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Abstract. In this paper, a novel spatial feature, namely maximum
distance-gradient-magnitude (MDGM), is defined for registration tasks.
For each voxel in an image, the MDGM feature encodes spatial informa-
tion at a global level, including both edges and distances. We integrate
the MDGM feature with intensity into a two-element attribute vector
and adopt multi-dimensional mutual information as a similarity mea-
sure on the vector space. A multi-resolution registration method is then
proposed for aligning multi-modal images. Experimental results show
that, as compared with the conventional mutual information (MI)-based
method, the proposed method has longer capture ranges at different im-
age resolutions. This leads to more robust registrations. Around 1200 ran-
domized registration experiments on clinical 3D MR-T1, MR-T2 and CT
datasets demonstrate that the new method consistently gives higher suc-
cess rates than the traditional MI-based method. Moreover, it is shown
that the registration accuracy of our method obtains sub-voxel level and
is acceptably high.

1 Introduction

A key issue in the medical imaging field is multi-modal image registration, which
can integrate complementary image information from different modalities. The
task of image registration is to reliably identify a geometric transformation to
accurately align two images.

A crucial element in the registration process is a similarity measure to deter-
mine how well the images match with each other through a hypothesized spatial
transformation. General promising results have shown that mutual information
(MI) as a voxel intensity-based similarity measure is well-suited for multi-modal
image registration [1, 2]. However, it has been suggested that the conventional
MI-based registration can result in misalignment for some cases [3, 4] and then
room for improvement exists. The standard MI measure only takes intensity val-
ues into account. Therefore, a known disadvantage is the lack of concern on any
spatial information (neither local nor global) which may be present in individual
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images to be registered [5, 6]. As a simple illustration, a random perturbation of
image points identically on both images results in unchanged MI value as that
of the original images.

Several researchers have proposed adaptations of the MI-based registration
framework to incorporate spatial information of individual images. Butz et al.
[7] applied MI to edge measure (e.g., gradient magnitude) space, which was
meant to align object surfaces in images. However, MI based on edge measure
is sensitive to the sparseness of joint edge feature histograms. This may increase
the difficulty of the optimization procedure. Pluim et al. [4] incorporated spatial
information by multiplying the conventional MI measure with an external local
gradient term to ensure the alignment of locations of tissue transitions in images.
The probing results indicated that the registration function of the combined
measure was smoother than that of the standard MI measure. But this approach
does not actually extend the MI based similarity measure. Moreover, Rueckert
et al. [6] exploited higher-order mutual information for 4D joint histograms. To
include local spatial information present by neighboring point pairs, the 4D joint
histograms were built on the co-occurrence of intensity pairs of adjacent points.
This method was shown to be robust with respect to local intensity variation.
However, only one neighbor is considered at a time in this approach and plenty of
spatial information which may be present globally or within large neighborhood
system has been ignored.

In this paper, a new spatial feature, namely maximum distance-gradient-
magnitude (MDGM), is defined for registration tasks. The MDGM feature en-
codes spatial information for each voxel in an image at a global level, which is
about the distance of a voxel to a certain object boundary. In order to improve
the conventional MI-based registration framework, we integrate the MDGM fea-
ture with intensity to form a two-element attribute vector for each voxel in
individual images. Then, multi-dimensional mutual information is exploited as
a similarity measure on the attribute vector space. To increase computation ef-
ficiency and robustness of the proposed method, the registration procedure is a
multi-resolution iterative process.

Based on the results on clinical 3D MR-T1, MR-T2 and CT image volumes, it
is experimentally shown that the proposed method has relatively longer capture
ranges 1 than the conventional MI-based method at different image resolutions.
This can obviously make the multi-resolution image registration more robust.
Moreover, the results of around 1200 randomized registration experiments reveal
that our method consistently gives higher success registration rates than the
traditional MI-based method. Finally, it is demonstrated that our method can
obtain acceptably high registration accuracy in sub-voxel level.

The organization of the paper is as follows. Section 2 formulates spatial infor-
mation as a novel MDGM feature. Our multi-modal image registration method
is proposed in Section 3. Some implementation details are given in Section 4.

1 Capture range represents the range of alignments from which a registration algorithm
can converge to the correct maximum.

