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Abstract. Non-rigid image registration is a challenging task in medi-
cal image analysis. In recent years, there are two essential issues. First,
intensity similarity is not necessarily equivalent to anatomical similar-
ity when the anatomical correspondences between subject and template
images are established. Second, the registration algorithm should be
robust against monotonic gray-level transformation when aligning
anatomical structures in the presence of bias fields. In this paper, a new
feature based non-rigid registration method is proposed to deal with
these two problems. The proposed method is based on a new type of im-
age feature, called Uniform Spherical Structure Pattern (USSP). USSP
encodes voxel-wise interaction information and geometric properties of
anatomical structures. It is computationally efficient, rotation invari-
ant and theoretically monotonic gray-level transformation invariant. The
USSP feature is integrated with the Markov random field (MRF) dis-
crete labeling framework to define energy function for registration in
this paper. If the segmentation results are available, explicit anatomical
correspondence can be established as an additional energy term. The
energy function is optimized via the alpha-expansion algorithms. The
proposed method is compared with three widely used non-rigid regis-
tration methods on both simulated and real databases obtained from
BrainWeb and IBSR. Experimental results demonstrate that the pro-
posed method achieves the highest registration accuracy among all the
compared methods.

1 Introduction

Non-rigid image registration plays an important role in medical image analysis.
Its clinical applications include, but not limited to, anatomical analysis and sta-
tistical parametric mapping. Many novel methods have been proposed during the
last decade. They can be broadly classified into three categories: landmark based,
intensity based and feature based registration methods. Landmark based regis-
tration methods extract anatomical features from manually located landmark
points. Transformations are estimated based on such anatomical features [1,2].
Landmark based registration methods use prior knowledge obtained from manu-
ally placed landmark points and thus they are usually computationally efficient.
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However, to produce accurate registration results, these methods need sufficient
number of landmark points and therefore require additional burdens. Intensity
based registration methods define a similarity measure metric evaluated from
voxel intensity distributions to guide the registration process [3,4]. An essential
issue related to intensity based registration methods is intensity similarity is
not necessarily equivalent to anatomical similarity. Feature based registration
methods use feature vectors as signatures for each voxel. Then the registration
process is formulated as a feature matching and optimization problem.

Despite the fact that many aforementioned methods have been proposed to
tackle the non-rigid registration problem, two challenges arise in recent years.
First, the goal of non-rigid image registration is to establish anatomical corre-
spondence between the template and the subject images. Using absolute voxel
intensity values alone to characterize anatomical properties may be insufficient,
as pointed out in [5], and can make the similarity measure function stuck at
local minima. As such, effective anatomical region descriptor is needed. Second,
the registration algorithm should be robust against monotonic gray-level bias
fields, which commonly exist during the imaging process. Otherwise, the registra-
tion algorithm may prefer to align the bias fields instead of aligning anatomical
structures, as discussed in [6].

Therefore, we are motivated to propose a new feature based non-rigid reg-
istration method which can accurately capture the geometric properties of the
anatomical structures and theoretically robust against the monotonic gray-level
bias fields. There are three main contributions in this paper. (i) A new anatom-
ical region descriptor, called uniform spherical structure pattern (USSP) is de-
signed to capture the anatomical geometry of the input images. (ii) The USSP
descriptor is theoretically invariant to monotonic gray-level bias fields and im-
age rotation. (iii) If the segmentation results of input images are available, an
explicit anatomical energy term based on the Fisher’s separation criteria (FSC)
is proposed to measure the distance of different tissue classes between the sub-
ject and the template images. Markov random field (MRF) discrete labeling has
been shown to be a robust framework to model the non-rigid registration pro-
cess in recent years [7,8]. In this paper, the USSP feature is integrated with the
MRF labeling framework to define the energy function which guides the regis-
tration process. The α-expansion algorithm is used to minimize the MRF energy
function. The proposed method is evaluated on both the simulated and real 3D
databases obtained from BrainWeb and IBSR and compared with three widely
used registration algorithms. It is observed that the proposed method achieves
the highest registration accuracy among all the compared methods.

