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Abstract 1 
a decentralized approach based o n  
approach and Markovian model i s  

e multisensory data. A team of sen- 
e local and global uncentainties uti- 

d conditional-entropy measures of 
ensus can be reached based o n  the 

s and “uncertainty” weights as- 
. The proposed approach is com- 

approach via experiments o n  
Results showed that  consen- 

rable. However, there are fac- 
decentralized approach requires 
d computational effort t o  reach 

1 Introdubtion 

ed systems, one of the main is- 
of the information re- 

s sensors in the system. Re- 

combining uncertain information 
ut in [4], in a team of sensors, two 

em to emerge. The first type 
the sensor. By observing the 
or gathers information which 
the local uncertainty of the 

ute a preference order on the 
second type of uncertainty is global, 

peration of sensors in terms 
ecause the team is assumed 

each sensor will be able 
. The latter mechanism 
eir state of information 

mple that depth, mo- 

tion, shape and colour perception are interrelated [5] .  
In multisensor systems, this type of dependence may 
occur, and we refer them as cooperating in a comple- 
mentary mode. The dependency between observations 
made by sensors and the state of nature can be consid- 
ered as a positive type. The stronger this dependency 
is, the more informative are the observations made by 
the sensors about the state of nature. This explains 
why Bayesian estimation procedures would weigh more 
on observations, which are strongly dependent on the 
parameter to be estimated, than those which are less 
dependent. 

In this paper, we first review the probabilistic ap- 
proach to modelling uncertainty and cooperation in 
multisensor systems [4, 61. A decentralized approach 
based on Markovian model is proposed to integrate 
multisensory data. This approach allows each sensor, 
treated an expert, to compute its information lo- 
cally first. Then, a team consensus will be reached af- 
ter taking into consideration the dependence between 
the team members. The proposed approach is demon- 
strated by a team of two sensors, namely a sonar sensor 
and a b/w CCD camera. 

2 Self Entropy and Conditional En- 
tropy 

Shannon’s entropy function [7] has been used ex- 
tensively as a measure of uncertainty. We propose two 
types of entropy measures, namely, self-entropy and 
conditional-entropy, to estimate the local and global 
uncertainties. The self-entropy measures how uncer- 
tain the sensor is about its own information or how 
random the data collected are. The self-entropy of sen- 
sor, Si, denoted by hili(&) is given by 

where p(B;l&) is the probability of occurrence of the 
state Bi given the observed state 6i. 
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The conditional-entropy, however, is a measure of 
the state of uncertainty of a sensor given the infor- 
mation of another sensor. This entropy can be used 
to capture the essence of information relevance ex- 
changed among the team of sensors. For example, if 
the information measured by one sensor is irrelevant 
to another sensor, we will find that the conditional- 
entropy of this sensor equal to its self-entropy. Mean- 
ing that information provided by the first sensor does 
not help the second one to improve its state of uncer- 
tainty. The conditional-entropy manifests profoundly 
the interdependence between sensors. As we will see 
later, the information provided by one sensor can only 
decrease the amount of uncertainty of another sensor. 
The conditional-entropy between sensor, Si and Sj,  de- 
noted by hiij(ei), is given by 

wherep(O@i, 6j) is the joint and conditional probability 
of occurrence of the state 8 given the observed state 6 i  
and 6j. hilj is not necessarily equal to  hjli. Note that 
for any two sensors, Si and Sj,  the following conditions 
hold: 

0 hili 2 hilj; 

if they are independent, then hili = hili 

As an example, consider the case of two sensors 
Si and Sj,  cooperating to measure the value of state of 
nature 8. Sensor Sj computes its self uncertainty, i.e., 
self-entropy: hjlj and the conditional uncertainty of 
sensor Sj assuming that it has received some informa- 
tion from sensor Si, i.e., the conditional-entropy: hjp. 
If the information of sensor Si happens to  be relevant 
for sensor S j ,  then we expect that hj!i to be less than 
hjlj ,  which means that this information contribute to 
reducing the uncertainty of sensor Sj. Otherwise, sen- 
sor Sj should maintain its uncertainty level, namely 

Same argument applies to sensor Si. These en- 
tropy measures will contribute towards the determi- 
nation of a "weight" assignment which will reflect the 
self and joint confidence of the sensors in measuring 
the value of the state of nature 8. These measures are 
updated whenever new information relevant to the sen- 
SOSY task is gathered. Figure 1 depicts these measures 
diagrammatically. 

