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ABSTRACT
Non-rigid image registration plays an important role in med-

ical image analysis. Recently, Tang and Chung proposed to

model the non-rigid medical image registration problem as

an energy minimization framework. The optimization was

done by using the graph-cuts algorithm via alpha-expansions.

However, the dissimilarity measure used in the energy func-

tion of this graph-cuts based method was restricted to the sum

of absolute differences (SAD) and the sum of squared differ-

ences (SSD). In this paper, to utilize an advanced dissimilar-

ity measure, such as mutual information (MI), we adopt an

approximation of MI to the graph-cuts based method. Ex-

ploiting the mutual information is valuable as it can capture

complex statistical relationships between the intensities of the

image pair without a priori knowledge of those relationships.

We have compared the proposed method against the origi-

nal graph-cuts based methods, and two state-of-the-art ap-

proaches. The experimental results demonstrate that the pro-

posed method can achieve lower registration errors.

Index Terms— Non-rigid image registration, graph cuts,

mutual information.

1. INTRODUCTION

Non-rigid image registration is widely exploited in medical

image analysis. The utilization includes deformation field re-

covery during surgery, surgical procedure planning and eval-

uation [1]. All these applications require an accurate registra-

tion to improve the precision of diagnosis and therefore non-

rigid image registration has been an active research area. The

image registration problem can be generally regarded as find-

ing an optimal transformation T ∗ such that the reference im-

age Ir and the floating image If are spatially matched. Tech-

nically, it is expressed as T ∗ = arg minT C(Ir, I
T
f ), where C

is a dissimilarity measure that determines the degree of sim-

ilarity between Ir and IT
f , and IT

f is the transformed float-

ing image. For non-rigid registration, pixels in the floating

image can be transformed freely. Therefore, the transforma-

tion T is usually represented by a deformation vector field D.

A smoothness penalty S is often introduced to ensure that a

smooth resultant transformation is obtained. Finding the op-

timal transformation can be evaluated as

T ∗ = arg min
T

(C(Ir, I
T
f ) + λS(T )), (1)

where λ is a constant governing the strength of the penalty.

Determining T ∗ is challenging due to the requirements of

smoothness and the high degrees of freedom. Our previous

works [2, 3] have suggested to model the non-rigid medi-

cal image registration problem as an energy minimization

framework. Graph-cuts algorithm via α-expansions [4] was

employed as the optimization process in the framework. It

was also proven that the graph-cuts based method can give

a smooth resultant transformation while the high degrees of

freedom can be preserved. The objective of this paper is to

improve the accuracy of the registration results by adopting

mutual information (MI) into the graph-cut based non-rigid

registration method.

2. GRAPH-CUTS BASED NON-RIGID
REGISTRATION

The graph-cuts based non-rigid registration method (is de-

noted as GC for the simplicity of description) models the non-

rigid registration problem as an energy minimization frame-

work based on the concept of Markov Random Fields (MRF).

The framework was defined as

D∗ = arg min
D

(Ed(Ir(X), ID
f (X)) + λEs(D)), (2)

where D, Ed and Es are deformation vector field, data term

and smoothness term representing the transformation, the dis-

similarity measure and the penalty term respectively, X is the

spatial domain of the both images, and ID
f (X) = If (X +D)

is the transformed floating image. The data term is re-

stricted to a sum over pixels which is estimated locally,

i.e. Ed =
∑

x∈X F (x; Ir(X), ID
f (X)) for some functions F

which only depends on a pixel x. Therefore, some dissimilar-

ity measures which are calculated globally, like MI, cannot
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be adopted as the data term directly. In [2], SAD was used as

the data term and the smoothness term was the derivative of

the deformation vector field. Finally, the formula becomes

D∗ = arg min
D

( ∑
x∈X

SAD(Ir, I
D
f )+λD′

)
, (3)

where SAD(Ir, I
D
f ) =

∑
x∈X ||Ir(x) − ID

f (x)|| and D′ =∑
(x,y)∈N ||D(x) − D(y)|| for (x, y) ∈ N if y ∈ X is the

adjacent pixel of x.