2 Feature Extraction with Uniform Spherical Structure
Patterns

In this section, we describe the design details of the uniform spherical structure
pattern (USSP) region descriptor, analyze its properties, and show how to use
USSP to extract anatomical features from input images.
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2.1 Basic Spherical Structure Patterns

Suppose for a given input image G, for each voxel v ∈ G, we define a sphere
Sv, which is centered at v with radius R. Nv samples are uniformly taken on
the surface of Sv using the sampling method proposed in [9]. Samples which
do not fall exactly into the image grid are interpolated by using the trilinear
interpolation method. Then, for each voxel i on the surface of Sv, it is thresholded
to binary numbers ”0” or ”1” by using the Equation 1:

Bi =
{

0, if Ii < Iv,
1, if Ii ≥ Iv,

(1)

where Ii is the intensity of voxel i, and Iv is the intensity of the center voxel v.
The thresholded surface represents the geometric features surrounding the

voxel v as the binary values reflect the voxel-wise interactions between the neigh-
boring voxels and the center voxel. The thresholded surface is called the basic
spherical structure pattern (BSSP). Local binary pattern [10] is a special case
of BSSP in the 2D case. The formal definition of BSSP is given as follows:

Definition 1: Basic spherical structure pattern (BSSP) is the thresholded spher-
ical surface obtained from the original spherical neighborhood centered at the
reference voxel by using the Equation 1.

BSSP is monotonic gray-level transformation invariant because the neighbor-
ing voxels are converted to the binary digits by comparing their intensity values
with the center voxel intensity. As long as the relative difference between two
voxel intensity values does not change, the thresholded surface remains the same.

2.2 Uniform Spherical Structure Patterns

Though the BSSP proposed in Section 2.1 is monotonic gray-level transforma-
tion invariant, there are many types of BSSP which are too sparse to reliably
reflect the anatomical features of input images. In this section, we define the
uniform spherical structure pattern (USSP) which is a subset of BSSP and rep-
resents fundamental image structures. USSP is defined as follows:

Definition 2: Uniform spherical structure patterns (USSP) are basic spheri-
cal structure patterns (BSSP), which have AT MOST two continuous regions of
”0”s and ”1”s.

For example, Figures 1 (a) and (b) are USSPs, while Figure 1 (c) is not a
USSP. The pseudo code of determining whether a BSSP is a USSP or not is pre-
sented in the Algorithm 1. The time complexity of the Algorithm 1 is analyzed
as follows. Finding the largest connected component by using the BFS algorithm
needs O(N) time. Operation 3 also needs O(N) time in the worst case. Other
operations take constant computation time. Therefore, the Algorithm 1 takes
O(N) time, which is a linear time algorithm.
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Algorithm 1. Determining whether a BSSP is a USSP
Input: A BSSP with radius R and N neighboring voxels on the surface.

Output: true or false (whether the input is a USSP or not).

1. Randomly select a neighboring voxel i on the surface of the input BSSP
2. Find the largest connected component starting from i based on its binary digit Bi

using the Breadth First Search (BFS), set a flag for each voxel belonging to that
largest connected component

3. FOR each unflagged neighboring voxel t ∈ BSSP with binary digit Bt

4. IF (Bt == Bi)
5. Return false
6. END IF
7. END FOR
8. Return true

USSP contains important physical meanings regarding the fundamental image
structures. For example, Figure 1 (a) represents a dark spot as all the surround-
ing voxels’ intensity values are higher than or equal to the intensity of the center
voxel. Figure 1 (b) reflects that there is an edge along the center voxel as half of
the neighboring voxels’ intensity values are lower than the intensity of the center
voxel and lie on the same continuous region, while the other half of the neigh-
boring voxels just act as the opposite. All the non-uniform spherical structure
patterns are considered as a single type of image structure in this paper.

