude) space to align object surfaces. However, MI based on edge measure
is sensitive to the sparseness of joint edge feature histograms. This may increase
the difficulty of the optimization procedure. Moreover, Rueckert et al. [6] exploits
higher-order MI for 4D joint histograms which are built on the co-occurrence of
intensity pairs of adjacent points. This method was shown to be robust to local
intensity variation. However, only one neighbor is considered at a time in this
approach and plenty of spatial information which may be present globally or
within large neighborhood system has been ignored.

In this paper, a novel one-element voxel attribute, namely distance-intensity
(DI), is defined to incorporate spatial information with intensity for registration
tasks. The DI feature encodes globally defined spatial information for each voxel.
This is about the distance of the voxel to its closest object boundary, together
with original intensity information. Without the help of image segmentations,
the computation of DI map is carried out by applying a Poisson process on a
vector field that combines both gradient and distance-gradient. Then, mutual
information is exploited as a similarity measure on the DI feature space. To
increase computational efficiency and robustness of the proposed method, the
registration procedure is a multi-resolution iterative process.

Based on the results on clinical 3D CT, MR-T1 and MR-T2 image volumes, it
is experimentally shown that the proposed method has relatively longer capture
ranges1 than the traditional MI-based method at different image resolutions.
This can obviously make the multi-resolution image registration more robust.
Moreover, the results of around 400 randomized registration experiments reveal
that our method gives higher success registration rates than the conventional
MI-based method.

2 Distance-Intensity Attribute

2.1 Definition

In our proposed registration approach, a novel one-element attribute, namely
distance-intensity (DI), is assigned to each voxel in an image. Within individual
images, the DI feature is designed for consolidating spatial information at a
global level with intensity. In other words, the DI feature depends not only on
image intensity, but also on the distance of a voxel to its closest object boundary.

Given an image I(v) over domain Ω, where v = (x, y, z) denotes voxel posi-
tion, we define a distance-intensity (DI) map, DI(v), of the image as

DI(v) = I(v) +
(
I(v) − I

(
v + d(v)

))
logD |d(v)|, (1)

where d(v) is the vector from v to the closest boundary voxel of other objects2

and D = maxv |d(v)|. Here the function logD(·) limits the influence of d(v).

1 Capture range represents the range of alignments from which a registration algorithm
can converge to the correct maximum.

2 This implies that two voxels v and v + d(v) belong to different objects.
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Following this definition, when a voxel is at or near object boundary, the DI
value approximates its original intensity value. Thus, structure transitions re-
main unchanged. On the other hand, when voxel position moves from boundaries
towards interiors of homogenous regions (either background regions or anatomi-
cal structures), the DI value smoothly and gradually varies. With this property,
the DI map of homogenous regions can provide global and detailed spatial in-
formation about the distance of a voxel to its closest object boundary, as well
as intensity information. A graphical illustration for these properties will be
presented in Section 2.3.

2.2 Computation

It is noted that there is no available object segmentation (or boundary) in our
registration process, i.e., d(v) is not derivable. However, we found that the gradi-
ent of DI map can be robustly estimated. Consequently, an accurate and smooth
solution of the DI map can be computed by applying a Poisson process on a vec-
tor field. The estimated solution approximates the gradient of DI map.

The gradient of DI map, ∇DI(v), is given as follows,

∇DI(v) = ∇I(v) +
(
I(v) − I

(
v + d(v)

)) ∇|d(v)|
|d(v)| log D

+
(
∇I(v) −∇I

(
v + d(v)

) · ∂
(
v + d(v)

)
∂v

)
logD |d(v)|, (2)

where ∂(v+d(v))
∂v is the Jacobian matrix. Note that as compared with the first two

terms in Eq. 2, the third term provides little influence: If v is inside homogenous
regions, ∇I(v) and ∇I(v + d(v)) tend to zero; otherwise, when v is at or close
to boundary, logD |d(v)| is tiny and inclines to zero. Therefore, we have

∇DI(v) ≈ ∇I(v) +
(
I(v) − I

(
v + d(v)

)) ∇|d(v)|
|d(v)| log D

. (3)

This represents a weighted combination of gradient and distance-gradient.

