
3D Vascular Segmentation using MRA Statistics

and Velocity Field Information in PC-MRA

Albert C. S. Chung1, J. Alison Noble1, Paul Summers2 and Michael Brady1

1 Department of Engineering Science, Oxford University, Oxford, United Kingdom.
{albert,noble,jmb}@robots.ox.ac.uk

2 Department of Clinical Neuroscience, King’s College, London, United Kingdom.
p.summers@iop.kcl.ac.uk

Abstract. This paper presents a new and integrated approach to auto-
matic 3D brain vessel segmentation using physics-based statistical models
of background and vascular signals, and velocity (flow) field information
in phase contrast magnetic resonance angiograms (PC-MRA). The pro-
posed new approach makes use of realistic statistical models to detect
vessels more accurately than conventional intensity gradient-based ap-
proaches. In this paper, rather than using MRA speed images alone,
as in prior work [7, 8, 10], we define a 3D local phase coherence (LPC)
measure to incorporate velocity field information. The proposed new ap-
proach is an extension of our previous work in 2D vascular segmentation
[5, 6], and is formulated in a variational framework, which is implemented
using the recently proposed modified level set method [1]. Experiments
on flow phantoms, as well as on clinical data sets, show that our ap-
proach can segment normal vasculature as well as low flow (low SNR) or
complex flow regions, especially in an aneurysm.

1 Introduction

Intracranial aneurysms are increasingly treated using an endovascular technique
known as the Guglielmi detachable coil (GDC) method in which platinum coils
are guided through the blood vessels for placement in an aneurysm to induce
thrombosis. To increase the success rate and procedural safety of the treatment,
radiologists need a comprehensive and patient-specific understanding of the 3D
shape, size and position of each aneurysm as well as the vasculature in the vicinity
of the aneurysm. This has created the need to develop 3D vascular reconstruction
and analysis methods for Magnetic Resonance Angiograms (MRA).

Aneurysm segmentation is a more complicated problem than vascular seg-
mentation. In particular, regions inside an aneurysm can exhibit complex flow
pattern and low flow rate. These phenomena, which induce significant signal
loss and heterogeneous signal level within the aneurysm, lower the visibility of
the aneurysm and make segmentation difficult. Most prior vascular segmenta-
tion techniques [7, 8, 10], which use TOF-MRA or speed images from PC-MRA,
are not sufficient to recover the complete shape of the aneurysm because the
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aneurysm region does not always form a piecewise homogeneous intensity parti-
tion with sharp (intensity) boundaries. Equally, conventional edge-based meth-
ods often do not work well because the true vessel boundaries may not have a high
signal-to-noise ratio (SNR) or intensity gradient. To overcome these problems,
we propose an original approach to segmenting aneurysms, as well as normal
vasculature, on the basis of original velocity field information (measured by local
phase coherence, LPC) and a tailored statistical description of PC-MRA speed
images. In this paper, we build on our previous work [5, 6] to pose 3D vascu-
lar segmentation as a variational problem. The implementation is realised using
the modified level set method [1]. The new approach does not require intensity
gradient information. Experiments on flow phantoms and on clinical data sets
show that the new approach can achieve better quality segmentation in PC-
MRA images than either the conventional intensity gradient-based approach, or
an approach that uses PC-MRA speed images alone.

2 Segmentation using MRA statistics of the speed images

This section begins by discussing a potential problem of using intensity gradient-
based techniques in MRA segmentation, and then goes on to present a new
segmentation method using MRA statistics of speed images. Figure 1a shows
a typical vessel cross-section and illustrates an example of segmentation using
an intensity gradient-based approach in MRA speed images. Within a slice, the
optimal contour is defined as minC

∮
C

g · ds, [8, 9], where the intensity gradient
function g is defined as 1/(1+ |5G⊗ I |2); the Gaussian variance was set to 0.5
in this implementation. The intensity gradient function tends towards zero in
regions of high intensity gradient. It should be noted that the optimal contour
lies inside the vessel rather than on the vessel boundary because the low SNR
regions (near the boundary) cannot provide sufficiently high intensity gradient
(Figure 1a).

(a) (b)

Fig. 1. Cross-sections of vessel and contours found by (a) intensity gradient-based
approach and (b) a method using MRA statistics of the speed images

To counter this, we employ the statistical background and vascular signal
models we developed in prior work [5, 6] for detecting vessel boundaries. Briefly,
the models are based on the physics of MRA image formation and the assump-
tion of laminar flow. We have shown that the background and vascular signal
intensity values in speed images follow a Maxwell-Gaussian mixture distribu-
tion and uniform distribution respectively [6]. In this new method, S is defined
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as a family of parametric surfaces. S is defined as [0, 1] × [0, 1] × [0,∞) → <3

and (q, t) → S(q, t), where q and t are the space and time parameters respec-
tively. Suppose that Pv and Pb are the posterior probabilities of the vessel and
background at each voxel respectively. A probabilistic energy functional is then
defined as Es(t) =

