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ABSTRACT

This paper proposes a new texture classification approach.

There are two main contributions in the proposed method.

First, input texture images are transformed to the compos-

ite Fourier domain (CFD) by using both the local and global

Fourier transforms. The composite Fourier domain is rotation

invariant and preserves the contextual information for the tex-

ture images in the original spatial domain. Second, the null-

space based linear discriminant analysis (nLDA) is adopted

to find the optimal representations of the texture images in

the composite Fourier domain. This paper proposes a system-

atic way to cooperate subspace learning methods for texture

classification in the frequency domain, which cannot be di-

rectly applied in the spatial domain for texture classification.

The proposed method is evaluated on both the Brodatz and

CUReT databases and compared with several state-of-the-art

texture classification approaches. Experimental results show

that the proposed method achieves the highest classification

rate among all the compared methods.

Index Terms— Texture Classification, Composite Fourier

Domain, Null-space Based LDA

1. INTRODUCTION

Texture classification plays an important role in many real

world applications such as content based image retrieval, re-

mote sensing, and material categorization. In general, there

are two main steps for texture classification: feature extrac-

tion and classification. In this paper, we mainly focus on the

feature extraction step.

In the literature, various kinds of texture features for

texture classification were proposed: Chellappa et al [1] pro-

posed the Gaussian Markov random field (GMRF) to model

the texture appearance and the optimal parameters of the

GMRF model are estimated by least squared method and

adopted as features for texture images. Laine and Fan [2]

used the wavelet packet signatures to represent texture im-

ages. Varma and Zisserman [3] proposed the texton histogram

features based on the local exemplar image patches. An es-

sential property for texture features is rotation invariance,

i.e., as texture images belonging to the same class should be

recognized despite of the absolute orientations under which

they are taken. Therefore, Deng and Clausi [4] proposed

the anisotropic circular Gaussian MRF (ACGMRF) model to

make the MRF feature rotation invariant. Porter and Cana-

garajah [5] removed the absolute orientation by combining

the LH and HL wavelet subband coefficients of the traditional

wavelet based method [2]. In recent years, Ojala et al [6]

proposed the uniform local binary pattern (LBP) approach to

extract features from texture images. LBP is a rotation and

monotonic gray-level transformation invariant feature which

can also be computed efficiently.

In this paper, we propose a new feature extraction method

for texture classification. The proposed method is a subspace

learning method in a composite Fourier domain (CFD). The

CFD is constructed based on both the local and global Fourier

transforms of the texture images. The main contributions of

the paper lie in the following aspects. (1) The composite

Fourier domain is introduced, which provides rotation invari-

ant texture representations in the frequency domain; (2) The

most discriminant subspace in the composite Fourier domain

is then estimated such that the projection coefficients on such

subspace in the composite Fourier domain are served as the

final features to represent each texture image.

The composite Fourier domain is constructed by two

steps. First, the local Fourier transform is applied to the orig-

inal texture images such that each pixel is represented by a

rotation invariant signature. The global multi-dimensional

Fourier transform is then applied to the local Fourier trans-

formed image to obtain the multi-dimensional frequency

domain coefficients for the image, which is the resulting com-

posite Fourier domain (CFD) representation. The null-space

based linear discriminant analysis (nLDA) [7] is applied to

the images transformed to the CFD to find the optimal sub-

space representation in CFD and adopted as the final features

for classification. The support vector machine (SVM) with

the Gaussian radial basis function (RBF) kernel is used as the

classifier in this paper.

The proposed method is evaluated on both the Brodatz [8]

and CUReT [9] databases and compared with several widely
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used texture classification approaches. Experimental results

show that the proposed method achieves the highest classifi-

cation accuracy among all the compared methods.

2. THE COMPOSITE FOURIER DOMAIN

In this section, details about the transformation from input

texture images to the composite Fourier domain (CFD) are

given.