Distance-Gradient: The distance-gradient operator (∇d) on two different vox-
els (v1 and v2) is defined as

∇dI(v1,v2) =
(
I(v1) − I(v2)

) v1 − v2

|v1 − v2|2 . (4)

With this definition, the second term in Eq. 3 becomes 1
log D∇dI

(
v,v + d(v)

)

by the fact that ∇|d(v)| = d(v)
|d(v)| almost everywhere. Moveover, we make the

following hypothesis, which is often satisfied in practice,

|∇dI
(
v,v + d(v)

)| = max
v′∈Ω

|∇dI(v,v′)|. (5)
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Consequently, Eq. 3 becomes

∇DI(v) ≈ F(v) = ∇I(v) +
1

log D
∇dI(v, v̂),

with v̂ = arg max
v′∈Ω

|∇dI(v,v′)|. (6)

Poisson Process: Following Eq. 6, the vector field F(v) approximates ∇DI(v).
In order to compute the DI map, one may use a direct integral approach on F(v).
However, we have observed that it is unstable for real applications due to the
insufficient capability of handling noise. The noise is cumulated and may result in
a quite noticeable error. Therefore, we propose to minimize the following energy
functional to derive an optimal solution of DI map, D̂I(v),

∫∫∫

v∈Ω

|∇D̂I(v(x, y, z)) − F(v(x, y, z))|2dxdydz. (7)

D̂I(v) can be obtained by solving a Poisson equation [8], ∇2D̂I = ∇ ·F, where
∇2 = ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) and ∇· are Laplacian and divergence operators re-
spectively. Obtaining the unique solution of Poisson equation is a well studied
problem. In our work, Neumann boundary conditions are exploited. Then, the
gradient descent flow minimizing the total energy is given by

D̂It(v(x, y, z)) = ∇2D̂I(v(x, y, z)) −∇ · F(v(x, y, z)). (8)

2.3 Graphical Illustration

As a detailed description, we computed the DI map of a clinical CT image vol-
ume obtained from the Retrospective Image Registration Evaluation (RIRE)
project3. A slice from the volume is shown in Fig. 1a, while Fig. 1c presents the
corresponding slice from the DI map. (Note that values from individual images
are re-scaled to [0, 1] for a fair comparison.) It is observed that, for those voxels at
or near object boundaries, their DI values approximate the original intensity val-
ues. This implies that structure transitions remain unchanged. Meanwhile, when
voxel position moves from boundaries towards interiors of homogenous regions
(either background regions or anatomical structures), the DI value smoothly and
gradually varies. However, due to the limitation of image quality, such smooth
changes may not be clearly displayed in Fig. 1c.

Furthermore, Figs. 1b and 1d respectively present the value profiles of the
same line (marked as red dashed lines) in Figs. 1a and 1c. As suggested by Fig.
1d, the value variation from boundaries towards homogenous regions is smooth
and gradual. It is worth noting that, although there is little intensity change at
3 The images and the standard transformation(s) were provided as part of the project,

Retrospective Image Registration Evaluation, National Institutes of Health, Project
Number 8R01EB002124-03, Principal Investigator, J. Michael Fitzpatrick, Vander-
bilt University, Nashville, TN.
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(a) A CT slice (c) DI map
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(b) Value profile
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(d) Value profile

Fig. 1. (a) and (c) are slices respectively selected from a clinical CT image volume and

its corresponding DI map. (b) and (d) are value profiles of lines in (a) and (c), which

are marked as red dashed lines.

the middle of the line in Fig. 1b, a small and smooth saddle can be found in Fig.
1d located at the corresponding position. The raised white boundary slightly
below the line cause this saddle. It is because, as discussed above, the DI feature
encodes spatial information at a global level.

3 Mutual Information (MI) Based Image Registration

As we have discussed above, the DI feature encodes spatial information at a
global level together with original intensity information. We adopt it as voxel
attribute for registration tasks. Mutual information (MI) [9] is then exploited
as a similarity measure to measure the degree of dependence of the DI feature
space. Given a geometric transformation, the 2D joint DI distribution can be ap-
proximated by either Parzen windowing or histogramming [10]. Histogramming
is employed in this paper because the approach is computationally efficient. The
trilinear partial volume distribution interpolation [1] is exploited to update the
joint histogram for non-grid alignment.

