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ABSTRACT

To segment a whole object from an image is an essential and chal-

lenging task in image processing. In this paper, we propose a hy-

brid segmentation algorithm which combines prior shape informa-

tion with normalized cut. With the help of shape information, we can

utilize normalized cut to correctly segment the target whose bound-

ary may be corrupted by noise or outliers. At the same time, we

introduce the use of segmentation results of the normalized cut to

guide the shape model, and thus avoid searching the shape space.

The proposed method was demonstrated to be effective by our ex-

periments on both synthetic and real data.

Index Terms— Image shape analysis, Image segmentation

1. INTRODUCTION

As a low level processing, image segmentation is an essential task in

the fields of image processing and computer vision. In recent years, a

lot of researchers have contributed in this field. For example, region

growing techniques [1], active contour models [2] and the methods

based on the level set framework [3] or MRF models [4] have made

significant progress in image segmentation. In these methods, var-

ious low level features are employed, such as color, intensity and

edges. However, in some situations, for example, in medical images,

due to the low contrast of images or large variation of intensity in-

side the object, the targeted objects may be corrupted and the above

methods may cause leakage of the boundary. It is difficult to seg-

ment the whole object. To solve these problems, Shi and Malik [5]

proposed the normalized cut based on the graph theory and spectral

clustering [6]. Normalized cut tries to ignore the details of the image

to obtain a ”big picture” of the structure in an image. Although this

method can get a better result than other related methods in terms

of segmenting the whole object, there are still problems in accurate

segmentation due to its bias of equipartition and the graph structure

[7].

It is natural to introduce prior information to get a better segmen-

tation. Shape information of objects is widely used by researchers.

Introducing shape information not only makes the computer ”under-

stand” the object, but also helps the computer to ”infer” the blurred

or occluded parts of the object. Wang et al. [8] put serial land-

marks on the boundary of object to represent the shape. However,

this approach as a shape representation suffers from problems such

as inability to accurately capture high curvature locations, difficulty

in handling topological changes, and finding point correspondences

[9]. To overcome these problems, based on the level set methods

[3], Leventon et al. [10] and Tsai et al. [9] utilized the signed dis-

tance map to represent the shape and greatly improved the results of

segmentation. Because of its good properties, we also employ this

representation in this paper.

In this work, our main contribution is to improve the perfor-

mance of the normalized cut by introducing the shape information.

Like most shape-based methods, the proposed method can correctly

segment the object, even though a part of the boundary is missing

or many noisy regions accompany the object. Besides, another ad-

vantage of the proposed method is that the eigenvectors from the

normalized cut can generate the parameters of the shape model di-

rectly. In [10] and [9], considering the shape variation, they had to

optimize an objective function with respect to the shape model to de-

termine the parameters of the shape model, which increased the cost

of computation. However, in our method, we can obtain the para-

meters easily through projecting the segmentation of the normalized

cut onto the shape space.

The overview of our method is as follows. First, we extract a

shape space consisting of a mean shape and principal components

by using PCA (Principal Component Analysis) from a training set.

Second, we obtain the eigenvectors of Laplacian matrix [11] derived

from an affine matrix. Third, we project the segmentation generated

from the eigenvectors onto the shape space to obtain a parametric

shape model; and then, based on the constraint of the shape model,

we modify the similarities of pairwise pixels, which are elements of

the affine matrix. Finally, we solve the modified Laplacian matrix

again and update the shape model. After several iterations of mod-

ifying the affine matrix and updating shape model, the final conver-

gent result will segment the object from the image successfully.

2. PROPOSED METHOD

2.1. Normalized Cuts

In graph partition, the image is converted into an undirected weighted

graph. Every pixel in the image corresponds to a vertex of a graph.

And the weight on one edge is assigned according to the similar-

ity between two corresponding pixels. The criteria of similarity are

different in different applications. In general, the similarity can be

defined by the distance, color, gray level, textures and so on. Con-

sidering the computation of the algorithm, we usually restrict the

relationship of pixels in a neighborhood.

Unlike the edge cut algorithms [6, 12, 13] which only minimize

the cut cost between classes, the normalized cut measures the total

similarity within classes as well as the total dissimilarity between

different classes.