2.1. The Local Fourier Transform Signatures for each
Pixel

The first step to construct CFD is to apply the local Fourier

transform to each pixel such that each pixel is represented by a

rotation invariant signature which can also reflect its anatom-

ical properties. Such procedure is illustrated in Figure 1:
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Fig. 1. Illustration of applying the local Fourier transform

with respect to each pixel p.

As shown in Figure 1, for each referencing pixel p in the

texture image, a circularly symmetric neighborhood system

is defined with radius R and number of neighboring samples

N . In Figure 1, the number of neighboring samples N is 8.

Radius R controls the scale of interest. Given the values of R
and N , N samples are uniformly taken on the circle centered

at p with radius R as shown in Figure 1, for samples which do

not fall exactly on the image grid, their intensities are obtained

by using the bilinear interpolation. We denote the first neigh-

boring sample as the pixel to the right of the referencing pixel

p with distance R as shown in Figure 1, other neighboring

samples’ indices are determined based on an anti-closewise

order from the first neighboring sample. In Figure 1, the eight

neighboring samples’ intensities are denoted by t1, ..., t8 re-

spectively. Then, t1, ..., t8 are organized as a one dimensional

row vector in order, denoted as Kp in Figure 1.

The 1D discrete Fourier transform is then applied to

Kp = [t1, t2, ..., tN ] as shown in Figure 1, the resulting one

dimensional vector now is Vp = [v1, v2, ..., vN ], with vi
(i = 1, ..., N) calculated by Equation 1.

vi =

N∑
n=1

tn · exp(−2πi
N

· i · n). (1)

It should be noted that vi (i = 1, ..., N) are complex

fourier coefficients. We then denote |Vp| = [|v1|, |v2|, ..., |vN |]

Algorithm 1 Perform the Global Multi-Dimensional Fourier

Transform
Input: The local Fourier transformed image LFT (G). The number

of dimension N of |Vp| for each p ∈ G.

Output: The transformed image X in the composite Fourier

domain.

1. Set X = LFT (G).
2. FOR i = 1 to N
3. Perform 1D Fourier transform along dimension i

with Equation 1 to X .

4. END FOR

5. Return X .

where each element i of vector |Vp| is the magnitude of vi.
The |Vp| signature for pixel p is rotation invariant because im-

age rotation actually results in the circular shift of vector Kp,

and magnitude vector of the 1D discrete Fourier transform

corresponding to a shifted vector remains the same. There-

fore, the column vector |Vp| is used as the rotation invariant

signature for each pixel p. |Vp| also reflects the anatomical

properties around pixel p based on its neighboring samples.

The value of radius R shown in Figure 1 reflects the scale

of interest. In this paper, three different values of R: R1 = 1,

R2 = 2, R3 = 3 are used to achieve the multi-resolution

analysis. The numbers of neighboring samples corresponding

to each radius are: N1 = 8, N2 = 16, N3 = 24. Therefore,

after the local Fourier transform procedure, each pixel now is

represented by a 48 (8+16+24) dimensional feature vector.

Suppose the original texture image is G, we denote the output

vector image after performing the local Fourier transform to

G as LFT (G).

2.2. The Global Multi-Dimensional Fourier Transform

After the local Fourier transform procedure, each pixel p ∈ G
now is represented by its own rotation invariant feature signa-

ture |Vp|. In order to analyze the frequency component con-

figuration of LFT (G), the next step is to perform the global

multi-dimensional Fourier transform to LFT (G) to obtain

the coefficients of LFT (G) in each frequency band. The

global multi-dimensional Fourier transform can be summa-

rized in Algorithm 1.