3. APPROXIMATION OF MUTUAL INFORMATION

Mutual information (MI) is often applied as the similarity

measure in the registration problem [5], in which, MI is de-

fined as

MI(Ir, I
D
f ) = H(Ir) + H(ID

f ) − H(Ir, I
D
f ) (4)

where H(·) is the entropy of the given image and H(·, ·)
is the joint entropy of the given image pair. However, as

MI is calculated globally, it cannot be applied to GC di-

rectly. In order to achieve this, we use an approximation

of MI which was proposed by Kim et al.[6]. The authors

express the joint entropy by the Taylor expansion such that

H(Ir, I
D
f ) =

∑
x∈X h(Ir(x), ID

f (x)) where

h(Ir(x), ID
f (x)) =

−1
|X|

(
log(PIr,ID

f
�g)�g

)
(Ir(x), ID

f (x)),

for PIr,ID
f

denoting joint probability distribution and �g indi-

cating 2D Gaussian convolution. Since Kim et al used the ap-

proximation in visual correspondence problem, they assume

that the H(Ir) and H(ID
f ) are constants during the optimiza-

tion process. Thus, the approximation of MI is expressed

by the joint entropy alone, i.e. MI(Ir, I
D
f ) = −H(Ir, I

D
f ).

Nevertheless, the assumption does not hold in non-rigid

registration problem as H(ID
f ) may change while finding

the optimal transformation. As such, we compute the en-

tropies H(Ir) and H(ID
f ) analogous to the joint entropy [7]:

H(I) =
∑

x∈X hI(I(x)), for hI(I(x)) = −1
|X|

(
log(PI �g)�

g
)
(I(x)), where I is an image and PI is the marginal distri-

bution of I . Then, the approximation of MI is re-formulated

as

MI(Ir, I
D
f ) =

∑
x∈X

mi(Ir(x), ID
f (x))

=
∑
x∈X

[
hIr

(Ir(x)) + hID
f

(ID
f (x)) − h(Ir(x), ID

f (x))
]
.(5)

4. GRAPH-CUTS BASED METHOD WITH MI

It is observed that Eq. 5 is now in the form of sum over pix-

els. Therefore, we can adopt Eq. 5 into the framework of

Compute

hIr

Compute

hIf

Compute

hIr,If

Registration Process
with

α-expansions

Ir

If

Output

Fig. 1. Flow chat of the proposed method.

GC. The corresponding definition of the energy minimization

framework is,

D∗ = arg min
D

( ∑
x∈X

−mi(Ir, I
D
f )+λD′

)
, (6)

As MI can capture complex relationships between the inten-

sities of the image pair without a priori knowledge of the

relationships, it can increase the accuracies of the registration

results. Fig. 1 is the flow chat of the framework. Since the en-

tropies hI(·) and h(·, ·) do not depend on the transformation,

we only need to compute them once and this can finish within

a few seconds for a 2D image pair. The pre-computed en-

tropies are then passed to the registration process with Ir and

If . The process finds the optimal deformation vector field D∗

based on minimizing the approximation of MI by graph-cuts

algorithm via α-expansions [4].

5. EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed

method will be shown and compared against the original

graph-cuts based method and two state-of-the-art methods,

which are Free Form Deformation based method (FFD) [9]

and DEMONS [8]. We followed the experimental settings as

described in [2]. The image pairs used in all experiments were

intensity normalized within 0 and 255, and assumed affinely

pre-registered. We used the implementations of FFD and

DEMONS available in ITK [10] where 15 × 15 control point

grid was used in FFD. Implementation of grph-cuts algorithm

was done by modifying the the source codes provided by Kol-

mogorov & Zabih [11]. For the proposed method (denoted as

GC-MI hereafter) and the original graph-cuts based method

(denoted as GC-SAD hereafter), the displacement window

W was set to {0,±1,±2, . . . ,±15}2. Thus, the deformation

labels (vectors) assigned to pixels were chosen from 31 × 31
window. Reference image used in our experiments was the

91st slice of the image #04 of the Simulated Brain Database

[12]. The reference image and its segmented images are

shown in Fig. 2. Five floating images were obtained by ap-

plying different artificial deformations (Cases A to E) to the

reference image which are shown in the left column of Fig.

