
A SEGMENTATION METHOD USING COMPOUND MARKOV RANDOM FIELDS BASED
ON A GENERAL BOUNDARY MODEL

Jue Wu and Albert C.S. Chung

Bioengineering Program and Department of Computer Science, School of Engineering,
The Hong Kong University of Science and Technology, Hong Kong.

ABSTRACT

Markov random field (MRF) theory has widely been ap-
plied to segmentation in noisy images. This paper proposes
a new MRF method. First, it couples the original labeling
MRF with a boundary MRF that can help improve the per-
formance of segmentation. Second, the boundary model is
general and does not need prior training. Third, unlike exist-
ing related work, our model offers more compact interaction
between the two MRFs. Experiments on synthetic images
and real clinical datasets show that the proposed approach
is able to produce good segmentation results, especially re-
moving noise in low signal-to-noise ratio regions.

1. INTRODUCTION

To tackle the difficult problem of image segmentation, re-
searchers have proposed a variety of methods, one of which
is the Markov random fields (MRF). When the concept was
first introduced into the field of statistical image analysis in
middle 1980’s, Geman and Geman [1] and Besag [2] ap-
plied MRF to image restoration which is closely related to
segmentation. Unlike [2] that used a single labeling MRF,
we incorporate another MRF (boundary MRF) to represent
the boundary of a region and thus construct a compound
MRF model. Similar to [1], Geiger et al. [3] also added a
second MRF (line process) for surface reconstruction. How-
ever, our boundary MRF is different from line process in
the sense that we define the MRF not on dual lattice be-
tween pixels but on the pixel site directly. Moreover, the
two MRFs in our model interact more sophisticatedly while
the line process works implicitly [4] and is relatively simple.

In general, adopting two or more MRFs in one task is to
solve two or more different problems. For example, Sun et
al. [5] integrated three MRFs, disparity, line process and oc-
clusion, because these three factors are all critical to stereo
matching. Likewise, Arduini et al. [6] solved two prob-
lems, restoration of SAR images and extraction of inten-
sity discontinuities, by using two MRFs. Our current model
aims at segmentation problem alone with incorporation of
boundary MRF in order to improve its performance. Al-
though Held et al. [7] also used one added MRF, i.e. the

bias field, to sweep the obstacle of MRI segmentation, they
did not couple the two MRFs as compactly as ours because
they assumed the two fields were independent.

In this paper, we propose a more compactly interacting
model to help the original labeling MRF. The novel model
takes into consideration the relationship of the regions and
their boundaries. We construct the interaction of the two
MRFs in a neighborhood by preferring a series of patterns
and penalizing the other situations with the basic assump-
tion that true boundaries should be linked and matched with
labeling patterns reasonably while discontinuities caused by
random noise are not. In the experiments, we synthesize a
number of simulated images with different signal-to-noise
ratios (SNR) to test our method. Besides, by applying the
approach to real medical data, we find the new model can
significantly reduce the number of false positives of seg-
mentation while preserving the extracted objects.

2. MODEL FORMULATION

2.1. The MAP-MRF framework

Advocated by Geman and Geman [1], maximum a pos-
terior (MAP) is usually used to estimate the MRF solu-
tion. Let S = {1, ..., n} index n sites in an image lat-
tice. X = {xi|i ∈ S} and D = {di|i ∈ S} are both MRFs
representing labels and boundary tags, respectively. xi is
one of the labels in L1 = {0, 1, ...,m− 1} where m is the
number of possible classes. di is one of the tags in L2 =
{0, 1}, where 0 and 1 represent non-boundary and bound-
ary sites, respectively. The observed field is denoted by
Y = {yi|i ∈ S}, where yi is the observed image intensities.
Let ΩX = L1 × · · · × L1 = Ln

1 and ΩD = L2 × L2 = L2
2

be the configuration spaces of X and D, respectively.
The posterior probability P (X,D|Y ) can be estimated

by the Bayesian theorem, P (X,D|Y ) ∝ P (Y |X,D) ×
P (X,D), where P (Y |X,D) reflects the likelihood of ob-
served data given the information of label and boundary, and
P (X,D) embodies prior knowledge of the two MRFs. The
MAP estimation for the optimal solution is expressed by