∫
Inside S

−Pv ·dV +
∫

Outside S
−Pb ·dV , where dV is a volume

element. Minimising the probabilistic energy Es amounts to finding an optimal
surface in which the total posterior probability is maximum. Solving the Euler-
Lagrange equation with the divergence theorem, the evolution equation of the
surface S can be obtained. This is given by

∂S

∂t
= (Pv − Pb) · N̂ , (1)

where N̂ is the unit outward normal of the surface S and −1 ≤ Pv−Pb ≤ 1. This
equation governs the motion of geodesic flow towards the minimum and has been
implemented using the modified level-set method [1]. Figure 1b illustrates the
result obtained using the proposed new approach. It is a significant improvement
compared with Figure 1a, as the detected boundaries are correctly placed on the
true vessel boundaries.

3 LPC and integration with MRA statistics

PC-MRA generates a velocity field by measuring the three orthogonal phase
shifts at each voxel. These are directly proportional to the corresponding speeds
along the three directional components. By examining the velocity field, it has
been observed experimentally that, within the vasculature, blood motion tends to
be locally coherent [4]. In prior work we exploited this fact to propose a measure
of 2D LPC as a constraint to improve the quality of vascular segmentation [6].

Fig. 2. (a) Speed and (b) LPC images

Specifically, 2D LPC is defined as follows: Given a 3x3 planar mask with a
centre on voxel c and that each matrix element, except c, contains a normalised
vector indicating the flow direction in 3D, eight pairs of adjacent 3D vectors are
formed. The 2D LPC at c is the sum of the dot products of the eight adjacent
vector pairs. 3D LPC is then defined as follows: Given three mutually orthogonal
planes, three 3x3 planar masks are applied at c and three 2D LPC measures are
obtained along each plane. The 3D LPC at c is the average of the three 2D LPC
measures. Note that the higher the value, the more coherent the blood motion.
Figure 2a shows a MRA speed image, in which the intensity values in the middle
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of the vessel are low and some voxels have intensity values almost as low as the
background. However, the 3D LPC image is more homogeneous, with the inside
regions exhibiting high LPC values with small variance (Figure 2b).

We then combine the physics-based MRA statistics and velocity field informa-
tion (measured by LPC) in PC-MRA data as follows. A LPC energy functional

can be defined as Elpc(t) =
∫

Inside S

(P−µi)
2

Ni
·dV +

∫
Outside S

(P−µo)2

No
·dV , where

P is the 3D LPC value, Elpc is an energy term representing the total variance of
LPC values, µi and µo are the means of LPC values, Ni and No are the number
of voxels, subscripts i and o denote inside and outside the surface respectively.

To integrate MRA statistics and LPC, we define the total energy Etotal as a
weighted sum of the probabilistic energy ES and LPC energy Elpc, as given by
Etotal(t) = Ws ·ES(t) + Wlpc ·Elpc(t), where WS and Wlpc are weights attached
to the energy terms. Using the Euler-Lagrange equation with the divergence
theorem, we obtain the evolution equation of surface S, which is ∂S

∂t
= (Ws ·

FS + Wlpc · Flpc) · N̂ , where FS ≡ Pv − Pb (MRA Statistics Force), Flpc ≡
(P−µo)2

No
− (P−µi)

2

Ni
(LPC Force) and N̂ is the outward surface normal. To maintain

similarity of forces and polarity of the LPC force, the LPC force is normalised so
that it is dimensionless and its polarity is maintained. As such, the normalised

LPC force is given by F
′

lpc = sign(Flpc) ·
|Flpc|

|Flpc|max
. The equation of motion can

then be re-expressed as:

∂S

∂t
= (Ws · FS + Wlpc · F

′

lpc) · N̂ , (2)

where −1 ≤ FS , F
′

lpc ≤ 1. The weights need not sum to one and can be adjusted
according to the application. Both were set to one in this implementation.

For this application, we used a sub-voxel level set method for accurate surface
representation [1]. In addition, to avoid signed distance function re-initialisation,
we maintained the signed distance function in every update of the surface by
using the Fast Marching method to build the extension forces in all non-zero level
sets. The level-set version of Eq. 2 is given by ∂φ

∂t
+(Ws ·FS +Wlpc ·F

′

lpc)·|∇φ| = 0,
where φ is the evolving level set function. We constructed the initial surface So

near the optimal solution using global thresholding [5]. We have found that the
convergence rate of the motion equation depends on the size of the aneurysm.
The convergence of our implementation is usually reached within 30 iterations
for a large aneurysm (12-25mm diameter) and more than 100 iterations for a
giant aneurysm (> 25mm diameter).

