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ABSTRACT

Non-rigid image registration is widely used in medical im-
age analysis and processing. We recently proposed a novel
learning-based similarity measure for non-rigid image regis-
tration. The novel similarity measure is constructed by using
two Kullback-Leibler distances (KLD), which are based on
the a priori knowledge of the joint intensity distribution of
a pre-aligned image pair. In this paper, we propose a new
formulation for the novel KLD based similarity measure such
that it can be exploited in Markov random field (MRF) based
non-rigid registration framework with the graph-cuts algo-
rithm. We have compared the proposed formulation against
two other similarity measures under the same MRF-based
framework, and two state-of-the-art approaches. Accord-
ing to the experimental results, it is demonstrated that the
proposed method can achieve high registration accuracy.

Index Terms— Non-rigid image registration, graph cuts,
Kullback-Leibler distances.

1. INTRODUCTION

In medical image analysis and processing, non-rigid image
registration is a widely used technique. Applications include
deformation field recovery during surgery, and surgical proce-
dure planning and evaluation [1]. The aim of non-rigid image
registration is to find an optimal correspondence between pix-
els on the floating image If and the reference image Ir. Usu-
ally, the correspondence is represented by a transformation
T . By using this optimal correspondence, i.e., the optimal
transformation T ∗, each pixel on the floating image can be
mapped to a pixel on the reference image such that the value
of a similarity measure can be minimized. In our previous
work [2], we suggested to model non-rigid image registration
as a multi-label assignment problem by using the Markov ran-
dom field (MRF). The MRF-based energy function of the la-
bel assignment process is then minimized by graph-cuts via
alpha-expansions [3] (It is called as graph-cuts based method

or GC hereafter). The formulation of the graph-cut method is,

T∗ = arg min
T

(Ed(IT
f (X), Ir(X)) + λEs(T)), (1)

where Ed, Es, IT
f and λ are data term, smoothness term,

transformed floating image and the constant governing the
smoothness. The data term represents the similarity measure
and T is the transformation which is in the form of defor-
mation field. However, in the above graph-cuts based formu-
lation, the data term is estimated locally based on the adja-
cent pixels within a neighborhood region. Therefore, some
advanced similarity measures, e.g., mutual information (MI),
etc., which are calculated globally, cannot be directly utilized
in the graph-cuts based method. In this paper, we propose a
new formulation for a novel learning-based similarity mea-
sure, which was originally proposed by Chung et al. [4] and
estimated globally. With the new formulation, this measure
can now be used in the graph-cuts based non-rigid registration
method and it helps achieve high image registration accuracy.

2. KULLBACK-LEIBLER DISTANCES (KLD)

Recently, we proposed a new similarity measure for non-rigid
image registration [5]. This similarity measure was used in
rigid registration [4], and is based on a priori knowledge
of the joint intensity distribution of a pre-aligned image pair.
The measure is constructed by two KLDs which are denoted
as D1 and D2. Let PT

o (if , .ir), P̂ (if , ir), P̂ (if ) and P̂ (ir)
be respectively the observed joint intensity distribution, ex-
pected joint intensity distribution, expected marginal distri-
bution of floating image and expected marginal distribution
of reference image, where if and ir are the indices of the his-
togram bins of the floating and reference images respectively.
Then, the formulations of D1 and D2 are,

D1(P
T
o (if , ir)||P̂ (if , ir))=

∫∫
PT

o (if , ir) log
PT

o (if , ir)

P̂ (if , ir)
difdir,

(2)

D2(P
T
o (if , ir)||P̂ (if , ir))=

∫∫
PT

o (if , ir) log
PT

o (if , ir)

P̂ (if )P̂ (ir)
difdir.

(3)
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Fig. 1. Illustration of the functionalities of (a) D1, (b) D2 and (c)
D12. The circle symbols represent the observed joint distributions
of different image pairs before registration.

Figs. 1 (a) and (b) illustrate the functionalities of D1 and
D2. In the figure, the expected joint intensity distribution
P̂ (if , ir) and the product of expected marginal distributions
P̂ (if )P̂ (ir) represent the condition that the intensity values
in the testing image pair are statistically dependent and inde-
pendent respectively. D1 and D2 can be viewed as a pull force
and a push force acting on the initial observed joint intensity
distribution, which are illustrated by circles in Fig. 1. Min-
imizing D1 is equivalent to minimize the distance between
the observed joint intensity distribution and the expected joint
intensity distribution. Therefore, it pulls the observed joint
intensity distribution towards the condition that the intensity
values in the testing image pair are statistically dependent. On
the other hand, maximizing D2 is the same as maximizing the
distance between the observed joint intensity distribution and
the product of the expected marginal distributions. Therefore,
it can be viewed a push force which pushes the observed joint
intensity distribution away from the condition that the image
intensities in the testing pair are statistically independent. By
combining the pull force and the push force (illustrated in Fig.
1 (c)), the final similarity measure D12 is defined as,

D12 = D1 −D2 =
∫∫

PT
o (if , ir) log

P̂ (if )P̂ (ir)
P̂ (if , ir)

difdir.