(X̂, D̂) = arg max
X∈ΩX ,D∈ΩD

P (Y |X,D)P (X,D). (1)
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By virtue of the Markovianity of MRF theory, interac-
tions between sites in S are constrained in a neighborhood
system N = {Ni|i ∈ S}, where Ni ⊆ S denotes a set of
sites in the vicinity of site i. According to the Hammersley-
Clifford theorem, the MAP estimation can become

(X̂, D̂) = arg max
X∈ΩX ,D∈ΩD

1
Z

e−
U(Y |X,D)+U(X,D)

T , (2)

where Z is a normalizing constant, U(Y |X,D) and U(X,D)
are the likelihood and prior energy function, respectively. It
further leads to an energy minimization problem, that is,

(X̂, D̂) = arg min
X∈ΩX ,D∈ΩD

(U(Y |X,D) + U(X,D)), (3)

where X̂ is the solution to the segmentation problem. We
assume Y and D are independent of each other because the
observed image intensity is not affected whether the site is
on the region boundary or inside the region. Therefore,
the likelihood energy becomes U(Y |X,D) = U(Y |X).
Assuming that each region is nearly homogeneous before
it is added by a Gaussian noise with zero mean and stan-
dard deviation σ, we can formulate the likelihood energy as

U(Y |X) =
∑
i∈S

m−1∑
j=0

δ(xi − j) · (yi−µj)
2

2σ2 , where if x = 0,

δ(x) = 1, else δ(x) = 0, and µj represents the mean inten-
sity of region j.

2.2. Coupling labeling MRF with boundary MRF

di

∑
j∈Ni

dj

∑
j∈Ni

xi ⊕ xj

0 0(0) 0(0)
0 1(1) 0(0)
0 2(2) 0(0)
0 2(4) 2(4)
1 2(4) 1(1)
1 2(4) 2(2)
1 3(5) 1(1)
1 3(5) 2(2)
1 4(6) 1(2)
1 4(6) 3(3)

Table 1. For 2D and 3D scenarios, this table lists all preferred
configurations of two coupled MRFs, X and D. Numbers in
parentheses are for 3D scenario.

The prior energy U(X,D) defines the interaction be-
tween the two MRFs, X and D, and is the major contribu-
tion of this paper. Here we adopt a general model that does
not need prior training about the boundary patterns. We pick
a number of preferable cases from all the possible combina-
tions of X and D configurations in N and penalize other
cases. For 2D scenario and 1st order Ising neighborhood
system, the guidance rules are listed in Table 1. These are
all preferred combinations of xi, di and their neighborhood.
Each row represents one case that should be assigned a low
energy value. Those configurations of the two MRFs that

are not in the list should be penalized and assigned a high
energy. Therefore, we get our new prior energy formulation

U(X,D) =
∑

i∈S

γ ·
[
δ(di)T1 + δ(di − 1)T2

]
, γ > 0, (4)

T1 =
( ∑

j∈Ni

xi ⊕ xj +
∑

j∈Ni

dj · |
∑

j∈Ni

dj − 1| ·

|
∑

j∈Ni

dj − 2|
)
·
(
|
∑

j∈Ni

xi ⊕ xj − 2|+ |
∑

j∈Ni

dj − 2|
)
,

T2 =
(
|
∑

j∈Ni

xi ⊕ xj − 1| · |
∑

j∈Ni

xi ⊕ xj − 2|+

|
∑

j∈Ni

dj − 2| · |
∑

j∈Ni

dj − 3|
)
·
(
|
∑

j∈Ni

xi ⊕ xj − 1| ·

|
∑

j∈Ni

xi ⊕ xj − 3|+ |
∑

j∈Ni

dj − 4|
)
,

where ⊕ represents the ”exclusive or” operation and γ is
the penalty. Terms T1 and T2 account for non-boundary
(di = 0) and boundary (di = 1) situations, respectively. For
example, in Table 1, if the conditions of the second row are
satisfied, T1 will be zero and a low prior energy is obtained.