3. All experiments were performed on an Intel 2.13 GHz

dual-core CPU with 3 GB RAM.
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Case Tissue Class
Distributions of Absolute Intensity Errors (Mean ± SD)

Before Registration FFD DEMONS GC-SAD GC-MI

Case A

WM 13.5707 ± 16.2608 4.4435 ± 4.7523 7.4415 ± 11.2978 0.3145 ± 1.5510 0.4484 ± 1.7329
GM 17.6909 ± 14.6586 5.3806 ± 6.0575 9.0305 ± 11.1348 0.6524 ± 2.6038 0.5552 ± 2.0774
CSF 31.6048 ± 25.1295 7.2099 ± 7.7194 9.1045 ± 14.5402 1.3381 ± 4.9341 0.6937 ± 2.7217

Whole Image 9.7329 ± 18.3860 3.3572 ± 5.6648 3.8116 ± 8.2376 0.4755 ± 2.8250 0.4157 ± 1.7362

Case B

WM 6.5731 ± 9.1651 6.2614 ± 7.6065 2.3301 ± 3.2015 3.5918 ± 5.6203 0.7888 ± 1.9757
GM 10.0813 ± 12.0606 9.1318 ± 9.9935 2.7989 ± 4.1611 4.9365 ± 6.9476 1.0343 ± 2.3813
CSF 16.2051 ± 17.5066 14.6778 ± 14.7441 3.8172 ± 5.7646 5.1764 ± 8.6033 1.0753 ± 2.8241

Whole Image 6.6147 ± 15.0480 6.5557 ± 12.4205 2.3585 ± 5.4032 2.1051 ± 5.3806 0.5183 ± 2.0371

Case C

WM 12.4284 ± 16.9195 5.2887 ± 6.9239 5.6849 ± 10.4597 1.3728 ± 3.3909 0.8495 ± 2.3127
GM 15.2166 ± 17.9072 6.1799 ± 7.7442 5.7376 ± 10.3964 1.2019 ± 3.7910 0.6266 ± 2.0426
CSF 26.0666 ± 24.7597 9.4588 ± 13.3008 10.0482 ± 17.6691 1.7539 ± 5.1301 0.7205 ± 2.3490

Whole Image 9.5187 ± 18.9494 3.8730 ± 6.7673 3.5925 ± 9.1513 0.6852 ± 2.9006 0.4135 ± 1.7523

Case D

WM 15.2038 ± 18.7338 6.5360 ± 8.3473 6.8279 ± 11.2505 1.2181 ± 3.1834 1.6124 ± 3.1227
GM 20.5996 ± 21.0016 8.2451 ± 9.4451 6.7825 ± 11.1975 1.3924 ± 4.0410 1.1491 ± 3.1137
CSF 32.9635 ± 25.8792 12.4072 ± 12.8791 10.6003 ± 16.1336 2.3172 ± 5.9184 1.3010 ± 3.7120

Whole Image 13.2306 ± 23.7698 5.5561 ± 9.8258 4.8540 ± 11.6549 1.2848 ± 4.4154 0.9427 ± 3.7402