4 Results

Phantom Study (I): The segmentation approach was validated using a geomet-
rically accurate straight tube with an 8mm diameter (SST Phantom). The tube
was scanned using a PC-MRA protocol on a 1.5T GE MR scanner. The data
volume was 256x256x81 voxels with voxel dimensions of 0.625mm x 0.625mm
x 1.3mm. The flow rate was constant (40cm/s). For ease of reference, we use
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EDGE, STAT, STAT-LPC to refer to an intensity gradient-based approach, the
approach using MRA statistics on speed images alone (WS = 1 and Wlpc = 0
in Eq. 2), and the approach using MRA statistics and LPC respectively. All 3
approaches were implemented using the modified level set method and the same
initial surface. The EDGE algorithm followed the method proposed by Lorigo et.
al. [8]. As the tube diameter was known, detection accuracy could be quantified
by an area measurement error, i.e. [1− (Areameasured/Areatrue)] × 100%. The
area measurement errors of EDGE, STAT and STAT-LPC are shown in Figure
3, in which smaller image slice numbers represent the inflow region of the tube.
The SNR of the images decreases with increasing slice number due to progres-
sive saturation of fluid. Also, it is known that imperfections in velocity encoding
due to non-linearities in the gradient systems can cause a position dependent
deviation in the velocity images [3]. These two factors may have influenced the
behaviour of our segmentation method. Note that the area measurement error
increases as the slice number increases, where the delineation of true boundary
is adversely affected by the partial volume artifact and low SNR. Considering
all slices of the tube, the average area measurement errors of EDGE, STAT and
STAT-LPC were 34.77% , 16.11% and 12.81% respectively. This demonstrates
that STAT-LPC gives more accurate vessel boundaries than EDGE or STAT.

Fig. 3. The area measurement errors (see text for details)

Phantom Study (II): The approach was applied to an in-vitro silicon aneurysm
model (Middle Celebral Artery Bifurcation Aneurysm-MCA), as shown in Fig-
ure 4c. The model was scanned using the PC-MRA protocol as before. The data
volume size 256x256x23 voxels with voxel dimensions of 0.8mm x 0.8mm x 1mm.
Mean flow rate was set to 300 ml/min. Figures 4a and 5a show the 3D reconstruc-
tion and a cross-section of the MCA aneurysm respectively, in which the results
of segmentation using MRA statistics on speed images alone are shown. Sig-
nificant segmentation improvement is achieved using the segmentation method
which utilises both MRA statistics and LPC, as shown in Figures 4b and 5b.
The small circle in the middle of Figure 5b represents the singular point of the
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velocity field, where the flow is almost zero. It does not affect the quality of
visualisation in 3D because it lies inside the aneurysmal surface, and can easily
be removed. Indeed, this is a useful feature to detect because it indicates to a
radiologist the position of stagnant flow inside the aneurysm.

Fig. 4a. 3D reconstructed
aneurysm model using
MRA statistics alone

Fig. 4b. 3D reconstructed
aneurysm model using
MRA statistics & LPC

Fig. 4c. Digital camera
view of the aneurysm
model

Fig. 5a. Model Fig. 5b. Model Fig. 6a. Patient 1 Fig. 6b. Patient 1

Fig. 7a. Patient 2 Fig. 7b. Patient 2 Fig. 8a. Patient 3 Fig. 8b. Patient 3

Case studies: Intracranial scans of 3 patients were acquired using the PC-
MRA protocol as before. Each data set consists of 256x256x28 voxels of 0.8mm
x 0.8mm x 1mm each. We compare segmentation using MRA statistics alone and
using MRA statistics and LPC on the three volumes. As shown in Figures 6a, 7a
and 8a, the segmentation with MRA statistics alone is good overall but fails in
the middle of the aneurysms because of low blood flow, which cannot generate
a sufficiently high intensity signal for vessel detection. Figures 6b, 7b and 8b
show significant segmentation improvements using MRA statistics and LPC. As
in the case of Figure 5b, the delineated contour in Figure 8b does not enclose
the whole aneurysm. 2 major causes are likely. First, the flow rate inside the
aneurysm was extremely low, which led to serious corruption of velocity field by
noise. Secondly, a circular (or deformed circular) flow pattern was formed, which
generated singularities in the aneurysm centre. These affect the LPC measure.
However, Figure 8b represents a large improvement compared with Figure 8a,
and the hole in the middle does not affect the quality of visualisation.
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5 Conclusions

A new and integrated approach to automatic 3D brain vessel segmentation has
been presented, which combines physics-based statistical models of background
and vascular signals, and velocity (flow) field information in the PC-MRA data.
In this paper, rather than using the MRA speed images alone, as in prior work
[7, 8, 10], we have defined a local phase coherence measure to incorporate the
velocity field information. The proposed approach has been formulated in a
variational framework implemented using the modified level set method [1].

The proposed new approach was applied to two flow phantoms (a straight
tube and an aneurysm model) and three clinical data sets. Using a geometrically
accurate flow phantom, it has been shown that our approach can detect vessel
boundaries more accurately than either the conventional intensity gradient-based
approach, or an approach using MRA speed images alone. The results of experi-
ments on an aneurysm model and clinical data sets show that our approach can
segment normal vasculature as well as the low or complex flow regions, especially
regions near vessel boundaries and regions inside aneurysms. Future studies will
compare these segmentation methods on a larger number of clinical aneurysms.
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