To further illustrate that USSP encodes dominant information and represents
the fundamental image structures, Figures 2 (a) to (c) plot the proportions of
USSPs among all the BSSPs with different parameters for 20 image volumes

(a) (b) (c)

Fig. 1. (a) An example of USSP, with all ”1”s (white region) on the surface. There is
only one continuous region of all ”1”s on the surface; (b) An example of USSP, with
half the surface of ”0”s (black region) and half the surface of ”1”s (white region). There
are two continuous regions (i.e., one with ”0”s, the other with ”1”s); (c) An example
of non-uniform SSP. There are more than two continuous regions with ”0”s and ”1”s
on the surface.
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(a) (b) (c)

Fig. 2. Proportions (in %) of USSPs among all the BSSPs of 20 image volumes obtained
from IBSR, with parameters: (a) Radius = 1, Number of Neighboring Samples = 25;
(b) Radius = 2, Number of Neighboring Samples = 36; (c) Radius = 3, Number of
Neighboring Samples = 49

obtained from IBSR1. It is observed from Figure 2 that USSPs have dominant
proportions among all the BSSPs (i.e., mostly over 80%) with different param-
eters. Therefore, USSP can reliably capture the anatomical properties of the
input image volumes. In the rest of the paper, we will only focus on extracting
USSP features from the input images.

2.3 Feature Extraction of Rotation Invariant USSPs

Though USSP contains dominant information and represents fundamental im-
ages structures, it is still not rotation invariant up to the current stage. When
the image rotates, the positions of the binary digits on the surface of USSP will
be shifted accordingly. As pointed out in [11], rotation invariance is a desired
property for feature based non-rigid registration methods.

Therefore, we design an algorithm to extract rotation invariant USSP features.
It is observed that no matter how the image rotates, the region areas of ”0”s and
”1”s (i.e., the number of voxels belonging to ”0”s and ”1”s) of a USSP pattern
do not change. Therefore, the number of voxels belonging to ”0” or ”1” binary
digits can be used to denote the types of USSP, which should be invariant to
rotation. In this paper, the type ID of the USSP is determined by the number
of ”0”s in the USSP. All the non-uniform BSSPs are treated as a single type
pattern. Algorithm 2 presents the procedure for calculating rotation invariant
USSP signatures for each voxel v from a local cubic square window W centered
at v, assuming that the radius R and number of neighboring samples N are
given. The time complexity of the Algorithm 2 is O(|G| × |W | × N), where |G|
is the number of voxels of the input image G, |W | is the window size and N is
the number of neighboring samples used for USSP.

It should be noted that Algorithm 2 only takes care of the area of ”0” region
to determine the USSP type. A more detailed USSP type classification can be

1 http://www.cma.mgh.harvard.edu/ibsr/
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Algorithm 2. Calculate the Rotation Invariant USSP Feature for each Voxel
Input: An input image G, a local cubic square window W for each voxel, the USSP
radius R and the number of neighboring samples N .

Output: A vector image K, each voxel is represented by a USSP signature.

1. FOR each voxel v ∈ G
2. SubV olume = (W center at v)
3. Initialize a new feature histogram, H [0...(N + 1)] = 0
4. FOR each voxel t ∈ SubV olume
5. Calculate its corresponding BSSP Qt with parameters R and N
6. Determine whether Qt is a USSP or not using Algorithm 1
7. IF Qt is a USSP
8. PatternID = Number of ”0”s in Qt

9. H [PatternID] = H [PatternID] + 1
10. ELSE
11. H [N + 1] = H [N + 1] + 1
12. END IF
13. END FOR

14. Normalize H [0...(N + 1)] such that
∑N+1

i=0 H [i] = 1
15. K(v) = H [0...(N + 1)]
16. END FOR
17. Return K

achieved if we also take care of the shape of the ”0” region. However, there are too
many possible shape combinations and will result in unstable anatomical feature
description as some of the USSP occurrences are too small. This makes the USSP
feature histogram too sparse to reliably mirror the anatomical properties of the
input images. Radius R in the Algorithm 2 affects the scale of interest to extract
the anatomical structures. In this paper, the radius R is determined by adopting
the best scale selection principle proposed in [12].