MI singU MDGM
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Section 5 presents the experimental results and discussions. The conclusion is
drawn in Section 6.

2 Spatial Feature Definition

Given an image pair and a geometric transformation, we aim at evaluating a
novel multi-dimensional mutual information based registration criterion. In our
proposed approach, each voxel in the image has a two-element attribute vec-
tor. The first element is the conventional voxel intensity, while the second one
is a newly designed spatial feature term, namely maximum distance-gradient-
magnitude (MDGM), for incorporating spatial information at a global level
within individual images. Compared with the traditional local gradient mag-
nitude feature, the MDGM feature can encode local edge information, as well
as globally defined spatial information about the distance of a voxel to a cer-
tain object boundary. Although it can be similar to the distance transform [8],
the distance transform is normally applied to binary images, while the proposed
MDGM feature directly processes original intensity images and does not rely on
segmentation. Moreover, unlike the sparseness of gradient magnitude feature, the
MDGM feature varies smoothly and gradually from object boundaries towards
homogeneous image regions.

2.1 Maximum Distance-Gradient-Magnitude (MDGM)

Gradient magnitude represents spatial information in an image. However, the
traditional gradient magnitude operator is locally defined and normally used
to detect the amplitude object boundaries where voxels change their gray-level
suddenly. By deriving gradient magnitude map, voxels at object boundaries,
which may only occupy a very small proportion of the whole image volume,
would give large values. On the other hand, a large amount of voxels (i.e. voxels
within background regions and anatomical structures) would give small and
almost constant values. Consequently, such gradient magnitude feature of an
image can be sparse and insufficient for voxel-based image registration [9].

In this section, we define a new spatial feature, maximum distance-gradient-
magnitude (MDGM). It contains not only local edge information, but also spatial
information at a global level, which is about the distance of a voxel to a certain
object boundary. Moreover, the MDGM feature varies smoothly and gradually
from object boundaries towards homogeneous image regions.

We begin by defining a distance-gradient operator, ∇d, on two voxels in an
image. Given an image I(v), where v = (x, y, z) denotes voxel position, the
distance-gradient of two different voxels, v1 and v2, is defined as

∇dI(v1,v2) =
(

I(v1) − I(v2)
) v1 − v2

|v1 − v2|2
. (1)

Then, a MDGM map, G(v), of the image can be derived by using

G(v) = max
v′∈Ω

|∇dI(v′,v)|, (2)
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Fig. 1. (a) - (d) are slices respectively selected from a clinical CT image volume and
its corresponding GM, MDGM and signed-MDGM maps. (e) - (g) are value profiles of
lines in (a) - (d), which are marked as dashed lines

where Ω is the image domain. Following this formulation, when a voxel is at or
very close to object boundary, its MDGM value would be large and can approx-
imate the traditional local gradient magnitude. On the other hand, when voxel
position varies from boundaries towards interiors of homogenous regions (either
background regions or anatomical structures), the MDGM value smoothly and
gradually decreases. With this property, the MDGM map of homogenous regions
can provide global and detailed spatial information (which is about the distance
of a voxel to a certain object boundary), and therefore is superior to the local
gradient magnitude map.

As a comparative illustration, we individually computed the traditional local
gradient magnitude (GM) and MDGM maps of a clinical CT image volume
obtained from the Retrospective Registration Evaluation Project (RREP) 2. A
slice from the volume is shown in Figure 1a, while Figures 1b and 1c respectively
present the corresponding slices from the GM and MDGM maps. (Note that
values from individual images are re-scaled to [0, 1] for a fair comparison.) It is
observed that the GM map can only exhibit sharp edge information. In addition,
much more structural information can also be found in the MDGM map. For
instance, regions close to boundaries in Figure 1c suggest much more information
than those in Figure 1b. However, due to the limitation of image quality, smooth
changes within the background regions and anatomical structures may not be
clearly displayed in Figure 1c.