Given a connected graph G = (V, E) with a vertex set V and

edge set E, the goal is to find an edge cut which separates the graph

into k disjoint subsets such that V =
Sk

i=1 Vi and ∀(i, j), Vi

T

Vj =
∅. We define that an edge cut C is a set of edges whose removal

makes the graph disconnected. Generally, we want to minimize the

cost of a cut:

Cut(C) =
X

e∈C
we. (1)
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In this paper, we try to segment an object from the background re-

gion. We, therefore, focus on discussing two-way cut of a graph. For

convenience, denote the two parts as A and B. Then we can reform

the cost of a cut:

Cut(A, B) =
X

p∈A,q∈B
wpq. (2)

Shi and Malik [5] pointed out that this criterion tended to cut a small

segment from the graph, and based on the normalized cut, they pro-

posed a new criterion which is a minimal cut penalizing small seg-

ments. The measure of normalized cut can be written as:

NCut(A, B) =
X

p∈A,q∈B

wpq(
1

P

p∈A Dp
+

1
P

p∈B Dp
), (3)

where Dp =
P

q∈V wpq is defined as the degree of the vertex p.

From Eq. 3, the normalized cut measures both the total dissimilarity

between the different groups like Eq. 2, as well as the total similarity

within groups.

To minimize the normalized cut, they deduced an efficient com-

putational technique based on a generalized eigenvalue problem. First,

we define W as the affine matrix of the graph, and W (i, j) = wij ;

D is a diagonal matrix, in which each element along the diagonal

represents the degree of correspondent vertex i, Di; x is a label vec-

tor, if vertex i is in sub-graph A, x(i) = 1; otherwise x(i) = −1.

Based on these notations, minimizing normalized cut results in the

following objective function:

min NCut(A, B) = min
yT (D − W )y

yT Dy
, (4)

with the conditions yi ∈ {1,−b} and yT D1 = 0, where b is a

constant less than 1.

Although this optimal problem is NP hard [5], if we ignore the

discrete constraint, the eigenvector of D−1(D − W ) corresponding

to the smallest non-zero eigenvalue is an approximation. Then cor-

responding eigenvector is split into two parts by a threshold [13]. Yu

and Shi [14] extended the normalized cut into k-way partition and

tried to find a closer approximation through orthonormal transform.

Chung [11] proposed a ”normalized” definition of the Lapla-

cian matrix L = D − W as D−1/2LD−1/2. The eigenvectors for

this ”normalized” Laplacian, when multiplied by D−1/2, are exactly

the generalized eigenvectors we used to compute the normalized cut.

Because of many good properties of the ”normalized” Laplacian ma-

trix [11], the normalized cut method decomposes this matrix instead

of D−1(D − W ).

2.2. Parametric Shape Model

There are several methods to represent the shape of an object, e.g.

landmarks, binary images and signed distance maps. Although it

is a natural and popular way to put landmarks along the boundary,

it is difficult to manage the landmarks, including removing and in-

serting landmarks according to different features. Binary images are

sensitive to the boundary marked by hand in training samples. To

avoid these problems, we employ the signed distance maps to rep-

resent shape. First of all, we have to segment the whole object and

align all the training samples manually. Given the boundary of an

object, a signed distance map is generated by computing the nearest

distance between the point and the boundary. Pixels in the object re-

gion are assigned negative distance, pixels outside are positive, and

the zero level corresponds to the boundary. Fig. 1 shows some dis-

tance maps obtained from a training set. Given a training sample,

we compute the distance map and reform the map into a vector V .

From a training set of N samples, we obtain N corresponding vec-

tors Vi(i = 1, . . . , N), and the mean of the set V = 1/N
PN

i=1 Vi.

Here we utilize PCA to extract the variation of the shapes. First, we

subtract the mean from every sample, and then we obtain the covari-

ance matrix:

M =
XN

i=1
(Vi − V )(Vi − V )T . (5)

The principle components correspond to the eigenvectors with

largest eigenvalues of matrix M . Then we obtain a shape space

consisting of (1) mean shape S, that is V , and (2) m (m < N)
eigenvectors Si{1, . . . , m} corresponding to m largest eigenvalues

λ2
i {1, . . . , m} (See Fig. 1). In this space, we can represent every

shape by m coefficients xi combined with S and Si as follows:

S = S +
Xm

i=1
xiSi. (6)

The shape S generated by Eq. 6 preserves the principal shape of

the object. In this paper, we only consider the translation of the

object. However, small variations of the shape size and orientations

are included in the training samples.

Fig. 1. Mean and variability of the shape of character R. From left
to right: S − λ2S2; S − λ1S1; S; S + λ1S1; S + λ2S2.

2.3. Update Shape Model and Affine Matrix

Although the normalized cut can effectively extract the salient com-

ponents in an image, it was shown that it could obtain bad results

even in very simple situation due to its equipartition bias and the si-

nusoidal structure in the eigenspace [7]. Yu and Shi [15] tried to

introduce some prior information to improve the performance by

clustering some pixels manually in advance. Different from them,

in this paper we incorporate the shape constraint into the normalized

cut, which is inspired from the method presented in [7]. Tolliver

et al. [7] modified the diagonal elements of the normalized Lapla-

cian matrix using shape to maximize the lower bound of the second

smallest eigenvalue of the matrix. In our method, we use the shape

information to modify the whole affine matrix instead of the diag-

onal elements of the Laplacian matrix. Because the affine matrix

represents the similarity of all pairwise pixels, in the ideal case, the

similarity of two pixels belonging to the same group is much larger

than the similarity of those belonging to different groups. Under

the constraint of shape information, we can increase the similarity

of pairwise pixels both in the same region (inside or outside of the

object); and decrease the similarity, if they are in different regions.