Fig. 1. Preferred 3× 3 neighborhood configuration of the bound-
ary MRF D. The central site corresponds to di. Only four neigh-
bors are considered in MRF if 1st order Ising model is used.
These patterns include occasions absent of edge (1), adjacent to
a straight edge (2)(7), adjacent to an edge corner (3)(5), present
of one-pixel wide region (4)(10), present of a diagonal edge (6)(8),
present of two-pixel wide region (9).

Fig. 1 illustrates why the prior energy definition in Eq.
4 and the preferred situations in Table 1 make sense. Sub-
figures (1)-(10) in Fig. 1 correspond to the 2nd to 11th rows
in Table 1. These 3 × 3 neighborhood sites are all bound-
ary MRF configurations. Between two boundaries of two
regions is the edge which is represented by lines. In other
words, on one side of the edge is the region that is different
from the other side. These configurations of boundary MRF,
D, restrict the corresponding labeling MRF, X , within some
patterns. Details can be found in the caption of Fig. 1. No-
tice that we adopt the 1st order Ising model for the sake of
less computational cost. Also note that the formulation in
Eq. 4 is rotation invariant.

The motivation to use this model is that true boundary or
edge without noise should be continuous at least in a small
area, like 3 × 3 neighborhood. If one site is corrupted by
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noise and regarded as boundary, probably the neighborhood
will not conform to the true pattern of linked boundary be-
cause of the randomness of noise. Then due to the penalty
given by the prior energy term, this case will be discarded.
In Sec. 3, more details will be given on the experimental
justification of choosing these ten patterns.

The extension from 2D to 3D is straightforward. The
neighboring sites increase from 4 to 6. Numbers with paren-
theses in Table 1 represent the preferred cases concerning
the configurations of X and D. The 3D prior energy func-
tion can be given similarly as Eq. 4.

3. EXPERIMENTAL RESULTS

In the experiments, although we focus on the binary seg-
mentation i.e. m = 2 for X labeling set L1, implemen-
tations for multi-class segmentation are exactly the same.
Binary segmentation has one challenging application that is
the extraction of blood vessels from vascular images.

3.1. Synthetic data

Fig. 2. The first and second subfigures are synthetic images with
straight bars and circular tubes. The third and fourth are examples
of noisy images and resulting boundary MRF, D.

We construct two types of simulated data in the experi-
ments. One consists of straight bars and the other consists
of circular tubes. The 2D synthetic images are 128 × 128
in size and have the width of 3 and 6 pixels which represent
average small and large blood vessels, respectively (Fig 2).
Before noise is added to these ground truth data, we first
verify that the ten patterns chosen in the model are typical
in images. We count the frequencies of these patterns in
different simulated images with various object orientations
and widths. Results are listed in Table 2, which shows that
the ten patterns in our model represent the majority.

To mimic the true environment of real data, we corrupt
each synthetic image with Gaussian noise having zero mean
and same standard deviations (SD) following the style in
our previous work [8]. We try different SDs to produce cor-
rupted images with different signal-to-noise ratios (SNR).
SNR is calculated by (µo −µb)/σ, where µo and µb are the
true intensities of object and background, and σ represents
the SD of the added noise. In the experiments, µo = 160
and µb = 100.

To evaluate the performance of the proposed method, we
compare it with three other common MRF methods based
on these synthetic images. The first method is to use a single

90◦ 60◦ 45◦ 30◦ 0◦ circle

3 100% 93.65% 100% 93.65% 100% 95.84%

6 100% 100% 100% 100% 100% 100%

Table 2. Percentages of the ten patterns occurring in simulated
data (width = 3 for the second row, width = 6 for the third row).
The second to sixth columns are for straight bars of different ori-
entations and the seventh column is for circular tubes.

Fig. 3. The function of error rate of 4 models over various SNRs.