2 Images were provided as part of the project, “Evaluation of Retrospective Image
Registration”, National Institutes of Health, Project Number 1 R01 NS33926-01,
Principle Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN.
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For a detailed description, Figures 1e - 1g respectively present the value
profiles of the same line (marked as dashed lines) in Figures 1a - 1c. As suggested
by the figures, feature values in Figure 1f are very sparse, where the overwhelming
majority are small and constant. Contrarily, for Figure 1g, the value variation
from boundaries towards homogenous regions is smooth and gradual. It is worth
noting that, although there is little intensity variation at the middle of the line
in Figure 1e, an evident and smooth saddle can be found in Figure 1g located
at the corresponding position. The raised white boundary slightly below the line
cause this saddle. It is because, unlike the local gradient magnitude operator,
the MDGM operator is globally defined.

2.2 Signed-MDGM

In order to make the MDGM map be capable of distinguishing voxels of objects
with different intensities, we further introduce the signed-MDGM map, Ĝ(v),
as follows,

Ĝ(v) = sign(I(v̂) − I(v)) · |∇dI(v̂,v)|, (3)

where v̂ = arg maxv′ |∇dI(v′,v)|, and the function sign(·) indicates the sign
of the difference. According to this modified definition, a voxel of relatively low
intensity would have a positive MDGM value and vice versa. (It should be noticed
that, for a fixed v, |Ĝ(v)| = G(v).)

As a comparison, Figures 1d and 1h respectively show the corresponding slice
and value profile from the signed-MDGM map of the aforementioned CT image
volume. Obviously, the signed-MDGM map presents all the properties shown in
the MDGM map. Furthermore, as shown in Figure 1h, voxels of objects with
different intensities are distinguishable. Hereafter, we adopt the signed-MDGM
feature to represent spatial information for registration tasks.

3 Multi-modal Image Registration

As we have discussed above, the signed-MDGM feature encodes spatial informa-
tion at a global level. We associate it with voxel intensity to form a two-element
attribute vector for registration. Given two images, in order to measure the de-
gree of dependence of the attribute vector space, multi-dimensional (i.e. 4D)
mutual information (MI) is exploited as a similarity measure.

3.1 Multi-dimensional Mutual Information

Suppose that Ir and If are the intensity domains for the reference and floating
images respectively, and Ĝr and Ĝf are their signed-MDGM domains. Given a
rigid transformation T, the 4D joint histogram hT(If , Ĝf , Ir, Ĝr) over the sam-
pling set V 3 can be approximated by either Parzen windowing or histogram-
ming [10]. Histogramming is employed in this paper because the approach is

3 The sampling set V can be all voxels in the floating image or a subset.
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computationally efficient. That is, hT(If , Ĝf , Ir, Ĝr) is constructed by binning
the attribute vector pairs (If(v), Ĝf(v), Ir(T · v), Ĝr(T · v)) for all v ∈ V. The
trilinear partial volume distribution interpolation [1] is exploited to update the
joint histogram for non-grid alignment.

Then the 4D mutual information registration criterion is evaluated by using

MI(T) =
∑

If ,Ĝf ,Ir,Ĝr

pT(If , Ĝf , Ir, Ĝr) log2

pT(If , Ĝf , Ir, Ĝr)

pT(If , Ĝf) · pT(Ir, Ĝr)
, (4)

where

pT(If , Ĝf , Ir, Ĝr) =
hT(If , Ĝf , Ir, Ĝr)

∑

If ,Ĝf ,Ir,Ĝr hT(If , Ĝf , Ir, Ĝr)
,

pT(If , Ĝf) =
∑

Ir,Ĝr

pT(If , Ĝf , Ir, Ĝr),

pT(Ir, Ĝr) =
∑

If ,Ĝf

pT(If , Ĝf , Ir, Ĝr).

3.2 Multi-resolution Optimization

In the proposed registration approach, the optimal transformation T̂ can be
estimated by

T̂ = arg max
T

MI(T). (5)

In order to accelerate the registration process and ensure the robustness of
the proposed method, we exploit a multi-resolution approach based on the Gaus-
sian Pyramid representation [11, 2, 12]. Rough estimates of T̂ can be found using
downsampled images and treated as starting values for optimization at higher
resolutions. Then the fine-tuning of the solution can be derived at the original
image resolution. In this paper, the value of multi-dimensional mutual informa-
tion at each resolution is maximized via the Powell’s direction set method in
multidimensions [13].