These adjustments make the object easier to be segmented.

Details of our algorithm are described below:

1. Segment the object from the training set, and compute the

distance maps of all the samples;

2. Calculate the mean shape S, and use PCA to extract m prin-

cipal components Si{i = 1, . . . , m};

3. Construct the affine matrix W (0) from the input image based

on distance, intensity and edge information;
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4. For the kth iteration, compute l smallest eigenvectors Yi{i =

1, . . . , l} of matrix D(k)(−1)(D(k) − W (k)) using the nor-

malized Laplacian matrix;

5. For every Yi, search for a best threshold for the cut, and com-

pare the corresponding segmentation result Y ′
i with current

shape model S (initialized by S), Evali = Y ′
i · S, where ’·’

represents dot product;

6. Find the maximum Evalmax and the corresponding Y ′
max, if

the difference between Evalmax and the last value BestMatch
(initialized by 0) is greater than the given threshold T0, then

project Y ′
max onto shape space to obtain the coefficients xi{i =

1, . . . , m} of PCA and the updated shape model S = S +
Pm

i=1 xiSi, and BestMatch = Evalmax; otherwise, con-

verge and exit with the shape model;

7. Use current shape model to construct a new affine matrix Ws:

Ws(i, j) =

8

<

:

1 if S(i) ∗ S(j) > T1;

W (i, j) if abs(S(i) ∗ S(j)) ≤ T1;

0 otherwise;
(7)

where S(i) is the value of pixel i in the distance map of shape

S, T1 is a positive threshold;

8. Update the affine matrix W (k+1) = (1 − λ)W (k) + λWs,

where λ is a parameter controlling the weight of shape con-

straint. Goto Step 4.

As mentioned above, the normalized cut tends to partition the

image into two parts of similar size. Therefore, if the target takes up

only a small part of the image or the contrast between the target and

surroundings is low, the second smallest eigenvector may not seg-

ment the target. In general, different eigenvectors contain different

components of the image. Therefore we calculate several smallest

eigenvectors in Step 4. In Step 5, because the eigenvectors are con-

tinuous, we have to search a threshold to minimize the normalized

cut by Eq. 4; then we use the shape model as a template to match

every segmentation. Obviously, Eval reaches the maximum when

shape and segmentation are aligned exactly. Thus, we can find a

coarse segmentation of the target, which may lose some boundary

details. Through projecting the segmentation onto shape space in

Step 6, we use the shape information to constraint the segmentation,

since reconstruction from the shape space will subtract the unwanted

parts and restore the missing parts of the object. In Step 7, according

to the recovered shape, we construct Ws to adjust the similarities of

pairwise pixels by combining it with the affine matrix W . We set

most of the elements of the new affine matrix to 0 or 1, the mini-

mum and maximum degrees of similarity respectively, to decrease

or increase the similarity of pairwise pixels, while preserving the re-

lationship around the boundary, where the shape information is not

reliable.

3. EXPERIMENTAL RESULTS

To verify the performance of the proposed algorithm, we have per-

formed the experiments on both synthetic and real data. Some para-

meters are set as follows. T0 = 50.0, T1 = 1.0, λ = 0.3; the radius

of the neighborhood R = 10 and the affine matrix is:

W (i, j) =

(

αe
−�I(i,j)2

σ2
1 e

−D(i,j)2

σ2
2 D(i, j) < R

0 otherwise;
, (8)

where �I(i, j) is the difference of intensity; D(i, j) is the distance

between i and j; σ1, σ2 are regularized parameters, α is a term for

edge information, and α = 0.3 if pixels i and j lie on two sides of an

edge, otherwise α = 1.0. Due to the limitation of pages, we mainly

show binary images of the output.

3.1. Synthetic Data

We first tested our method on a data set including 26 letters (A−Z)

and 10 numbers (0 − 9). For every letter and number, there were

50 samples with size 24×40 pixels. The training set consisted of 40

images. We added various levels of noise and outliers to the 10 re-

maining images and segmented them by the proposed algorithm. All

of them could be segmented correctly if σ of Gaussian noise was less

than 0.3 or no more than three 1-pixel width lines were added into

the image. R is one of the most difficult letters to segment, because

there is a hole in the letter and a narrow gap between two legs of R
which is easy to be corrupted by noise. Its segmentation results with

noise and outliers are shown in Fig. 2 and Fig. 3. In Fig. 2b, we

(a) (b) (c) (d) (e) (f)

Fig. 2. Segmentation of character R. (a) Original image; (b) Input
image corrupted by Gaussian noise (σ = 0.3); (c) Segmentation re-
sult by original NCut; (d) One of projective shape models; (e) Result
of first iteration ; (f) Final segmentation of our method.

