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ABSTRACT

In this paper, we propose a graph-based method to find the

optimal cross section boundary for vessel segmentation. The

voxels on the cross sectional plane are assumed to lay on the

circles around the centerline point. The voxels on the cir-

cles with different radii are then transformed to a graph, by

which the objective of finding the optimal boundary is con-

verted to choosing the optimal path in the graph. A new cost

function for the edge cost of the graph is proposed to obtain a

smooth, optimal boundary of the cross section. Based on the

optimal cross section boundary, we also propose a method for

stenosis detection and quantification. The proposed method

for segmentation and stenosis detection has been evaluated to

be accurate and highly computationally efficient.

Index Terms— Vessel Segmentation, Graph-Based Opti-

mal Path, Stenosis Quantification.

1. INTRODUCTION

In recent years, a variety of methods have been proposed for

vessel segmentation [1]. Some of them extract the vessel sur-

face directly, for example, 3D active contour methods. Some

other methods trace centerline curve in 3D space. They both

have their own advantages and drawbacks. As described in

[2], surface alone can be insufficient in some applications. For

centerline tracing methods, post-processing may be needed

for particular application. To solve these problems, methods

in [3, 4, 5] incorporate the cross sectional radius as the 4th di-

mension together with the 3D coordinates of the voxels. Thus

when the tracking procedure ends, the radii of the vessel are

obtained together with the centerline. With the radii related

to the centerline points, approximate surface of the vessel is

also obtained.

However, the assumption of circular cross section for ves-

sels is just an approximation. This will sometimes lead to in-

accurate segmentation for the irregular or elliptical cross sec-

tions. In most problematic vessel regions, such as aneurysm

or stenosis, the cross section is usually not regular. The circu-

lar assumption then will cause the ignorance of the real degree

of stenosis or aneurysm. As shown in Fig.1, the obtained cir-

cular cross section sometimes may not represent the real cross

section very well. As a result, the reconstructed vessel im-

age may not represent the original shape properly, which may

lead to inaccurate diagnosis for the patients with aneurysm or

stenosis. For solving this problem, we propose a new method

Fig. 1. Problem of Circular Cross Section Assumption.

which does not make any assumption of the shape of the cross

section. With this method, the surface reconstructed will be

more accurate by trying to keep the original shape of cross

section. The reconstructed result obtained by the new method,

as a result, may be more reliable for diagnosis and treatment

planning.

Vessel stenosis is a kind of abnormal narrowing which

may lead to inadequate blood supply or even sudden death.

In recent years, many methods have been proposed for steno-

sis detection and quantification [6, 7, 8, 9]. There are two

major types of quantification methods, minimal radius based

methods and area based methods. In most cases, the shape of

the cross sections in stenosis region is complicated, making

minimal radius or area based methods not good for quantifi-

cation. In this paper, based on the accurate cross section seg-

mentation, we propose a method for stenosis detection and

quantification.

2. ACCURATE VESSEL SEGMENTATION

In this section, we propose a new vessel segmentation method

which does not make any assumption about the shape of the

cross section. The surface reconstructed will be more accurate

and more reliable for diagnosis and treatment planning. With
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the proposed method, both the centerline points and associ-

ated accurate cross section boundaries are obtained simulta-

neously. Minimum average-cost method presented in [10] is

used to select the centerline points. For each centerline point,

a reference radius is also obtained. With the centerline point,

we then focus on finding the optimal cross section boundary,

so as to obtain the accurate surface for vessels.