In general, for a team of N sensors, these measures 
can be expressed in matrix form: 

hlll h2ll . .. hNll 

hll2 h212 . .. hN12 

hl(N h21N ... hNIN 

. . .  . . . . . . . . . H =  1 

Semori 

Conditional 
Suale of naiure 

Sell 
Uncenainiy 

Joint 
Unccr1ainry 

Figure 1: Modelling Sensor Interdependence 

Note that the column vector gives the self- and 
conditional-entropy measures of sensor S,. Thus if all 
sensors are independent, H is reduced to a row vector. 

Generally speaking, the computation of these 
measures is application dependent. And to a certain 
extent requires some degree of intelligence in the sense 
that sensors should be able to  learn about each other 
from "experience". For example, in some applications 
the conditional entropy measures (or conditional prob- 
abilities) are specified in terms of their pair wise corre- 
lation coefficients. In other applications, nevertheless, 
it would be necessary to  have the estimates of these 
probabilities evolve with time. In this case, one pos- 
sibility is to  have the team start with noninformative 
conditional probabilities as an initial estimate, and as 
the team of sensors work together they will be able to 
converge to more informative estimates. 

3 Team Consensus Approach 

In this section, we adapt the team consensus ap- 
proach proposed in [3] and explain how the informa- 
tion variation based uncertainty representation scheme 
can be used to  facilitate the consensus team. In this 
model, each sensor must first assess its own initial ex- 
pected utility function, U,!''(y), Vy E F, based on the 
information it gathered about the value of the state of 
nature 8. It is then confronted with the utilities of the 
other team members and revises its own utility in light 
of the others by making an assessment of each team 
member's relative importance, expertise, etc. Specifi- 
cally, at the kth revision, each revised expected utility 
is deemed to be of the form 

N 

j=1 

where Wi,j(y) is a weight assigned by sensor, Si to 
sensor, Sj ,  and CjZl  W i , j  (y) = 1, V i ,  j = 1,. . . , N .  It 
should be noted that W is a stochastic matrix because 
each element W;,j(y) is a nonnegative and the sum of 
elements in any given row is 1. Furthermore, if we let 
U(("- ' ) (y)  and U ( k )  (y) denote the column vectors given 

N 
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as 

ther if and only if there is a 

In other w rds, the team will reach a consensus 
if and only if a 1 N elements of U(")(y) converge to 
the same limit IC approaches infinity. If we denote 
by W,,,i)(?) the lements in row i and column j of the 
matrix Wk((y),  i follows from Equation (3) that a con- 
sensus is reach d if and only if there exists a vector 
K(y) = (q, .. . ICN) such that, for Vi = 1,. . . , N  and 

V i  = 1 , .  . . , N .  

V j = l ,  ..., N ,  I 
(4) 

(4) is satisfied for every value i and 
ICN are necessarily nonnegative and 

when a consensus is reached 

I N 

(5) 

condition for reaching consensus 
exists a positive integer IC 
t least one column of the 

itive, then a consensus is reach- 
heorem 131 states how the utility 
eam consensus can be explicitly 

se that a consensus is reached 
denote the value of this consen- 
. , I C N )  is the unique stationary 

Thus, the value of the vector IC(?) used to calcu- 
late the team consensus is determined by solving the 
linear equations 

Subject to 
N 

Given the entropy matrix H ,  how can each sen- 
sor of the team determine appropriate weights for it- 
self and other sensors? One objective could be set 
such that the sum of the squares of all entropies in 
each row in the entropy matrix is minimized. That 
is, for each sensor, to minimize the sum of squares of 
its self-entropy and the conditional-entropy associated 
with other sensors. This implies that each sensor will 
assign high weights to sensors with low conditional- 
entropy and low weights to those with high conditional- 
entropies. The minimization problem may be stated as 
follows: 
Minimize 

~i(7) = C w:j(~) x hj21i(Y) 
SjES 

Subject to  
N 

j=1 

Wi,j(y) > 0. 
Optimizing the above objective function will yield 

the following optimal weighting scheme: 

(7) 

From Equation (7), it can seen that the value un- 
der the summation sign in the denominator is the same 
€or all Wi,j (7). Therefore Wi,j (7) varies inversely with 
h;,i(Y). 