4 Implementation Details

Signed-MDGM Map: In our implementation, the signed-MDGM map is com-
puted by separating it into the positive and negative components. Then the
two components are calculated by sequentially processing voxels in intensity-
decreasing and intensity-increasing orders respectively.

During either procedure, we keep updating a Voronoi diagram and a (positive
or negative) MDGM map. When a voxel v is processed, the Voronoi diagram
is locally reconstructed by adding v into the Voronoi sites. We then update
the MDGM map within the Voronoi cell V (v) of v. The reason for ignoring
the exterior is illustrated as follows: Let v0 be a voxel in another Voronoi cell
V (v′) (i.e. |v − v0| > |v′ − v0|). Since v′ has been processed prior to v, we

Multi-dimensional Based Robust Image RegistrationMI singU MDGM
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have I(v′) ≥ I(v) (for decreasing order) or I(v′) ≤ I(v) (for increasing order).
Therefore, we have |∇dI(v′,v0)| > |∇dI(v,v0)| and the MDGM value of v0

remains unchanged.
Finally, the positive and negative components of the signed-MDGM map are

combined together according to their absolute values.

Multi-dimensional Mutual Information: For calculating multi-dimensional
mutual information, the number of 4D joint histogram bins should be limited,
due to the relatively high dimensionality. In practice, we have found that 4D his-
tograms with 32 bins both for intensity and signed-MDGM dimensions performs
good for registering two images of size 256 × 256 × 26. (Note that the number
of histogram bins may be tuned for downsampled images in multi-resolution
registration process.)

5 Experimental Results and Discussions

To evaluate the multi-dimensional mutual information similarity measure on
the novel two-element attribute vector space (hereafter referred to as MI-4D)
and the proposed multi-resolution registration method, we have performed three
categories of experiments on different image modalities: MR-T1, MR-T2 and CT.
Comparisons on capture range of the traditional mutual information similarity
measure on intensity (hereafter referred to as MI-2D) [1, 2] and MI-4D will be
presented in Section 5.1. Section 5.2 will show the performance comparisons
on registration robustness between the proposed method and the conventional
MI-2D based method. The registration accuracy of the two methods will be
demonstrated in Section 5.3.

5.1 Comparisons on Capture Range

T1 – T2 (3D – 3D) Registration: Three pairs of clinical MR-T1 and MR-
T2 image volumes (datasets #1, #2 and #3) were obtained from RREP. All
these images have been rectified for intensity inhomogeneity and scaling, and
hereafter they are referred to as T1-rec and T2-rec respectively. The size of these
image volumes is 256×256×26 voxels and the voxel size is around 1.26×1.26×4.1
mm3. Note that all image pairs used in our experiments (T1-rec, T2-rec and CT)
were first registered by the conventional multi-resolution MI based registration
method and were then examined by an experienced consultant radiologist to
ensure that the final alignments are correct and acceptable. This procedure was
employed for a better presentation of the probing results and also for further
facilitating the experiments that will be described in Section 5.2.

Figures 2a and 2d respectively plot the translational probes for registering
the low resolution 4 (Level 2) testing image pairs from three datasets for MI-2D

4 The definition of resolution levels in the Gaussian Pyramid representation follows
the same line as in [11]. The smoothing filter was {1, 4, 6, 4, 1} in our experiments.
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Fig. 2. Probing curves for 3D – 3D registration on three T1-rec and T2-rec datasets
(#1, #2 and #3). Translational probes for registering the low resolution (Level 2)
image pairs: (a) MI-2D and (d) MI-4D. Translational probes for registering the original
resolution (Level 0) image pairs: (b) MI-2D and (e) MI-4D. Rotational probes for
registering the original resolution (Level 0) image pairs: (c) MI-2D and (f) MI-4D

and MI-4D. At the original image resolution (Level 0), Figures 2b and 2e plot
the translational probes and Figures 2c and 2f plot the rotational probes based
on MI-2D and MI-4D respectively. (Note that the number of histogram bins for
MI-2D was set to 32×32 at all resolutions while that for MI-4D at Level 2 was
set to 32×32×8×8, where 8 was for the signed-MDGM feature.)