After applying the global multi-dimensional Fourier

transform to LFT (G) as shown in Algorithm 1, the result-

ing image X is said to be in the composite Fourier domain

(CFD). It should be noted that each multi-dimensional index

of X now represents the coefficient of a particular multi-

dimensional frequency band to reconstruct LFT (G).
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3. NULL-SPACE BASED LINEAR DISCRIMINANT
ANALYSIS IN THE COMPOSITE FOURIER DOMAIN

After transforming the original texture image G to the com-

posite Fourier domain (CFD), the null-space based linear dis-

criminant analysis (nLDA) [7] is adopted to find out the op-

timal discriminant subspace in CFD. The nLDA [7] method

is derived from the conventional LDA [10] which can avoid

the small sample size problem. The nLDA formulation is de-

scribed as follows.

Suppose there are in total m texture images G1, G2, . . . , Gm

belonging to c different classes with nr rows and nc columns

for each image. Each class Di (i = 1, ..., c) has Ci images.

For each texture image Gj (j = 1, ...,m), let Kj denote its

corresponding vector image in the composite Fourier domain,

and let d denote the number of dimensions of the composite

Fourier domain.

In this paper, we only make use of the magnitude of the

transformed image Kj in CFD. Each transformed image in

CFD Kj , j = 1, 2, . . . ,m, is represented as a column vector
�Hj , which contains nr × nc × d components. �Hj is denoted

as,

�Hj =
[
mag( �Kj(1, 1)), . . . ,mag( �Kj(nr, nc))

]T
, (2)

where mag(�F ) denotes the magnitude of each element of

vector �F . nLDA aims at finding a projection matrix W such

that the original feature vector �Hj is reduced to a lower di-

mensional feature vector by using Equation 3,

�Yj = WT �Hj . (3)

W consists of a set of column vectors �q which are com-

puted based on the maximization of the following generalized

Fisher’s discriminant criterion,

JnLDA(�q) =
�q tSB�q

�q tSW�q + �q tSB�q
, (4)

where SB and SW are the between class scatter matrix, and

the within class scatter matrix respectively.

SB =
c∑

i=1

Ci(�μi − �μg)(�μi − �μg)
T ,

SW =

c∑
i=1

∑
�H∈Di

( �H − �μi)( �H − �μi)
T ,

where �μi is the nr × nc × d dimensional mean vector of the

class Di, i.e. �μi = 1
Ci

∑
�H∈Di

�H . �μg is the nr × nc × d

global mean vector defined as �μg = 1
m

∑m
j=1

�Hj .

The above problem is in turn transformed to a generalized

eigenvalue problem,

SBW = λSWW. (5)

In the case that SW is not a singular matrix, Equation 5 is

formulated as,

(SW)−1SBW = λW. (6)

In which, the first k eigenvectors �V1, �V2, . . . , �Vk corre-

sponding to the first k largest eigenvalues of the matrix

(SW)−1SB are selected to form the projection matrix.

Therefore, W = [ �V1, �V2, . . . , �Vk]. Since the rank of SB

is at most c − 1. The transformed feature vector �Yj can

have at most c − 1 dimensions. When the number of sam-

ples m is smaller than the number of dimensions of �Hj ,

the small sample size problem occurs. In this case SW

becomes singular and Equation 6 cannot be applied. In

this case, the singular value decomposition is performed

on SW such that SW = UΣVt, suppose the rank of ma-

trix SW is r and U = [�U1, . . . , �Ur, . . . , �Unr×nc×d], where
�Ur+1, . . . , �Unr×nc×d denote the eigenvectors which have

zero eigenvalues.

The projection matrix Q = [�Ur+1, . . . , �Unr×nc×d] can

then transform the input features into the null-space of SW.

The between class scatter matrix SB is transformed to the

null-space of SW and given as,

S̃B = QQtSB(QQt)t. (7)

Finally, certain number of eigenvectors corresponding to the

largest eigenvalues of matrix S̃B are used to form the projec-

tion matrix W. The number of eigenvectors, m
′
, is chosen

according to the criterion,

∑m
′

i=1 λi∑c−1
s=1 λs

≥ 0.95, (8)

where λi is the ith largest eigenvalues. After obtaining the

projection matrix W, then the original feature vectors Hj ,

j = 1, 2, . . . ,m, are transformed into m
′

dimensional feature

vectors using the Equation 3. The minimum number of m
′

that satisfies Equation 8 is used as the number of the dimen-

sions of the transformed feature space.