The rotation invariant USSP feature also preserves the monotonic gray-level
transformation invariant property of BSSP. Figure 3 shows an example.
Figure 3 (a) is an image slice obtained from BrainWeb with no bias field dis-
tortion. Figure 3 (b) is a type-A bias field obtained from BrainWeb with 40%
inhomogeneity. Figure 3 (c) is the resulting bias field distorted image. The region
inside the green rectangle is the region of interest (ROI). The rotation invariant
USSP feature vectors with 49 neighboring samples are extracted from the ROI
by treating the ROI as the SubV olume in the Algorithm 2. Figures 3 (f) and (g)
are the rotation invariant USSP feature vectors extracted from the ROI before
and after bias field distortion respectively. For comparison purpose, the intensity
histograms of the ROI before and after bias field distortion are also shown in
Figures 3 (d) and (e). It is observed that the intensity histograms of ROI be-
fore and after bias field distortion have large variations. The rotation invariant
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Fig. 3. (a) The original image; (b) The bias field of 40% inhomogeneity; (c) Resulting
image after applying the bias field in (b) to the original image in (a); (d) Intensity
histogram of ROI (green rectangle region in (a)) in the original image; (e) Intensity
histogram of ROI (green rectangle region in (c)) in the bias field distorted image; (f)
Rotation invariant USSP feature of ROI in the original image; (g) Rotation invariant
USSP feature of ROI in the bias field distorted image

USSP feature vectors extracted from ROI before and after bias field distortion
are almost the same (i.e., just with slight variations). Therefore, the robustness
of the USSP features against bias field distortion is implied.

3 MRF Labeling Formulation for Registration

Recently, the MRF discrete labeling framework is shown to be able to robustly
model the non-rigid registration process [7,8]. In this paper, the USSP feature
is integrated with the MRF discrete labeling framework to define the energy
function. An explicit anatomical correspondence energy term is also proposed
based on the Fisher’s separation criteria (FSC) [13,14] if the segmentation results
of the input images are available.

The general form of the MRF energy function by considering clique size order
up to two is expressed as:

Ef = Edata + Esmoothness

=
∑
p∈Ω

Dp(lp) +
∑

(p,q)∈N

Vp,q(lp, lq), (2)

where Ω is the set of voxels, N is the neighborhood system defined in Ω. In
this paper, the 4-connected neighborhood system is used. Dp(lp) is the energy
function, which penalizes the cost of assigning label lp to voxel p, and Vp,q(lp, lq)
penalizes the cost of label discrepancy between two neighboring voxels.
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The deformation space is quantized to transform the registration problem to
the MRF labeling problem. A discrete set of labels L ∈ {l1, l2, ..., ln} is defined.
Each label li (1 ≤ i ≤ n) corresponds to a displacement vector di. Each label
assignment lp to voxel p denotes moving p to a new position according to the
corresponding displacement vector dlp . The quantization step in [7] is adopted
in this paper. Each voxel can be displaced off the original position bounded by
a discretized window Ψ = {0,±s,±2s, ...,±ws}d of dimension d.

The energy function Dp(lp) is defined based on the USSP features as:

Dp(lp) = Dp(Gtemplate(p), Gsubject(p + dlp)
= Dp(Ktemplate(p), Ksubject(p + dlp))
= JSD(Ktemplate(p)||Ksubject(p + dlp)), (3)

where Gtemplate is the template image, Gsubject is the subject image, Ktemplate

and Ksubject are the USSP feature vector images of Gtemplate and Gsubject re-
spectively obtained via the Algorithm 2. JSD(·) denotes the Jensen-Shannon
divergence. Therefore, based on the Equation 3, the data term Edata at iteration
t is defined as:

Et
data =

∑
p∈Ω

JSD(Ktemplate(p)||Kt−1
subject(p + dlp)), (4)

where Kt−1
subject denotes the USSP feature vector image of the subject image

resulting from the previous transformation prior to iteration t.
The piece-wise truncated absolute distance is adopted as the smoothness po-

tential function:
Vp,q(lp, lq) = min(λ, |dlp − dlq |), (5)

where λ is a constant represents the maximum penalty. The truncated absolute
distance is a metric as stated in [15].