As observed in Figures 2a and 2b, for the translational probes of MI-2D at
different image resolutions, obvious local maxima occur when the misalignment
of two images is relatively large. On the contrary, Figures 2d and 2e suggest that
the shape of the probing curves based on MI-4D is improved and the capture
ranges of MI-4D can be relative longer than those of MI-2D. This is because,
with the proposed two-element attribute vector, regions with homogenous inten-
sities (including the anatomical structures and background regions) can provide
varying information related to the distance of a voxel to a certain object bound-
ary. Therefore, when the misalignment increases, the MI-4D values would keep
decreasing. With this finding, it is expected that the optimization procedure for
registration will be benefited and the registration robustness can be increased.
On the other hand, for the rotational probes, the capture ranges of MI-2D and
MI-4D are comparable (see Figures 2c and 2f).

CT – T1 (3D – 3D) Registration: Three pairs of clinical CT (around
512×512×30 voxels and 0.65×0.65×4 mm3) and T1-rec image volumes (datasets
#1, #2 and #3) obtained from RREP were used for the experiments. The results
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Fig. 3. Probing curves for 3D – 3D registration on three CT and T1-rec datasets
(#1, #2 and #3). Translational probes for registering the low resolution (Level 2)
image pairs: (a) MI-2D and (d) MI-4D. Translational probes for registering the original
resolution (Level 0) image pairs: (b) MI-2D and (e) MI-4D. Rotational probes for
registering the original resolution (Level 0) image pairs: (c) MI-2D and (f) MI-4D

of translational probes are shown in Figures 3a (MI-2D) and 3d (MI-4D) for the
low resolution (Level 2) registration and in Figures 3b (MI-2D) and 3e (MI-4D)
for the original resolution (Level 0) registration. Figures 3c and 3f respectively
plot the rotational probes based on MI-2D and MI-4D for the original resolution
(Level 0). Similar results of the capture ranges are obtained as compared with
T1 – T2 registrations.

5.2 Performance Comparisons on Registration Robustness

In order to study and compare the registration robustness of the proposed MI-
4D based method and the conventional MI-2D based method, we have designed
a series of randomized experiments for these two methods. The testing image
pairs were the aforementioned three T1 – T2 datasets (#1, #2 and #3) and
three CT – T1 datasets (#1, #2 and #3). The experiments took 100 tests on
each testing image pair for either method. At each trial, the pre-obtained ground
truth registration (see Section 5.1) of the testing image pair was perturbed by
6 uniformly distributed random offsets for all translational and rotational axes.
The perturbed registration was then treated as the starting alignment. The ran-
dom offsets for X and Y axes were drawn between [-150, 150] mm, while those
for Z axis and each rotational axis were respectively drawn between [-70, 70] mm

and [-0.35, 0.35] radians (i.e. [-20, 20] degrees). (Note that for any testing dataset
the same set of randomized starting alignments was used for both methods as a
fair comparison.)

MI-2D :

−200 −100 0 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Offset values (mm)

M
I−

2D
 v

al
ue

s

dataset #1
dataset #2
dataset #3

(a)

−200 −100 0 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Offset values (mm)

M
I−

2D
 v

al
ue

s

dataset #1
dataset #2
dataset #3

(b)

−60 −40 −20 0 20 40 60
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Offset values (degree)

M
I−

2D
 v

al
ue

s

dataset #1
dataset #2
dataset #3

(c)

MI-4D :

−200 −100 0 100 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Offset values (mm)

M
I−

4D
 v

al
ue

s

dataset #1
dataset #2
dataset #3

(d)

−200 −100 0 100 200
0

0.5

1

1.5

Offset values (mm)

M
I−

4D
 v

al
ue

s

dataset #1
dataset #2
dataset #3

(e)

−60 −40 −20 0 20 40 60
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Offset values (degree)

M
I−

4D
 v

al
ue

s

dataset #1
dataset #2
dataset #3

(f)



219

Table 1. The success rates with the MI-2D based method and the MI-4D based method
for all testing image pairs (T1 – T2 and CT – T1)

Testing Success rate

dataset MI-2D MI-4D

T1 #1 68% 89%

| #2 65% 95%

T2 #3 66% 81%

CT #1 66% 94%

| #2 63% 88%

T1 #3 70% 94%

To evaluate each derived registration with respect to the ground truth reg-
istration, the translational error (which was the root-sum-square of the differ-
ences for three translational axes) and the rotational error (which was the real
part of a quaternion) were computed. In our experiments, the threshold vec-
tor for assessing registration success was set to (2mm, 2◦), because registra-
tion errors below 2mm and 2◦ are generally acceptable by experienced clini-
cians [14, 15].