MRF, X , for the segmentation and have the same prior en-
ergy definition without bias field as in [7] (P(X|Y) in Fig.3).
The second method [1] makes use of the line process (lp in
Fig.3). The third method [3] adopts line process with more
interaction between discontinuity sites (lp(ext) in Fig.3).
These three methods are the same as our model in terms of
the likelihood function. The difference between these mod-
els and ours lies in the prior function which embodies the
interaction between sites. Please refer to [1, 3, 7] for more
details of the definitions. Comparison results are plotted in
Fig.3, where our method is represented as P(X,D|Y).

We optimize all four MRF formulations by the iterated
conditional modes (ICM) algorithm [2]. ICM is an efficient
deterministic solver for MRF. However, ICM will reach a
local optimum because it is gradient descendant. We once
tried to use other more global methods to solve our model,
e.g. belief propagation. Unfortunately, because the prior
energy in our model is not pair-site defined, belief propa-
gation and other variants are not applicable. Besides, graph
cut method is not suitable to our model because the prior
energy function is not regular [9].

The error rate of the segmentation is given by: (The
number of misclassified pixels / The total number of pixels
in the image)×100%. The initial X is obtained by the max-
imum likelihood estimate [4] X(0) = arg max

X∈ΩX

P (Y |X)
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and the initial D can be set by specifying a threshold to dif-
ferentiate between boundary and non-boundary pixels. All
the parameters in the likelihood functions are known for the
simulated images. We repeat each experiment for ten times,
calculate the means and SDs, and plot error rates of four
methods over different SNRs in Fig. 3. The results show
that when the SNR is low (e.g. 2 or 3), our model can signif-
icantly improve the accuracy of the segmentation compared
to the other three models.

3.2. Real data

We apply our method to clinical vascular datasets and com-
pare the results with the single MRF model. In vascular
images, blood vessels are inhomogeneous in intensity espe-
cially in the region which clinicians are interested in, e.g.
aneurysm. This brings difficulties to segmentation. For ex-
ample, the conventional single MRF (as described in Sec-
tion 3.1) seems to suffer from a large amount of false posi-
tive pixels due to the low SNR.

Fig. 4. Results of two methods on PCMRA images. From left to
right are the original image, segmented image of the single MRF
model and segmented image of our model.

Fig. 5. Results of two methods on 3DRA images (region of inter-
est). From left to right are the original image, segmented image of
the single MRF model and segmented image of our model.

We performed experiments on five phase contrast mag-
netic resonance angiography (PCMRA) images (512×512)
and one three dimension rotational angiography (3DRA)
image (128 × 128 × 128). The initializations of X and
D are the same as in the synthetic data experiments. We
estimate the values of µo and µb by selecting the regions
of interest (ROIs) in foreground and background, respec-
tively. (More automatic estimation methods like EM [8]

can be used in the future.) Fig.4 shows the comparison re-
sults of the two methods on PCMRA data. The single MRF
model suffered from the high noise level and oversegmented
the background whereas the proposed method could reduce
the number of noisy pixels to a low level in the segmented
image. Fig.5 shows the results on 3DRA. Notice the false
segmented region protruding from the central blood vessel
in the middle subfigure. Conversely, the proposed method
could avoid extracting noisy spurious regions.

Experiments on synthetic and real images show the pro-
posed approach can outperform the conventional methods
because it has the advantages of 1) taking into considera-
tion the discontinuity between different regions while a sin-
gle MRF does not [7]; 2) allowing the interaction between
di and its neighbors dj , which does not exist in [1]; 3) inter-
acting between boundary neighborhood and labeling neigh-
borhood in a more intensive way than the work of [3].

4. SUMMARY

In this paper, we propose a new method using compound
MRFs based on a general boundary model. The main target
of this approach is to enhance the performance of segmen-
tation by emphasizing the relationship between labeling and
boundary. The experiments and comparisons with other ex-
isting MRF methods show that the proposed model can give
good segmentation results in high noise level regions.
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