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ABSTRACT

In this paper, we propose an optimal segmentation method
for vascular forest structure based on graph cuts framework,
which has widely been used in recent years because of
its global optimal object segmentation property. However,
shrinking bias, a classical issue of the graph cuts methods,
sets up a barrier for the use of these methods on elongated
structures such as blood vessels, especially the complex vas-
cular tree and forest structures. To deal with this problem, a
new graph construction method and a new energy function
are proposed in this paper. The global optimal segmentation
of vascular forest structure can be obtained more efficiently,
while the shrinking bias can be overcome by the proposed
method. The method is compared with a classical graph cuts
method [1] and two methods [2, 3] for vascular tree structure
segmentation, and is demonstrated to be more accurate on
both the synthetic and clinical images, especially on noisy
images. Different from many other tree structure segmenta-
tion methods, the proposed method does not have to consider
the bifurcations explicitly.

Index Terms— Graph Cuts, Optimal Segmentation, 3D
Vascular Forest

1. INTRODUCTION

In recent years, minimum graph cuts (min-cut) framework
has become a widely used technique for object segmentation
[1, 4, 5, 6, 7, 8]. As described in [1], different from other pop-
ular segmentation methods, such as snakes, geodesic active
contours and methods based on level-set, min-cut/max-flow
method can be used to obtain global optimal segmentation
from computationally efficient energy minimization. How-
ever, the min-cut methods aim at minimizing the sum of the
cuts’ weights for a graph, and it is prone to have smaller (thin-
ner and shorter) resultant segmentation surfaces. This prob-
lem, namely shrinking bias [9, 10], is especially obvious for
segmenting elongated structures [9, 11]. Segmentation meth-
ods in [6, 7, 8] used min-cut method to obtain optimal surface
for single branch vessel. However, for the whole vessel tree,
a simple combination of different branch surfaces may not

work reliably, especially in the areas of bifurcation. To the
best of our knowledge, there are only a few methods [2, 3]
for vessel tree segmentation based on the min-cut framework
due to the shrinking bias for elongated structures, especially
the complex vascular tree structure. In these two methods
[2, 3], tubular structure segments in the whole volume are
first detected and then the segmentations are obtained with the
min-cut method. The exhaustive forest detection may lead to
the unwanted tiny vessel branches and noisy tissue being in-
cluded in the reconstructed vessel tree.

In this paper, we show that accurate segmentation of
vascular forest structure can be obtained with the proposed
method. There are four favorable properties of the proposed
method. (i) With the new energy term incorporating the tubu-
lar prior and the new graph construction method, the proposed
method can avoid the shrinking bias which is a classical is-
sue of the graph cuts methods. (ii) The proposed method is
highly computationally efficient. The new graph construc-
tion method eliminates the unrelated voxels, and also deletes
the edges connecting seed points. These make the proposed
method a highly computationally efficient method without
affecting the segmentation performance. (iii) Different from
many other tree structure segmentation methods, bifurcations
do not require particular consideration with the proposed
method. (iv) The segmentation result is global optimal thanks
to the min-cut/max-flow framework exploited.

2. OPTIMAL SEGMENTATION FOR VASCULAR
FOREST STRUCTURE

For min-cut methods, graph construction and energy function
are the two major factors affecting the segmentation perfor-
mance. In this method, a new graph construction and a new
energy function are proposed to obtain an optimal segmenta-
tion efficiently while eliminating the shrinking bias.

2.1. Multiple Sources and Sinks Graph Construction

The proposed graph construction method is described in
Algorithm 1. To avoid the shrinking bias and make the seg-
mentation more efficient, the centerlines of the forest struc-
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Algorithm 1: Graph Construction for Forest Segmentation

Require: 𝐼𝑉 – image voxels, 𝑆𝑒𝑒𝑑𝑠 – seed points for finding
centerline, 𝑚 – multiple factor, 𝛿 – small threshold.