4 Markovian Model of a Team of Two 
Sensors 

In this section, we shall consider a team of two 
sensors, S1 and Sz. The decision process is modelled 
by the Markovian model (Figure 2). 

From the team consensus model, the expected 
utility at the kth iteration is given by 

Uyy)  = W(y)U("l)(y) 
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In our experiment, a commercial sonar sensor is 
used. It has a limitation on the range of measurement 
from 0.49m to 12m, within 1 % of error. For objects 

Sensor 1 Sensor 2 w22 closer than 0.49m, it gives readings with large error. 
Thus, we use a b/w CCD camera which is usually 
for object recognition rather than distance measure, 
to compensate the inadequacy of the sonar sensor. By 
considering the size of a small black circle placed on 
the object, the CCD camera can estimate the distance 
of the object observed. This is achieved by measur- 
ing the length of the diameter of the circle observed, 
i.e. the number of pixels along the diameter in the 

of pixels in the image. The change in the size of the 
circle is significantly large as the gripper moves closer 
to the object. Whereas, the change in the size of the 
circle is small as the camera moves farther away from 
the object resulting in larger error of estimation of the 
distance between object and gripper. 

Therefore, this team of two sensors compensate 
each other in the sense that for measuring distance less 
than 0.49m, the CCD camera can be expected to give 
better estimates and vice versa. Assuming these two 
sensors are independent, we shall estimate the team 
consensus value, U* (y), by the decentralized approach 
and finally compare with the Bayesian approach. 

’ - WII 

W,I ; 
’ ~ w22 

Figure 2: Makovian Model for Two Sensors 

where W~z(y)  = 1 - WII(Y) and IVzl(y) = 1 - W22(y). 
When consensus is reached, we have, from Equation image- The closer the object, the larger the number 

( 5 )  

(8) U* (7) = lcl (Y) U?) (7) + 6 2  (Y)U’lO) (7) 

and 

[ K l ( 7 )  K2(Y) ] W(Y) = [ Kl(Y) 6 2 ( 7 )  I (9) 

where nl(y) + ~ ( y )  = 1. Solving Equation (9) gives, 

nl(r) = 2 - W11(y) - W22(y) 
1 - PV22(Y) 

1 - Wll(Y) 
(10) - 

K2(Y) - 2 - Wll(Y) - W22(Y) 

and relating W to the entropy matrix H (Equation 7) 
and assuming the two sensors are independent, we have 5.1 Sonar Sensor Data 

(11) 
1 

W22(Y) = 
h;,2(-O(h:,:(?) + hi,:(?)) 

where 0 5 hljl(y) 5 1 and 0 5 h2p(y) 5 1. Note that 
weights for each sensor is inversely proportional to the 
square of the self-entropy of each sensor. The larger 
the self-entropy, the smaller the weight. 

5 Experimental Results 

This section demonstrates the Markovian model 
by considering a team of one sonar sensor and a b/w 
CCD camera. The aim of integration is to  complement 
the weaknesses of sonar sensors and CCD cameras 
when they are estimating the object distance alone. In 
the experiment, the sonar sensor and the CCD cam- 
era are mounted on the gripper of a robot arm. Both 
sensors contribute to the decision process and finally 
reach a consensus, which is the estimated distance be- 
tween the gripper and the object. The team consensus 
value, U*(?), can then be fed into the robot controller 
for the next step of action. 