The success rates of the MI-2D based method and the MI-4D based method
for all testing image pairs are listed in Table 1. It is suggested that the MI-
4D based method (Column MI-4D) consistently has higher success rates as
compared with the MI-2D based method (Column MI-2D) for all testing image
pairs. (Note that, due to the space limitation, we do not show the registration
results of these 1200 randomized experiments in details.)

Based on these experiments, we also observed that the majority of failed
cases for the MI-4D based method had about 180◦ misalignment for one rota-
tional axis, while registration errors for other axes were quite small. (It is meant
that, after registration, the brain in the floating image was inverted along a ro-
tational axis.) Oppositely, for the MI-2D based method, most of the failed cases
had large translational and rotational misalignments simultaneously. This obser-
vation somehow implies that, along the translational axes, the capture ranges of
MI-4D are longer than those of MI-2D.

5.3 Registration Accuracy

To precisely demonstrate the registration accuracy of the proposed registration
method, similar randomized experiments described in Section 5.2 were performed
on a pair of T1 and T2 image volumes obtained from the BrainWeb Simulated
Brain Database [16] (181×217×181 voxels, 1×1×1 mm3 and the noise level was
3%). Note that this image pair is perfectly aligned. The experiments took 50
tests for the MI-4D based method, as well as for the MI-2D based method as
a comparison. For perturbation, the random offsets for each translational axis
were drawn between [-30, 30] mm, and those for each rotational axis were drawn

Multi-dimensional Based Robust Image RegistrationMI singU MDGM
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Table 2. The means and standard deviations of the registration accuracies of the MI-
2D based method and the MI-4D based method for a BrainWeb T1 – T2 image pair
with 3% noise level

Translation (10−3mm) Rotation (10−3 degrees)
Method

∆tx ∆ty ∆tz ∆θx ∆θy ∆θz

MI-2D −0.40 ± 0.71 −0.62 ± 1.41 4.15 ± 1.88 0.63 ± 1.85 0.47 ± 1.78 0.04 ± 1.55

MI-4D −1.09 ± 0.60 −1.10 ± 0.79 4.14 ± 2.05 1.02 ± 1.72 0.85 ± 1.61 0.02 ± 1.82

between [-0.17, 0.17] radians (i.e. [-10, 10] degrees). It should be noticed that all
registrations obtained by either method are successful.

The means and standard deviations of the registration accuracies for each
transformation parameter for these 100 experiments are lists of in Table 2, where
Row MI-2D is for the MI-2D based method and Row MI-4D is for the MI-
4D based method. According to the table, the accuracies of the MI-2D based
method and the MI-4D based method are comparable and acceptably high. Both
methods can achieve sub-voxel level registration accuracy.

6 Conclusion

To conclude, this paper has designed a new spatial feature, namely maximum
distance-gradient-magnitude (MDGM), for registration tasks. The MDGM fea-
ture encodes spatial information for each voxel in an image at a global level.
Then, we have improved the conventional mutual information (MI)-based reg-
istration framework by integrating the MDGM feature with intensity and set-
ting a two-element attribute vector to each voxel in individual images. Multi-
dimensional mutual information has been adopted as a similarity measure to
the attribute vector space. To increase computation efficiency and robustness
of the proposed method, the registration procedure has been a multi-resolution
iterative process.

The experimental results on clinical 3D MR-T1, MR-T2 and CT datasets
have indicated that the proposed method has relatively longer capture ranges
than the conventional MI-based method at different image resolutions. Moreover,
a large number of (around 1200) randomized experiments on precisely registered
clinical image pairs have demonstrated that the success rates of our method are
consistently higher than those of the traditional MI-based method. It has been
also shown that the registration accuracy of the new method is acceptably high
and obtains sub-voxel level.
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