1: for each voxel 𝐼𝑉𝑖 in 𝐼𝑉 , do 𝐿𝑎𝑏𝑒𝑙(𝐼𝑉𝑖) =U.
2: Find the centerline points (𝐶) and associate radii (𝑅) of the

forest structure with 𝑆𝑒𝑒𝑑𝑠 using method in [12].
3: for each voxel 𝐶𝑖 in set 𝐶 do 𝐿𝑎𝑏𝑒𝑙(𝐶𝑖) = S.
4: for each voxel 𝐼𝑉𝑗 with its distance from 𝐶𝑖,

𝑑𝑖𝑠(𝐼𝑉𝑗 , 𝐶𝑖) ≤ 𝑚 ∗𝑅𝑖 + 𝛿 do
5: if ∣dis(𝐼𝑉𝑗 , 𝐶𝑖)−𝑚 ∗𝑅𝑖∣ ≤ 𝛿 & 𝐿𝑎𝑏𝑒𝑙(𝐼𝑉𝑗) =U
6: then 𝐿𝑎𝑏𝑒𝑙(𝐼𝑉𝑗) =T
7: else if dis(𝐼𝑉𝑗 , 𝐶𝑖) < 𝑚 ∗𝑅𝑖 − 𝛿 & 𝐿𝑎𝑏𝑒𝑙(𝐼𝑉𝑗)! =S
8: then 𝐿𝑎𝑏𝑒𝑙(𝐼𝑉𝑗) =B
9: end for

10: end for
11: 𝑉 = {𝐼𝑉𝑖∣𝐿𝑎𝑏𝑒𝑙(𝐼𝑉𝑖) = {𝑆, 𝑇,𝐵}}∪𝑆𝑆

∪
𝑆𝑇 ,

𝐸 = {𝑒(𝑉𝑖, 𝑉𝑗)∣𝑒(𝑉𝑖, 𝑉𝑗) ∈ 𝑁} ∪ {𝑒(𝑆𝑆, 𝑆𝑖)}
∪ {𝑒(𝑇𝑗 , 𝑆𝑇 )},

where 𝑁 is the set of edges consisting of neighboring nodes,
𝑆𝑖 and 𝑇𝑗 are nodes labeled as S and T.

12: return 𝐺 = {𝑉,𝐸}

ture are first extracted. Without sufficient information about
the elongated structure, the graph cut method has preference
for finding a shorter segment since it aims at minimizing the
sum of weights on the cuts of the graph. The shrinking bias
can be solved if the centerline points are given as seeds. After
obtaining the centerline and the reference radii, all voxels in
the image are labeled as either sources (labeled S, centerline
points), sinks (labeled T, outer boundary points), graph nodes
(labeled B, points in between), or unrelated points (labeled U)
according to Algorithm 1 with 26-neighborhood connectiv-
ity. The geometric relation between different kinds of points
are sketched in Fig.1(a) and the constructed directed graph
is shown in Fig.1(b). A super source (SS) connected to all
sources and a super sink (ST) connected to all sinks are also
added for implementation purpose. The proposed graph con-
struction method eliminates the unrelated voxels while in-
cluding all possible voxels in the vascular forest and the vox-
els nearby. As a result, the computation efficiency is improved
significantly while the segmentation performance is not af-
fected. In some cases, the accuracy is even higher since the
unrelated noisy parts are excluded. The output of the algo-
rithm is just a graph structure, and the directed graph edge
weights are then set according to Table 1. With the graph
structure and edge weights, min-cut/max-flow optimization
[13, 14] is applied to obtain the optimal segmentation.

2.2. Cost Function

As we have mentioned in Section 1, the segmentation perfor-
mance also depends on the cost function of the graph. Given
a graph 𝐺(𝑉,𝐸), the following energy framework is used in
energy-based min-cut methods,

𝐸(𝐿) = 𝜆1 ⋅ 𝐸𝐴(𝐿) + 𝜆2 ⋅ 𝐸𝐵(𝐿), (1)

(a) Geometric relation (b) Graph construction

Fig. 1. Multiple Sources and Sinks

in which, 𝐿 = {𝐿𝑖, 1 ≤ 𝑖 ≤ ∣𝑉 ∣} represents the label set of
all nodes in 𝐺. 𝐿𝑖 can be either “vessel” or “background”,
different from the initialization labels(S,T,U,B) in Algorithm
1 which aims at selecting candidate nodes and providing ini-
tialization for min-cut method, 𝐿 here is the result label set
obtained with min-cut method by optimizing energy term in
Equation 1. 𝐸𝐴(𝐿) and 𝐸𝐵(𝐿) represents the regional term
and boundary term respectively. 𝐸𝐴(𝐿) represents the sum
of penalty for assigning the voxels to the label set 𝐿. In most
cases, the penalty is defined only according to the intensity
histogram, such as [1, 3]. In the proposed method, we define
a new formulation of 𝐸𝐴(𝐿), which incorporates both inten-
sity histogram and vessel shape information.