(4)

3. GRAPH-CUTS BASED METHOD WITH D12

In order to utilize D12 in the graph-cuts based method, we
model the observed joint intensity distribution by using the
Parzen windowing, i.e.,

PT
o (if , ir) =

1
|X|

∑

x∈X

g
(
(if , ir)− (IT

f (x), Ir(x))
)
,

where X and g denote the image domain and 2D Gaussian
distribution respectively. Then Eq. (4) becomes

D12 =
∑

x∈X

1
|X|

∫∫
log

(
P̂ (if )P̂ (ir)
P̂ (if , ir)

)

·g (
(if , ir)− (IT

f (x), Ir(x))
)
difdir. (5)

Now, Eq. (5) is in the same form as the Eq. (7) in [6]. By
following the procedure analogous to that discussed in [6],
the similarity measure can be estimated by using Gaussian
convolution. Eq. (5) can be further reduced as

D12 =
∑
x∈X

−1

|X|

(
log

(
P̂ (if )P̂ (ir)

P̂ (if , ir)
� g

)
� g

)
(IT

f (x), Ir(x)),

(6)
where �g indicates Gaussian convolution. Now, Eq. (6) is

our new formulation of D12 which is a summation among pix-
els in the image domain and can be utilized in the graph-cuts
based method directly. Finally, our registration framework is
defined as,

T∗ = arg min
T

(D12(IT
f (X), Ir(X)) + λT′), (7)

where T′ =
∑

(x,y)∈N ||T(x) − T(y)|| is the smoothness
term, for (x, y) ∈ N if y ∈ X is the adjacent pixel of x.
This registration framework is then optimized by graph-cuts
algorithm via alpha-expansion [3].

4. EXPERIMENTAL RESULTS

The quantitative experimental results of the proposed method
(denoted as GC-D12 hereafter) and the compared methods
will be discussed in this section. We compared GC-D12

against the graph-cuts based methods with two different
similarity measures, sum of absolute difference and mutual
information, which are denoted as GC-SAD [2] and GC-
MI [7]. On the other hand, we also compared the proposed
method with two state-of-the-art methods including Free
Form Deformation (FFD) [8] and DEMONS [9]. For all the
experiments, we assumed that the image pairs were affinely
pre-registered and intensity normalized to the range [0 255].
The displacement window W of the graph-cuts based meth-
ods (including GC-SAD, GC-MI and GC-D12) was set to
{0,±1,±2, . . . ,±15}2. In this setting, the deformation vec-
tors assigned to pixels were chosen from a 31 × 31 window.
We modified the source code provided by Kolmogorov and
Zabih [10] for the implementation of the graph-cuts algo-
rithm. Implementations of FFD and DEMONS were adopted
from the source code of the ITK library [11] in which 15×15
control point grid was set for FFD. The 91st slices of the
image volumes #04 and #20 of the Simulated Brain Database
[12] were used as the reference image and the training image
(for GC-D12 only) respectively. Fig. 2 shows the reference
image with its segmented images and the training image. We
generated five floating images by applying five different arti-
ficial deformations to the reference image. The five floating
images are named as Cases A, B, C, D and E, and showed
in the left-most column of Fig. 3. All experiments were
performed on an Intel 2.13 GHz dual-core CPU with 3 GB
RAM.

The registration results of FFD, DEMONS, GC-SAD,
GC-MI and GC-D12 are respectively shown in the columns
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Case Tissue Class Distributions of Absolute Intensity Errors (Mean± SD)
Before Registration FFD DEMONS GC-SAD GC-MI GC-D12

Case A

WM 10.6479± 12.5717 3.8572± 4.1152 2.8604± 3.8747 0.4215± 1.9903 0.4556± 2.1131 0.2065± 0.8852
GM 19.7615± 24.5911 4.7348± 5.3192 4.5281± 10.1937 0.4963± 2.3722 0.4541± 2.1660 0.2037± 0.9095
CSF 21.6065± 22.6715 6.7096± 7.6762 6.5092± 11.7395 0.6051± 3.0877 0.6033± 2.9663 0.1984± 0.9944

Whole Image 14.2316± 25.6177 4.3780± 6.1068 4.1457± 8.5574 0.2490± 1.7482 0.2118± 1.5318 0.1095± 0.6737

Case B

WM 2.2123± 6.8813 3.5560± 5.3306 1.3207± 1.7232 0.3748± 2.2254 0.1876± 1.1006 0.1173± 0.6973
GM 4.8008± 10.4352 5.4411± 7.5203 1.3590± 2.3302 0.6927± 3.3107 0.2797± 1.4284 0.1634± 0.8461
CSF 11.0332± 16.4650 10.7818± 12.6803 2.1143± 3.4919 1.4883± 5.3238 0.5407± 2.1647 0.2893± 1.1606

Whole Image 4.3977± 13.8116 4.9032± 10.7390 1.6226± 4.8795 0.4680± 2.9115 0.2911± 2.0250 0.1215± 0.7608