If the segmentations of the template image and the subject image are available,
an explicit anatomical energy term can be established as an additional energy
term based on FSC. Suppose that the input images are segmented into c classes
of tissues. Let V T

i (1 ≤ i ≤ c) and V S
i (1 ≤ i ≤ c) denote the volumes of voxels

belonging to tissue class i of the template and the subject images, NT
i and NS

i

denote the numbers of voxels in V T
i and V S

i . F T
i,j and F S

i,j denote the USSP
feature vectors from the jth voxel of the ith class tissue of the template and
the subject images at current iteration. We first calculate the mean of the ith
class tissue of the template and the subject images as: mT

i = 1
NT

i

∑NT
i

k=1 F T
i,k,

mS
i = 1

NS
i

∑NS
i

k=1 F S
i,k.

Then, according to the principles of FSC [13], the 1-D space of the projected
feature vector which can maximize the separability of the feature vector cluster
of V T

i and V S
i is given by:

yz = (mT
i − mS

i )T S−1Fz , (6)
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where S−1 is the inverse of the pooled covariance matrix, Fz is the USSP feature
vector of voxel z belonging to the ith class tissue of either the template image
or the subject image. Therefore, the 1-D projections of mT

i and mS
i according

to the Equation 6 are:

KT
i = (mT

i − mS
i )TS−1mT

i , (7)

KS
i = (mT

i − mS
i )T S−1mS

i . (8)

This 1-D projection maximizes the following FSC measure function [13] of tissue
class i of the template image and the subject image:

fi =
|KT

i − KS
i |√

(σT
i )2 + (σS

i )2
, (9)

where σT
i and σS

i are the standard deviations of the projected USSP feature
vector belonging to the ith tissue class of the template image and the subject
image.

When the FSC measure function in Equation 9 is minimized, the anatomical
similarity of tissue class i is maximized. The explicit anatomical energy term is
defined by summing up the FSC measure functions defined in the Equation 9 of
all the tissue classes. Therefore, now the total energy function becomes:

Ef = Edata + Esmoothness + Eanatomy

=
∑
p∈Ω

Dp(lp) +
∑

(p,q)∈N

Vp,q(lp, lq) +
c∑

i=1

fi. (10)

In order to minimize the energy function defined in Equations 2 and 10, the
alpha-expansion algorithm [15] is adopted.

4 Experimental Results

The proposed method is evaluated by performing non-rigid registration experi-
ments on both the simulated and real 3D datasets obtained from BrainWeb2 and
IBSR3 respectively. It is also compared with three state-of-the-art algorithms:
FFD [3], Demons [4] and HAMMER [11]. In all the experiments, the local cu-
bic square window W in the Algorithm 2 was set to 16 × 16 × 16, and number
of neighboring samples N of each USSP was 49. The 3D displacement window
for the proposed method was Ψ = {0,±1,±2, ...,±12}3. The maximum penalty
parameter λ defined in Equation 5 was set to 20.
2 http://www.bic.mni.mcgill.ca/brainweb/
3 http://www.cma.mgh.harvard.edu/ibsr/
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Table 1. The mean values of P and SDs of GM, WM and CSF with different methods.
BR denotes before registration, USSP (WOE) denotes using USSP features without
the explicit anatomical energy term, USSP (WE) denotes using USSP features with
the explicit anatomical energy term.

Tissue BR FFD Demons HAMMER USSP (WOE) USSP (WE)

Gray 0.41923±0.07 0.73816±0.06 0.77416±0.05 0.79563±0.06 0.84281±0.05 0.86725±0.04
White 0.48344±0.03 0.77825±0.04 0.78024±0.06 0.81093±0.02 0.83527±0.08 0.86103±0.07
CSF 0.37025±0.06 0.73072±0.06 0.74281±0.03 0.75682±0.02 0.79093±0.06 0.84774±0.03

4.1 Experiments with Simulated Data

In this section, the proposed method is evaluated on the simulated 3D T1 image
data obtained from BrainWeb. 20 image volumes from different subjects were
used. One of the image volumes was served as the template image, and the others
were used as the subject images. Each image has resolution of 256×256×181
voxels. The segmentation results are provided by BrainWeb. Before registration,
the skull stripping process was performed on each image as it is a required step for
HAMMER [11] to be compared in this paper. The software Brain Suite version
2 obtained from USC4 was used to accomplish the skull removing process.