𝐸𝐴(𝐿) =
∑

1≤𝑖≤∣𝑉 ∣
𝐸𝐴(𝐿𝑖)

=
∑

1≤𝑖≤∣𝑉 ∣

𝑃𝑣(𝐿𝑖, 𝑣𝑖) ⋅𝐻(𝐿𝑖, 𝐼𝑖)

𝑃𝑣(𝐿𝑖, 𝑣𝑖) ⋅𝐻(𝐿𝑖, 𝐼𝑖) + 𝑃𝑣(𝐿𝑖, 𝑣𝑖) ⋅𝐻(𝐿𝑖, 𝐼𝑖)
.

(2)

𝐻 here gives two intensity histograms for “vessel” and
“background”. The histograms are normalized by the sum of
the density, so they represent the probability density given the
intensity. 𝐿𝑖 means the opposite label of 𝐿𝑖. Here we change
the dual-sigmoidal filter from [15] and make it as 𝑃𝑣(𝐿𝑖, 𝑣𝑖).
Different from [15], in which the dual-sigmoidal filter is used
as an intensity refractive index for wave propagation, we use
the new filter 𝑃𝑣(𝐿𝑖, 𝑣𝑖) as the prior probability of 𝑣𝑖 being
“vessel” or “background”.

𝑃𝑣(𝐿𝑖, 𝑣𝑖) =

{
1

1+exp(𝜏)
if 𝐿𝑖 = “𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑”;

1
1+exp(−𝜏)

if 𝐿𝑖 = “𝑣𝑒𝑠𝑠𝑒𝑙”,
(3)

𝜏 = 𝑎 ⋅ (dis(𝑣𝑖, 𝑐𝑗)−𝑅𝑗);

Here dis(𝑣𝑖, 𝑐𝑗) is the distance between 𝑣𝑖 and associ-
ated centerline point 𝑐𝑗 , 𝑅𝑗 is the reference radius of 𝑐𝑗 , and
𝑎 can be viewed as the slope of the filter. 𝑃𝑣(𝐿𝑖, 𝑣𝑖) is a
good vessel indicator given the reference radius. The sum of
𝑃𝑣(”𝑣𝑒𝑠𝑠𝑒𝑙”, 𝑣𝑖) and 𝑃𝑣(”𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑”, 𝑣𝑖) is 1 for each
𝑣𝑖, and when the distance between 𝑣𝑖 and 𝑐𝑗 is 𝑅𝑗 , the prior
probability of node 𝑣𝑖 being a vessel point is 0.5. 𝐸𝐵(𝐿) in
Equation 1 is defined similar to the boundary term in [1],

𝐸𝐵(𝐿) =
∑

𝑒{𝐵𝑖,𝐵𝑗}∈𝑁

𝐸𝐵𝑖,𝐵𝑗 ⋅ 𝛿𝐿𝐵𝑖 ∕=𝐿𝐵𝑗
;
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𝐸𝐵𝑖,𝐵𝑗 =

{
exp

(
− ∇2

2𝜔2

)
⋅ dis(𝐵𝑖, 𝐵𝑗)

−1 if 𝐼𝑖 > 𝐼𝑗 ;

1 if 𝐼𝑖 <= 𝐼𝑗 .
(4)

∇ is the intensity difference. After defining the energy
terms in Equation 1 as optimization objective, we now give
the details of edge weight assignment in Table 1. With these
weights assigned to the directed edges in the constructed
graph, the energy term in Equation 1 can be optimized with
the min-cut method.