2.1. Graph-Based Optimal Cross Section

Given a centerline point 𝑐 and its previous point 𝑝𝑟𝑒, we as-

sume the plane of the cross section associated with 𝑐 is per-

pendicular with the direction of 𝑐−𝑝𝑟𝑒. As shown in Fig.2(a),

we assign each voxel in ROI on the plane to the nearest cir-

cle. Then the voxels on the circles are transformed to nodes

in an directed graph as shown in Fig.2(b). For each row of

the graph, the first node and the last node are the same voxel

in the original image. For each node 𝑝𝑎𝑏(0 ≤ 𝑎 ≤ 𝐾, 0 ≤
𝑏 ≤ 𝐽) in the graph, possible successor node 𝑝𝑥𝑦 satisfies

1 ≥ 𝑥 − 𝑎 ≥ −1 and 1 ≥ 𝑦 − 𝑏 ≥ 0. So the path will

not go back to the left. With this transformation, we convert

the objective for finding the boundary of the cross section to

choosing the optimal path 𝑝𝑖0 to 𝑝
′
𝑖0 in the directed graph.

There are many algorithms that can be used to find the op-

timal path, including dynamic programming, Bellman-Ford,

Floyd and single source shortest path methods. In this appli-

cation, since the ROI is not very large and the objective is just

choosing the optimal path 𝑖 with the smallest cost from 𝑝𝑖0 to

𝑝
′
𝑖0(0 ≤ 𝑖 ≤ 𝐾), we choose the Dijkstra algorithm to find the

shortest path for all 𝑝𝑖0 to 𝑝
′
𝑖0 and then choose the one with

minimal cost as the optimal path. It can be easily proved that

the solution is optimal based on the given graph.

(a) Cross Section (b) Graph

Fig. 2. Transformation of Cross Section to Graph

2.2. Cost Function

As we have stated in Section 2.1, the path obtained with the

proposed method is optimal. The segmentation result, how-

ever, also depends on the cost function of the graph. In other

words, the optimal path is based on the cost function. With

poor cost function, the segmentation result may not be good

although the path is optimal for that directed graph with par-

ticular edge cost. Here we propose a new cost function for the

edges in the graph.

For the cost of edge from 𝑝𝑎𝑏 and 𝑝𝑥𝑦 , the cost function is

defined as follows:
𝐶𝑜𝑠𝑡(𝑝𝑎𝑏, 𝑝𝑥𝑦) = 𝑒−(𝐺𝑎𝑏+𝐺𝑥𝑦)/𝜔1−𝐹 (𝑝𝑎𝑏,𝑝𝑥𝑦)/𝜔2 . (1)

The exponential function here is used to make the cost of edge

nonnegative. We use 𝜔1 and 𝜔2 to enlarge the difference of

the cost and balance the two parts as weights. The use of 𝐺𝑎𝑏

and 𝐺𝑥𝑦 is inspired by the method in [11].

𝐺𝑎𝑏 = g𝑎𝑏 ⋅ u𝑎𝑏, u𝑎𝑏 = 𝑢𝑛𝑖𝑡(𝑝𝑎𝑏 − 𝑐), 𝑢𝑛𝑖𝑡(m) = m/∣𝑚∣,
g𝑎𝑏 here denotes the gradient vector of 𝑝𝑎𝑏, 𝑐 is the center-

line point, and operator ⋅ is dot product. Different from [11],

we do not use the sum of 𝐺𝑎𝑏 on the circle to measure the

the medialness. Instead we use 𝐺𝑎𝑏 directly as a measure of

whether 𝑝𝑎𝑏 is a good candidate on the surface, and same for

𝐺𝑥𝑦. 𝐹 (𝑝𝑎𝑏, 𝑝𝑥𝑦) in Equation 1 is defined as follows:

𝑣 = 𝑢𝑛𝑖𝑡(𝑐−𝑝𝑟𝑒)×𝑢𝑛𝑖𝑡(𝑝𝑎𝑏−𝑝𝑥𝑦), 𝐹 (𝑝𝑎𝑏, 𝑝𝑥𝑦) = v⋅(g𝑎𝑏+g𝑥𝑦).

Operator × here denotes cross product. 𝐹 (𝑝𝑎𝑏, 𝑝𝑥𝑦) is the re-

sponse for 𝑝𝑎𝑏 and 𝑝𝑥𝑦 being neighboring nodes on the bound-

ary. As shown in Fig. 3, v here denotes the direction perpen-

dicular with 𝑝𝑎𝑏 − 𝑝𝑥𝑦. The response of 𝐹 (𝑝𝑎𝑏, 𝑝𝑥𝑦) should

be high if 𝑝𝑎𝑏 and 𝑝𝑥𝑦 are neighboring nodes on the boundary,

no matter whether they are on the same circle or not.