To accelerate the registration process and ensure the robustness of the pro-
posed method, we exploit a multi-resolution approach based on the Gaussian
Pyramid representation [2]. Rough estimates can be found using downsampled
images and treated as starting values for optimization at higher resolutions. Then
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the fine-tuning of the solution can be derived at the original image resolution.
In this paper, the MI value at each resolution is maximized via the Powell’s
direction set method in multidimensions [11].

4 Experimental Results and Discussions

To evaluate the MI similarity measure on the novel distance-intensity attribute
(hereafter referred to as MI-DI) and the proposed multi-resolution registra-
tion method, we have performed experiments on different image modalities: CT,
rectified MR-T1 (T1-rec), and rectified MR-T2 (T2-rec). The traditional MI sim-
ilarity measure on intensity (hereafter referred to as MI-I) [1,2] has also been
applied for comparison.

4.1 Comparisons on Capture Range

CT – T1 (3D – 3D) Registration. Three pairs of clinical CT (around
512×512×30 voxels and 0.65×0.65×4 mm3) and T1-rec (256×256×26 voxels
and around 1.26×1.26×4.1 mm3) image volumes – datasets #1, #2 and #3 –
were obtained from RIRE. Note that all image pairs used in our experiments (CT,
T1-rec and T2-rec) were first registered by the conventional multi-resolution MI
based registration method and were then examined by an experienced consultant
radiologist to ensure that the final alignments are correct and acceptable. This
procedure was employed for a better presentation of the probing results and also
for further facilitating the experiments that will be described in Section 4.2.

Figs. 2a and 2d respectively plot the translational probes for registering the
low resolution (Level 3) testing image pairs from three datasets for MI-I and
MI-DI. At the original image resolution (Level 0), Figs. 2b and 2e plot the
translational probes and Figs. 2c and 2f plot the rotational probes based on MI-
I and MI-DI respectively. As observed in Figs. 2a and 2b, for the translational
probes of MI-I at different image resolutions, it would occur obvious local max-
ima when the misalignment of two images is relatively large. On the contrary,
Figs. 2d and 2e suggest that the shape of the probing curves based on MI-DI
is improved and the capture ranges of MI-DI can be relative longer than those
of MI-I. This is because, with the proposed distance-intensity attribute, regions
with homogenous intensities (including anatomical structures and background
regions) can provide varying information related to the distance of a voxel to its
closest object boundary. Therefore, when the misalignment increases, the MI-DI
values would keep decreasing. With this finding, it would be expected that the
optimization procedure for registration will be benefited and the registration
robustness can be increased. On the other hand, for the rotational probes, the
capture ranges of MI-I and MI-DI are comparable (see Figs. 2c and 2f).

T1 – T2 (3D – 3D) Registration. Three pairs of clinical T1-rec and T2-rec
image volumes – datasets #4, #5 and #6 – obtained from RIRE were used for



Distance-Intensity for Image Registration 287

MI-I :

−200 −100 0 100 200
0

0.2

0.4

0.6

0.8

1

Offset values (mm)

M
I−

I v
al

ue
s

dataset #1
dataset #2
dataset #3

(a)

−200 −100 0 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Offset values (mm)

M
I−

I v
al

ue
s

dataset #1
dataset #2
dataset #3

(b)

−60 −40 −20 0 20 40 60
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Offset values (degree)

M
I−

I v
al

ue
s

dataset #1
dataset #2
dataset #3

(c)

MI-DI :

−200 −100 0 100 200
0

0.5

1

1.5

2

Offset values (mm)

M
I−

D
I v

al
ue

s

dataset #1
dataset #2
dataset #3

(d)

−200 −100 0 100 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Offset values (mm)

M
I−

D
I v

al
ue

s

dataset #1
dataset #2
dataset #3

(e)

−60 −40 −20 0 20 40 60
0.8

1

1.2

1.4

1.6

1.8

2

Offset values (degree)

M
I−

D
I v

al
ue

s

dataset #1
dataset #2
dataset #3

(f)

Fig. 2. Probing curves for 3D – 3D registration on three CT and T1-rec datasets (#1,