Different with some other applications in which region of
interest is easy to extract, 3D coordinates of vascular forest
structure spread over large area and the structure is complex.
With this new graph construction method, unrelated points
(labeled U) in the image are eliminated; otherwise, it may
be demanding on RAM and the computation time will be
really long. For example, with the proposed method, only
around 500,000 nodes are considered for a image with its size
512*512*288 when the multiply factor 𝑚 is set to 2. The
time complexity for running the Ford-Fulkerson Algorithm is
𝑂(∣𝐸∣ ⋅ ∣𝑓 ∗ ∣). Obviously, ∣𝑓 ∗ ∣, the value of maximum flow,
becomes smaller if the number of nodes is smaller. ∣𝐸∣ is the
number of edges, and it is in proportion to ∣𝑉 ∣ in our graph.
As a result, the time complexity of the proposed method is
at most 1/150 of the methods considering all voxels in the
image. In the mean time, the proposed multiple source and
sink graph construction method does not have edges within
seed sets (S and T), which also reduces the number of edges
remarkably.

The new region energy term exploited in this method in-
corporates the new sigmoidal filter as the prior probability of
nodes being either “vessel” or “background”. This improves
the reliability of the segmentation and also helps to avoid the
problem of shrinking. The shrinking along the elongated di-
rection is avoided by using the obtained centerlines, which
outline the skeleton of the forest structure.

Table 1. Edge Weights

Directed Edges Cost
Boundary Energy e{𝐵𝑗 , 𝐵𝑝} 𝜆2𝐸𝐵𝑖,𝐵𝑗

Region Energy e{𝑆𝑆,𝐵𝑗} 𝜆1𝐸𝐴(𝐿𝐵𝑗
= “𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑”)

e{𝐵𝑗 , 𝑆𝑇} 𝜆1𝐸𝐴(𝐿𝐵𝑗
= “𝑣𝑒𝑠𝑠𝑒𝑙”)

Other Setting e{𝑆𝑖, 𝐵𝑗},e{𝐵𝑗 , 𝑇𝑘},
e{𝑆𝑆, 𝑆𝑖},e{𝑇𝑘, 𝑆𝑇}

∞

3. EXPERIMENT AND VALIDATION

For method evaluation, we compared the proposed method
with three related methods in [1, 2, 3] on both synthetic im-
ages and clinical CTA images. Since the method in [1] is not
designed for tree nor forest structure segmentation, the com-
parison with this method is only carried out on synthetic im-
age 1. The other two methods, to the best of our knowledge,
are the only existing methods for vascular forest structure seg-
mentation based on min-cut framework.

Fig. 2. Synthetic Images

The method in [2] construct a graph for ROI, which is a
essential step for skeleton based graph cuts methods. There
are differences between the method in [2] and our method
in both cost function and graph construction. As for graph
construction, the proposed method uses centerline points as
source points and a outer boundary with radius 𝑚 ∗𝑅 as sink
points, while [2] uses a constant 𝑑𝑚 as the distance between
sources and estimated surface, and also for estimated surface
and sinks. Another difference is that in the proposed method,
we do not have graph edges within the source points set and
also the sink points set. This is reasonable and the graph ob-
tained may have much less edges, which makes the optimiza-
tion more efficient. In all experiments, for the sake of fairness,
the same set of seed points (S and T), and the graph con-
structed with the proposed method were given to all methods
as initialization. These seed points should be adequate for all
methods [1, 2, 3] to obtain accurate results. For the proposed
method, we set 𝜆1 = 𝜆2 = 1, the slope of the new sigmoidal
filter (Equation 3) 𝑎 = 2, and multiple factor 𝑚 = 2 in all
experiments on both the synthetic images and real images.
While 𝜔 in Equation 4 was set to 200 in the synthetic exper-
iments and 20 for the real images because this parameter is
closely related to image intensity range. For the other three
methods, all parameters were set according to the original pa-
rameters given in the papers, except the 𝜔s, which should be
adjusted according to the image data. And the setting of 𝜔s
are same as the setting of the proposed method.