Case C

WM 9.4930± 21.8914 5.6517± 12.4798 6.9019± 18.8221 0.5217± 2.0812 0.5094± 1.8529 0.2173± 0.8762
GM 13.7174± 24.3150 7.2853± 11.7361 8.7060± 18.8371 0.5364± 2.4732 0.5201± 1.9356 0.2025± 0.9144
CSF 14.1505± 24.0804 10.0187± 13.8591 9.1435± 17.7249 0.6261± 3.1866 0.4930± 1.8928 0.2007± 0.9837

Whole Image 9.7191± 26.1838 5.5140± 13.0007 6.8966± 20.2661 0.3093± 1.8442 0.2652± 1.4335 0.1125± 0.7028

Case D

WM 9.6704± 10.7596 3.8462± 4.1204 2.5381± 3.0245 0.0884± 0.8623 0.0626± 0.5965 0.0410± 0.3975
GM 14.9830± 16.0844 4.5487± 4.9767 1.9304± 2.7518 0.0968± 0.9653 0.0746± 0.7150 0.0422± 0.4005
CSF 22.6887± 20.0158 6.3138± 6.5170 2.3448± 3.8415 0.1079± 1.0910 0.0655± 0.6781 0.0485± 0.4608

Whole Image 10.9989± 18.7432 4.0331± 5.7967 2.0416± 5.9587 0.1146± 1.2744 0.0711± 0.7738 0.0483± 0.4566

Case E

WM 15.7858± 19.4334 7.3530± 9.7894 9.3675± 14.8211 0.5360± 2.3028 0.4509± 1.8172 0.1883± 0.8610
GM 21.6458± 22.5526 9.4626± 11.3451 10.6319± 16.6659 0.6862± 2.9013 0.5679± 2.2531 0.2664± 1.0451
CSF 33.6614± 26.2508 14.5973± 15.7412 13.5003± 20.3604 1.1614± 4.3055 0.9691± 3.4020 0.3916± 1.3199

Whole Image 16.5570± 27.0167 7.0052± 11.3985 7.5937± 16.6385 0.5447± 2.8222 0.4090± 2.0275 0.1999± 0.9233

All

WM 9.5619± 14.3075 4.8528± 7.1671 4.5977± 8.4531 0.3885± 1.8924 0.3332± 1.4961 0.1541± 0.7434
GM 14.9817± 19.5957 6.2945± 8.1795 5.4311± 10.1558 0.5017± 2.4045 0.3793± 1.6996 0.1756± 0.8231
CSF 20.6280± 21.8967 9.6842± 11.2947 6.7224± 11.4316 0.7977± 3.3989 0.5343± 2.2208 0.2257± 0.9839

Whole Image 11.1809± 22.2746 5.1667± 9.4083 4.4601± 11.2600 0.3371± 2.1201 0.2496± 1.5583 0.1183± 0.7034

Table 1. Distributions of the absolute intensity errors within different tissue regions after performing FFD, DEMONS, GC-
SAD, GC-MI and GC-KLD. Errors are listed in the format, MEAN ± SD.

2-6 of Fig. 3. From the figure, it is observed that FFD cannot
handle the cases with high frequency deformation like Cases
B and E. This is because FFD applies hard constrains on the
movements of the pixels in which only the control points
can be moved freely. The displacements of other pixels are
estimated by the interpolation among its neighborhood con-
trol points by a B-splines function. Therefore, registration
including complicated deformations, like high frequency de-
formations in Cases B and E, are relatively difficult for FFD.
On the other hand, DEMONS uses local intensity gradient to
optimize the pixel movements. Although DEMONS allows
high-degree of freedom, it may be trapped in local minima if
some brain tissues of the reference image are overlapped with
other tissues (including background) of the floating image
or vice versa, like Cases C and E. This is because the pixels
may be driven towards the wrong directions by DEMONS.
Different from the FFD and DEMONS, the graph-cuts based
methods optimize the registration process in a global manner
by using the alpha-expansions which can provide high-degree
of freedom. Therefore, graph-cuts based methods perform
well in all the five cases. In order to evaluate the graph-cuts
based methods, we have done a quantitative validation and the
results are listed in Table 1. It demonstrates that the proposed
method, GC-D12, outperforms other methods including GC-
SAD and GC-MI which use the same registration framework.
GC-D12 can significantly reduce the averaged registration
errors among different tissues as compared with GC-MI and
GC-SAD (see the last row in Table 1). This shows that the
improvement in registration accuracy mainly comes from the
novel similarity measure D12.

5. CONCLUSION

In this paper, we propose a new formulation for the novel
learning-based similarity measure, D12. By using this new
formulation, D12 can now be exploited in the MRF-based
non-rigid registration framework with graph-cuts optimiza-
tion algorithm. The quantitative experimental results on five
challenging registration cases demonstrate that the proposed
method outperforms the other compared methods. Moreover,
with the proposed method, the averaged absolute intensity er-
rors of all tissues are reduced significantly.
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Reference Image WM GM CSF Training Image

Fig. 2. Reference and its segmented images, and the training image obtained from Simulated Brain Database used in our
experiments.

Case
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Floating FFD DEMONS GC-SAD GC-MI GC-D12

Fig. 3. Results of 5 different artificial deformation cases.
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