Fig. 3. Illustration of the Cost Fuction

3. STENOSIS DETECTION AND QUANTIFICATION

Current methods for stenosis quantification are either based

on minimal radius or area of cross section. However, different

shapes with same minimal radius or same area may represent

different stenosis degrees. Fig.4(a) shows a normal reference

shape of cross section. In Fig.4(b), the two round shape cross

sections have the same minimal radius, but obviously, the one

with smaller area is more seriously narrowing in all direc-

tions, compared with the shape in Fig.4(a). Area based quan-

tification methods also have problems in some cases. The

radii of healthy vessels sometimes may also decrease and then

increase while tracing towards the distal part. As shown in

Fig.4(c), the shape on the right, in some cases, may not be a

real stenosis area but just normal narrowing. The left shape,

however, is a real stenosis cross section with the horizontal di-

rection narrowed. The area based methods cannot distinguish

the difference between the two shapes. In this section, we pro-

(a) Normal

Reference

(b) Shapes with Same

Minimal Radius

(c) Shapes with

Same Area

Fig. 4. Cross Sections with Same Minimal Radius or Area
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pose a stenosis quantification method based on the optimal

cross section boundary obtained in Section 2. The accurate

cross section together with a reference radius associated with

each centerline point is obtained. First, the reference radii are

used to detect the candidate stenosis areas. The local minima

and maxima are found alternately, and then a threshold is used

to remove the candidate with small radius changes. Then, the

accurate cross section boundary for candidate local minimum

point is used to perform quantification. For a stenosis candi-

date centerline point 𝑐, 𝑅 is the average radius of the cross

sections of two neighboring local maxima, 𝑅𝑙𝑒𝑓𝑡 and 𝑅𝑟𝑖𝑔ℎ𝑡.

Then the new quantification is defined as follows:

𝑅𝑗 = 𝑅−∣𝑐−𝑝𝐼𝑗 ∣, 𝑆𝐺(𝑐) =
1

𝑁 ×𝑅2

∑
𝑗

[𝑅2
𝑗 +(𝑅𝑗 − �̄�)2]

𝑝𝐼𝑗 here denotes the 𝑗th point on the optimal path of the

cross section, which is associated with the candidate center-

line point with its reference radius as local minimum. �̄� rep-

resents the mean of 𝑅𝑗 . With this quantification method, 𝑆𝐺,

which denotes the stenosis grade, may distinguish the grade

of narrowing as well as the variance of the shape.

4. EXPERIMENTS

To evaluate the proposed method, we conduct experiments on

synthetic images and a series of clinical CTA images. In the

first group of experiments, a synthetic image without noise

is generated by setting the intensity of the voxels in the area

within the surface to 1200 and that of the voxels outside to

800. Besides, the cross sections of the synthetic images are

ellipses. Gaussian noise is added to the this synthetic image

to generate a series of noisy synthetic images.

We use accuracy and RMSE (root-mean-square error) as

evaluation measures. Suppose voxel 𝑝𝑘(1 ≤ 𝑘 ≤ 𝐽 × 𝑁)
is a boundary node obtained by our method. 𝐽 is the num-

ber of nodes on each cross section, and 𝑁 is the number of

cross sections. we label 𝑝𝑘 as an accurate voxel when its dis-

tance from the real boundary is within 1 voxel spacing, and an

inaccurate voxel otherwise. Then accuracy is defined as the

percentage of accurate voxels among all the 𝐽 ×𝑁 boundary

nodes obtained by our method. We define RMSE as follows:

RMSE =

√∑𝐽×𝑁
𝑘=1 (

√
𝐶𝑘 − 1)2

𝐽 ×𝑁
,

where 𝐶𝑘 = (𝑋𝑘 − 𝑚)2/𝑎2 + (𝑌𝑘 − 𝑛)2/𝑏2 and (𝑋𝑘, 𝑌𝑘)
are the 2D coordinates of 𝑝𝑘 on the cross sectional plane.