Table 2. Accuracy on Synthetic Image 1
𝜎 (noise level) 200 400 600 800 1000

Our method 100% 99.67% 97.98% 93.63% 91.61%
Boykov et.al., 2006 [1] 100% 99.84% 93.25% 89.79% 85.78%

The synthetic vascular images (Fig.2) were generated by
setting the vessel intensity to 1200 and background intensity
to 800. Gaussian noise was added to this synthetic image to
generate a series of noisy synthetic images. The experimental
results for method comparison on synthetic images are listed
in Table 2 and Table 3. The accuracy is calculated as the per-
centage of the nodes that are labeled correctly. As listed in
the tables, as the noise level increases, the accuracy of meth-
ods in [1, 2, 3] decreases quickly while the proposed method
still gives accurate segmentations. In [1], both the boundary
energy and regional energy are only based on intensities. For
the method in [2], only boundary energy which represents the
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Table 3. Accuracy on Synthetic Image 2(𝜎 is noise level)
WithoutNoise 𝜎 = 100 𝜎 = 200 𝜎 = 250 𝜎 = 300 𝜎 = 350 𝜎 = 400

Our method 100% 100% 99.8246% 98.8296% 97.0342% 95.3358% 94.1446%
Bauer et.al., 2010 [2] 100% 95.8611% 95.858% 95.8035% 93.6116% 91.2567% 84.2667%

Esneault et.al., 2010 [3] 100% 100% 99.822% 99.0616% 96.1051% 88.4362% 79.3804%

changes between neighboring nodes is used. Without the help
of regional energy, the method may not be robust when the
noise level increases. Vessel energy term used in [3] needs to
compete with the boundary energy, region energy when the
noise level increases. Different from these methods, we in-
corporate the new sigmoidal prior probability of nodes being
“vessel” or “background” in the region energy, and this in-
creases the robustness of the proposed method.

(a) Result for [2] (b) Result for [3] (c) Our method

Fig. 3. Segmentation Results for Real CTA Image

Experiments have also been carried out on real CTA im-
ages for coronary artery segmentation. For visualization and
evaluation, we transformed the implicit segmentation results
into explicit boundaries by finding points with both “vessel”
and “background” neighbors. Fig. 3 presents a comparison
of rendering results of coronary artery forest boundaries ob-
tained with our method and the methods in [2, 3]. The ren-
dering surfaces of our method are smoother than those of the
other two method. And Fig. 4 shows some resultant slides
obtained with the three methods. The surfaces for [2] seems
smoother than that of [3], however, without the help of re-
gional energy, the method in [2] may suffer from shrinking
problem, which makes some distal part thinner than the real
segmentation and the rendering surface is hackly as shown in
Fig. 3.

The experiments on the synthetic images and the clinical
data demonstrate that the proposed method performs better
than the other methods thanks to the newly proposed energy
terms. It should be noted that with the proposed method,
forest structure segmentation can be optimized altogether. As
such, different from vascular tree and forest segmentation
methods, bifurcation areas do not require particular consider-
ation.

The optimization procedure for a coronary artery forest
with 4 major branches in a 512*512*288 CTA image can be
done within 2 seconds on a laptop with a 2.6 GHz processor
and 8GB RAM. While as reported in [1], objects in the images
with size about 1/10 to 1/20 of our images can be segmented
in 10-30 seconds. This result gives a similar demonstration

Fig. 4. Comparison of Segmentation Result Slides. (from left to
right: the original image, the results of our method, [3] and [2].)

with the theoretical computation complexity discussed in Sec-
tion 2.2 that the time complexity of the proposed method is
about 1/150 of the methods considering all voxels in the im-
age.

4. CONCLUSION

In this paper, we have proposed an optimal segmentation
method for vascular forest structure based on graph cuts
framework. To solve the shrinking bias problem, a new graph
construction method and a new energy function are proposed
in this paper. The global optimal segmentation of tubular
forest structure can be obtained more efficiently, while the
shrinking bias can be overcome by the proposed method.
The method has been compared with the classical graph cuts
method [1] and two methods [2, 3] for vascular forest struc-
ture segmentation on both synthetic and clinical images, and
has been shown to be more accurate than these methods, es-
pecially on noisy images. The computation efficiency is about
1/150 of the methods considering all voxels in the image.
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