Figures 4 (b) to (e) show the reconstructed average brain images after the reg-
istration using FFD [3], Demons [4], HAMMER [11] and the proposed method
(without explicit anatomical energy term). Figure 4 (a) is the template image
for reference. The control point spacing of FFD is 2.5mm, as suggested in [16].
It is visually observed that the proposed method achieves the best registration
accuracy as the average brain images obtained via the proposed method preserve
most of the details of the template image and are sharper than those obtained
by the other compared methods. The tissue overlap of gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) between the template and the trans-
formed subject images is also adopted as the evaluation measure [16] to analyze
the registration accuracy. It is defined as P = N(A∩B)

N(A∪B) , where A and B denote
the regions of a specific tissue in two images. The average values of P and the
standard deviations of GM, WM and CSF before registration, registration after
using FFD [3], Demons [4], HAMMER [11] and the proposed method with and
without the explicit anatomical energy term are listed in Table 1. As observed
in the Table 1, the proposed method achieves the highest value of P among all
the compared methods for the simulated 3D data sets. If the explicit anatomical
energy term is used, the registration accuracy can be further improved.

4.2 Experiments with Real Data

In this section, the proposed method is further evaluated by performing registra-
tion experiments on the 3D real datasets obtained from IBSR. 20 skull-stripped
image volumes with segmentation results are obtained. Each of them has reso-
lution around 256 × 256 × 64 voxels. The experimental settings are similar to
4 http://brainsuite.usc.edu/
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(a) Template (b) FFD (c) Demons

(d) Hammer (e) Our Method

Fig. 4. (a) The template image; Average brain obtained using: (b) FFD, (c) Demons,
(d) HAMMER and (e) the proposed method

the settings described in Section 4.1. The same cross section of the template im-
age, the resulting average brain images obtained via various methods are shown
in Figure 5. The control point spacing of FFD was again set to 2.5mm. It is
visually observed from Figure 5 that the proposed method has the highest reg-
istration accuracy among all the compared methods, especially in the region of
gyral crowns, sulcal roots and ventricles, which are important and salient re-
gions of the brain anatomical structures. The tissue overlap measure values P of
different approaches are listed in Table 2. It is shown that USSP has the highest
value of P , which echoes the visual results shown in Figure 5. FFD [3], Demons
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(a) Template (b) FFD (c) Demons

(d) Hammer (e) Our Method

Fig. 5. (a) The template image; Average brain obtained using: (b) FFD, (c) Demons,
(d) HAMMER and (e) the proposed method

Table 2. The mean values of P and SDs of GM, WM and CSF with different methods.
BR denotes before registration, USSP (WOE) denotes using USSP features without
the explicit anatomical energy term, USSP (WE) denotes using USSP features with
the explicit anatomical energy term.

Tissue BR FFD Demons HAMMER USSP (WOE) USSP (WE)

Gray 0.54082±0.06 0.74034±0.04 0.76477±0.03 0.78174±0.05 0.82073±0.04 0.84624±0.05
White 0.52147±0.05 0.76285±0.06 0.77830±0.04 0.80627±0.05 0.83816±0.06 0.86216±0.06
CSF 0.33094±0.07 0.72192±0.04 0.76693±0.04 0.75906±0.04 0.79631±0.03 0.83772±0.04

[4], HAMMER [11] and the proposed method took about 7, 5, 10 and 11 hours
respectively to register one image pair on a 3.2GHz P4 CPU with 2GB RAM.

5 Conclusion

In this paper, a new feature extraction method for non-rigid image registration
is proposed. The uniform spherical structure pattern (USSP) feature is designed
to extract monotonic gray-level transformation invariant and rotation invariant
anatomical features from the input image volumes. The proposed feature can
be extracted efficiently as the extraction process only requires several voxel-wise
comparison operations. The registration problem is formulated as a Markov ran-
dom field (MRF) labeling and energy minimization problem based on the USSP
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features. If the segmentation results of the input images are available, an explicit
anatomical energy term can also be established easily based on the Fisher’s sep-
aration criteria (FSC) measure function. From the experimental results on both
the simulated and real 3D datasets, it is demonstrated that the proposed method
gives the highest registration accuracy among all the compared methods.
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