#2 and #3). Translational probes for registering the low resolution (Level 3) image

pairs: (a) MI-I and (d) MI-DI. Translational probes for registering the original resolu-

tion (Level 0) image pairs: (b) MI-I and (e) MI-DI. Rotational probes for registering

the original resolution image pairs: (c) MI-I and (f) MI-DI.

the experiments. The results of translational probes are shown in Figs. 3a (MI-
I) and 3d (MI-DI) for the low resolution (Level 3) registration and in Figs. 3b
(MI-I) and 3e (MI-DI) for the original resolution (Level 0) registration. Figs. 3c
and 3f respectively plot the rotational probes based on MI-I and MI-DI for the
original resolution (Level 0). Similar results of the capture ranges are obtained
as compared with CT – T1 registrations.

4.2 Performance Comparisons on Registration Robustness

A series of randomized experiments have been designed to study the registration
robustness of the proposed MI-DI based method and the conventional MI-I based
method. The testing image pairs were datasets #1 (CT – T1) and #6 (T1 – T2).
The experiments took 100 tests on each testing image pair for either method.
At each trial, the pre-obtained ground truth registration (see Section 4.1) was
perturbed by 6 uniformly distributed random offsets for all translational and
rotational axes. The perturbed registration was then treated as the starting
alignment. The random offsets for X and Y axes were drawn between [-150,
150]mm, while those for Z axis and each rotational axis were respectively drawn
between [-70, 70]mm and [-20, 20] degrees. (Note that for either testing dataset
the same set of randomized starting alignments was used for both methods for
a fair comparison.)
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Fig. 3. Probing curves for 3D – 3D registration on 3 T1-rec and T2-rec datasets (#4, #5

and #6). Translational probes for registering the low resolution (Level 3) image pairs:

(a) MI-I and (d) MI-DI. Translational probes for registering the original resolution

(Level 0) image pairs: (b) MI-I and (e) MI-DI. Rotational probes for registering the

original resolution image pairs: (c) MI-I and (f) MI-DI.

To evaluate each derived registration with respect to the ground truth regis-
tration, the translational error (which was the root-sum-square of the differences
for three translational axes) and the rotational error (which was the real part
of a quaternion) were computed. In our experiments, the threshold vector for
assessing registration success was set to (2mm, 2◦), because registration errors
below 2mm and 2◦ are generally acceptable by experienced clinicians [12,13].

The success rates of the MI-I based method and the MI-DI based method for
datasets #1 and #6 are listed in Table 1. It is suggested that the MI-DI based
method (Column MI-DI) has higher success rates as compared with the MI-I
based method (Column MI-I) for both datasets. Based on these experiments,
we also observed that the majority of failed cases for the MI-DI based method
had about 180◦ misalignment for one rotational axis, while registration errors
for other axes were quite small. (It is meant that, after registration, the brain in

Table 1. The success rates with the MI-I based method and the MI-DI based method

for datasets #1(CT – T1) and #6 (T1 – T2)

Testing Success rate

dataset MI-I MI-DI

#1 (CT – T1) 66% 80%

#6 (T1 – T2) 68% 85%
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the floating image was inverted along a rotational axis.) Oppositely, for the MI-
I based method, most of the failed cases had large translational and rotational
misalignments simultaneously. This observation somehow implies that, along the
translational axes, the capture ranges of MI-DI are longer than those of MI-I.

5 Conclusion

To conclude, this paper has designed a new one-element voxel attribute, namely
distance-intensity (DI), for registration tasks. In an image at a global level, for
each voxel, the DI feature encodes spatial information about the distance of the
voxel to its closest object boundary, as well as the original intensity information.

The DI map of an image can be computed without image segmentations. To
compute the DI map, we have demonstrated how to apply a Poisson process
on a vector field combining both gradient and distance-gradient. Then, mutual
information (MI) has been adopted as a similarity measure on the DI attribute
space and a multi-resolution registration method has been proposed for aligning
multi-modal images.

The experimental results on clinical 3D CT, MR-T1 and MR-T2 datasets
have indicated that the proposed method has relatively longer capture ranges
than the conventional MI-based method at different image resolutions. Moreover,
a series of randomized experiments on precisely registered clinical image pairs
have demonstrated that the success rates of our method are higher than those
of the conventional MI-based method.
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