Case E

WM 14.3048 ± 20.5277 7.5955 ± 9.2995 6.2710 ± 12.6154 3.5391 ± 5.6802 2.1649 ± 3.4320
GM 19.4661 ± 22.1715 9.7916 ± 10.5114 8.2438 ± 14.9239 4.4782 ± 7.1524 2.6636 ± 4.2757
CSF 29.7475 ± 24.1374 15.3230 ± 15.3757 11.5549 ± 17.2870 5.8027 ± 9.4507 3.5900 ± 5.8147

Whole Image 15.2396 ± 26.4708 7.2976 ± 12.1217 7.3590 ± 17.9116 2.7162 ± 5.9417 2.5092 ± 6.5669

All

WM 12.4162 ± 16.3214 6.0250 ± 7.3859 5.7111 ± 9.7650 2.0073 ± 3.8852 1.1728 ± 2.5152
GM 16.6109 ± 17.5599 7.7458 ± 8.7503 6.5187 ± 10.3627 2.5323 ± 4.9072 1.2058 ± 2.7781
CSF 27.3175 ± 23.4825 11.8153 ± 12.8038 9.0250 ± 14.2789 3.2776 ± 6.8073 1.4761 ± 3.4843

Whole Image 10.8673 ± 20.5248 5.3279 ± 9.3600 4.3951 ± 10.4717 1.4533 ± 4.2927 0.9599 ± 3.1665

Table 1. Distributions of the absolute intensity errors within different tissue regions after performing FFD, DEMONS, GC-SAD

and GC-MI. Distributions are listed in the format MEAN ± SD.

Columns 2-5 of Fig. 3 show the registration results of

FFD, DEMONS, GC-SAD and GC-MI respectively. As

shown in the figure, DEMONS performed worse in Cases

C-E as it allows high-degree of freedom and uses local in-

tensity gradient to optimize the pixel movements. Therefore,

for some cases, like Cases C-E, in which some brain tissues

of the reference image are mapped to the background of the

floating image or vice versa, pixels can be driven towards

the wrong directions and DEMONS may be trapped in local

minima. On the other hand, FFD performed worse in Cases

B and E since it uses hard constrains on the pixel move-

ments. In FFD, only control points can be moved freely. The

displacements of all other pixels are interpolated from its

neighborhood control points by using B-splines. Therefore

it is hard for FFD to model complicated deformations like

Cases B and D which include high frequency deformations.

DEMONS worked well in Case B because of the high degrees

of freedom. From Fig. 3, we notice that GC-MI and GC-SAD

gave successful registration results in all the cases. The main

reason is that they optimize the registration process by us-

ing the alpha-expansions which assign a displacement label

(vector) to each pixel in global manner with high-degrees of

freedom.

Table 1 is the quantitative validation. It shows distri-

butions of the absolute intensity errors within white matter

(WM), gray matter (GM), cerebrospinal fluid (CSF) and the

whole image after performing FFD, DEMONS, GC-SAD and

GC-MI. The distributions are listed in the format of MEAN

± SD. By comparing the results in the table, it is found that

GC-MI and GC-SAD have better performances than FFD

and DEMONS whereas GC-MI outperforms GC-SAD. The

averaged absolute intensity errors in the last row demonstrate

that GC-MI improved the accuracies about 50∼100% among

different tissues as compared with GC-SAD.

6. CONCLUSION

In this paper, we present the graph-cuts based non-rigid reg-

istration method by adopting an approximation of mutual in-

formation as the dissimilarity measure. Experimental results

have demonstrated that the proposed method is robust against

different challenging registration cases. The quantitative re-

sults have also shown that the proposed method can improve

the averaged absolute intensity errors by 50 ∼ 100%. With

the proposed techniques, we believe that other dissimilarity

measures, such as normalized mutual information, can be em-

ployed in the graph-cuts based non-rigid registration method.

In the future, more qualitative validations will be conducted,

especially in volumetric images, for the proposed method.
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Reference Image WM GM CSF

Fig. 2. Reference and its segmented images obtained from Simulated Brain Database used in our experiments.
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Fig. 3. Results of 5 different artificial deformation cases.
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