It is worth pointing out that the nLDA procedure cannot

be directly applied to the texture images in the spatial domain

similar to the issue of face recognition [10] because facial

images are topological objects and can be aligned to similar

positions before performing nLDA. However, texture images

usually contain repetitive patterns which are difficult or even

impossible to be aligned to the same spatial domain. The im-

portant role of global Fourier transform in Section 2.2 is to

”align” the texture images to the common composite Fourier

domain.

4. EXPERIMENTAL RESULTS

The proposed method was evaluated on two texture databases:

(1) 24 textures selected from the Brodatz album [8]; (2) 61
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textures selected from the CUReT database [9]. The proposed

method is also compared with several widely used texture

features. In all the experiments, the support vector machine

(SVM) with the Gaussian radial basis function (RBF) kernel

was adopted as the classifier. The optimal parameters of SVM

are found by performing grid search over the parameter space.

For the Brodatz database, each texture class contains 25
64×64 images. Each time 13 images were randomly selected

from each class and used as training images, the rest of the im-

ages were served as the testing images. To test the robustness

of different approaches against image rotation, training and

testing images were also rotated by a randomly generated an-

gle between 0 to 360 degrees. The experiments were repeated

100 times and Table 1 lists the mean classification accuracy of

different approaches for the Brodatz database for the original

and rotated images.

Classification Accuracy (in %)

Methods Original Randomly Rotated

Image Image

1. Wavelet [2] 97.43 82.03

2. ACGMRF [4] 94.18 92.74

3. LBP [6] 98.15 97.69

4. nLDA + CFD 99.32 98.86

Table 1. The mean classification accuracy of different meth-

ods on the Brodatz database. The last row represents the pro-

posed method.

It is observed in Table 1 that under the original texture

image (i.e. no rotation) condition, Wavelet [2], LBP [6] and

the proposed method achieve high classification accuracy (i.e.

above 95%). When the texture images are randomly rotated,

the classification accuracy of Wavelet [2] drops significantly

as it is not rotation invariant. Under both conditions, the

proposed method achieves the highest classification accuracy

among all the compared methods.

For the CUReT database [9], there are in total 61 classes

of textures. Each class has 92 texture images taken under dif-

ferent illumination conditions and viewing angles with reso-

lution 200 × 200. For each time 46 texture images were ran-

domly selected from each class and used as the training set,

the rest of the images were served as the testing set. The ex-

periments were repeated for 100 times. Table 2 lists the mean

classification accuracy for different approaches.

Wavelet [2] ACGMRF [4] LBP [6] nLDA + CFD

CA (in %) 62.75 83.34 96.38 98.67

Table 2. The mean classification accuracy of different meth-

ods on the CUReT database. The last column represents the

proposed method. CA denotes the classification accuracy.

It is observed in Table 2 that the proposed method also has

the highest classification accuracy among all the compared

methods. Therefore, the robustness of the proposed method

is strongly implied.

5. CONCLUSION

In this paper, a new texture classification method is proposed.

The proposed method can be factorized into two stages. First,

the original texture images are transformed to the composite

Fourier domain by applying both the local Fourier trans-

form and global Fourier transform in order. It is theoretically

proved in this paper that the local Fourier transform can assign

each pixel a rotation invariant anatomical signature. Then, the

coefficients of different frequency bands are obtained via the

global Fourier transform. Finally, the null-space based linear

discriminant analysis (nLDA) is performed in the composite

Fourier domain to extract the most discriminant features for

each texture image. The proposed method was evaluated on

both the Brodatz and CUReT databases and compared with

three widely used texture classification approaches. Exper-

imental results show that the proposed method consistently

achieves the highest classification accuracy among all the

compared methods, which illustrates the robustness of the

proposed method.
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