(a) (b) (c) (d) (e) (f)

Fig. 3. Segmentation of character R. (a) Original image; (b) Input
image corrupted by three lines; (c) Segmentation result by original
NCut; (d) One of projective shape models; (e) Result of first itera-
tion; (f) Final segmentation of our method.

added the Gaussian noise with σ = 0.3 to the original image, which

eroded many pixels in R and cluttered the background. The segmen-

tation of normalized cut (Fig. 2c) cannot eliminate the noisy pixels

effectively. Using this noisy result (Fig. 2c), the proposed method

can recover the shape (see Fig. 2d) of the target. The gradual effect

of modification of the affine matrix can be seen in Fig. 2e and Fig. 2f.

Another similar situation was shown in Fig. 3. It is more difficult to

separate the lines from R than to eliminate the noise in Fig. 2 with-

out using the shape constraint. Due to the effect of the noise and

outliers, we still can see some corruption from the final results. In

Fig. 2f, the boundary of final segmentation is not very smooth, and

in Fig. 3f, the hole of R becomes smaller. If more noise is added,

which can greatly corrupt the letter R, the proposed method may not

work when λ = 0.3. In this case, we can increase the weight of

shape information to put more emphasis on the shape constraint, e.g.

λ = 0.5. However, if the value of λ is too large, we cannot make

full use of the available image information. Thus the segmentation

results cannot be very accurate.

3.2. Real Data

We also tested our method on the real data set of corpora callosa in

human brain MR images. The data set contained 30 images of two
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persons. Due to the difference of image size (49×35 pixels and 46×
54 pixels), we obtained the shape space from the training sets of two

persons (12 samples for each), and segmented the remaining images.

Some results in difficult situations (there is an irrelevant part inside

the arc of corpus callosum) are shown in Fig. 4 and Fig. 5. From the

images, we find that the corpus callosum cannot be segmented by

using the second smallest eigenvector of the normalized cut directly.

This is because the corpus callosum occupies only a small part of the

image. As such, we have to search several segmentation results for

the best match. However, the initial segmentations (see Fig. 4d and

Fig. 5e) are not satisfactory, since they include the irrelevant parts.

Combining with the shape constraint, we can finally obtain much

better results through several iterations (see Fig. 4g and Fig. 5g)).

To compare with the normalized cut, we also ran the program

[16] of Yu and Shi [14] to segment the corpora callosa. To get the

best result, we adjusted the number of grouping classes (8 for the im-

age in Fig. 4a and 4 for the image in Fig. 5a) and separated the class

corresponding to corpora callosa by hand. The results are shown in

Fig. 4h and Fig. 5h.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Segmentation of corpora callosa. (a) Input image; (b) and
(c) are 2nd and 3rd smallest eigenvector; (d) Segmentation result
from (c); (e) Projective shape model; (f) Intermediate segmentation
result; (g) Final segmentation of our method; (h) Segmentation result
by NCut of Shi’s version.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Segmentation of corpora callosa. (a) Input image; (b)-(d)
are 2nd-4th smallest eigenvector; (e) Segmentation result from (d);
(f) Projective shape model; (g) Final segmentation of our method;
(h) Segmentation result by NCut of Shi’s version.

In the experiments on real data, our method outputs better re-

sults than the original normalized cut and our method can success-

fully separates corpus callosum from the extra component, which is

connected to corpus callosum with similar intensity.

The computational efficiency of the normalized cut depends on

the size of the affine matrix (The analysis can be found in [5]). Ac-

cording to our experiments, even if the initial normalized cut only

segment part of the boundary of the object, our method can converge

after only three to five iterations. It means we need to decompose a

sparse matrix five times at most.

4. CONCLUSION

This paper presents a new algorithm which uses the shape constraint

to improve the performance of the normalized cut. Using the shape

model, we can find the corresponding eigenvector to segment the

target, even if the target is blurred or it is only a small part of the

entire image which causes trouble to the conventional normalized

cut method. Through projecting the coarse segmentation result onto

PCA shape space, we can discard the unwanted parts and restore

the missing parts of the object. With the modification of the affine

matrix based on the shape constraint, we make the normalized cut

more stable and robust. Our experiments have shown the robustness

and accuracy of this extension.
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