For a particular cross section, we assume the node (𝑥, 𝑦) on

the ground truth ellipse in 2D satisfies (𝑥 −𝑚)2/𝑎2 + (𝑦 −
𝑛)2/𝑏2 = 1, where (𝑚,𝑛) is the ellipse center. As shown

in Table 1, accuracy and RMSE results are good, showing

that our results are very close to the ground truth. Moreover,

the rendering surface of the ground truth and that of our es-

timation are given in Fig. 5. The two surfaces are similar

Table 1. Accuracy on Synthetic Images (𝜎 is noise level)

WithoutNoise 𝜎 = 200 𝜎 = 400 𝜎 = 600 𝜎 = 800

Accuracy 100% 100% 99.8504% 98.6595% 98.5233%

RMSE 0.0468 0.0522 0.0578 0.0643 0.0674

(a) Groundtruth Surface (b) Estimated Surface

Fig. 5. Segmentation on Synthetic Image

although the input synthetic image of the estimated result is

noisy (𝜎 = 600).

The second group of experiments are conducted on sev-

eral CTA images for coronary artery segmentation and steno-

sis detection. For finding the optimal cross section bound-

aries, radii range from 𝑟 − 0.9 to 𝑟 + 0.9 with fixed step of

0.3, and 𝑟 is the reference radius associated with the center-

line point. On each circle, 30 nodes are recorded. As a result,

the size of the graph matrix is 7 × 31. Fig. 6 shows the seg-

mentation results of a coronary artery tree. Fig. 7 gives some

Fig. 6. Segmentation Results for Real Images

experimental results of the optimal path method. In each row,

there are 3 images representing the original cross section area,

reference circular boundary from the Rotterdam Framework

[12], and the optimal boundary obtained with the proposed

method, respectively. As shown in the images, the circular

boundary, as an approximation, sometimes cannot represent

the real boundary very well. But the optimal paths obtained

with the proposed method fit the boundaries better in these

cases.

For stenosis detection, the local minima and maxima are

first found based on the reference radii, and then for each lo-

cal minimum satisfies 𝑟/𝑅𝑙𝑒𝑓𝑡 < 𝑇 and 𝑟/𝑅𝑟𝑖𝑔ℎ𝑡 < 𝑇 with

𝑇 = 0.95. Quantification is then done to evaluate the nar-

rowing of the cross sections. Fig.8(a) shows an image of the

stenosis area, and Fig.8(b) presents the corresponding optimal

cross section boundary with SG=0.23 for the local minimum

candidate in this stenosis area. We note that SG represents
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Fig. 7. Segmentation of Cross Sections

the narrowing degree of vessel, and the average SG value for

normal cross sections is around 0.03.

The proposed method is highly computationally efficient.

The whole segmentation procedure for a coronary artery tree

with 4 major branches can be done within 30 seconds on a

laptop with a 2.6GHz processor and 4GB RAM. In this pro-

cedure, the centerlines, reference radii, and the optimal cross

section boundaries are obtained. The automatic stenosis de-

tection and quantification can be done within only 1 second.

(a) Stenosis Area (b) Cross Sections of Stenosis

Fig. 8. Stenosis Area and Cross Section

5. CONCLUSION

In this paper, we propose a graph-based method to find the

optimal cross section boundary, which leads to an accurate

method for vessel segmentation. The voxels on the cross sec-

tional plane are transformed to nodes on a graph, by which

the objective of finding the optimal boundary is converted to

choosing the optimal graph path. A new cost function is also

proposed for finding a smooth, optimal boundary in the graph.

Based on the optimal cross section boundary, we propose a

stenosis detection and quantification method to measure the

narrowing of vessel. The proposed segmentation method is

highly computationally efficient and achieves promising per-

formance.
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