Based on the sonar sensor alone, the initial ex- 
pected distance, U!’)(&), is given by 

U,’”((Ci;) = d; x P(d:I&) 

where d; and d i  are the true and observed distance 
respectively. Distances between 28cm to lOOcm were 
“observed” by the sonar sensor. Figure 3 gives the 
mean square error of the distance observed. It should 
be noted that for distances ranging between 49cm to 
100cm, very good estimates are observed. Whereas er- 
ror increases when the distance falls below 49cm, the 
limitation of the sonar sensor given by the manufac- 
turer of the sensor. 
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5.2 CCD Camera Data 

Fig 4 : +an Square Ehrofthe  CCD Camela I 

b/w CCD camera alone, the initial 
, lJF’(C), is given by 

where di is the rue distance and C is the number of 
pixels observed y the camera. Again actual distances 
between 28cm t lOOcm were observed by the camera. 
Similar to the s nar sensor. Figure 4 gives the mean 
square error of he distance observed. As expected, 
this sensor give better estimates for distance below 
53cm. i 
5.3 Decentr lized Approach to reach con- 

sensus i” 
that these two sensors are 

can be computed from 
the Equation (l), we 

have 

shows the variation of h ~ ~ ~ ( & )  and 
distance ranges from 28cm to 1OOcm. 

Eg5b: Sell-fhmpyofthe CCDCamot 

Weights ( 1 1 ( & ,  C) and Wz2(&, C)) of both sen- 
sors, t~~ and K. can be computed based on Equa- 
tion (11, 10). Hence, consensus can be reached at 

Figure 6 sh i ws the fact that the mean sauare er- 
U * ( & , C )  = /€I( i,C)V,cO’(&) + K.z(cii,c)u~o)(c). 

~ 

ror of the decenjralized approach is only between 0 cm 

and 0.03 cm which is much less than that provided by 
any single sensor. It demonstrates that the decentral- 
ized approach can improve the measurement accuracy, 
as compared with the performance of each individual 
sensor. 

1 5k 6 : MeanSquale Enorofthe Decentraked Appmach I 

I AcblalDistance (cn3 I 

5.4 Bayesian Approach to reach consensus 

The Bayesian model, figure 7, is used as a bench- 
mark to evaluate the performance of the decentralized 
approach. 

Figure 7 : Bayesian Model of Sonar 
Sensor and CCD Camera 

By Bayes’ formulae, the expected distance, given 
di and C, is, 

It is valuable to  point out that, from Figure 8, 
the mean square error of the Bayesian approach also 
ranges from 0 cm to 0.03 cm which is very close to the 
results given by the decentralized approach. 

I 1 Flg6:MeanSquareElmroftheBayesianAppmach 

I Aclualiktance (cm) I 
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5.5 Summary 

In summary, the decentralized approach, when 
compared with the Bayesian approach, gives satisfac- 
tory mean square error bound in the sonar data and 
visual data integration. 

For a team of two independent or dependent 
sensors, a consensus value will be u*(&,C) = 
K I ( & ,  C)U,’’’(it) + nz(&, C)Uio)(C). From this, it is 
clearly shown that the decision process can be simpli- 
fied from an iterative decision process into a “constant 
time” decision process which involves the initial ex- 
pected values and weights of each sensor. Equation 
( 5 )  shows that it is also true for a team of n sensors. 

In general, for a team of independent sensors, the 
initial expected values and weights are calculated based 
on the local informat.ion of each sensor. In other words, 
each expert in the team takes over the responsibility 
of estimating the initial expected value and its self- 
entropy. Both initial expected value and self-entropy 
will then be sent to a (‘decision agent” to  reach a con- 
sensus by linearly combining the initial expected val- 
ues, Equation (8). 

Therefore, the decentralized approach requires less 
communication and computational effort to reach con- 
sensus than the Bayesian approach for the following 
reasons: 

e from Equation (8), only the initial expected values 
and weights are involved in the data transmission 
process, and 

e from Equation (12,13, 14), the conditions of prob- 
abilities, d; and C, are constant for all di in the 
process of calculating the local entropy and the 
initial expected values. However, in the Bayesian 
approach, the conditions of probabilities, di , vary 
with I& and C when computing the expected value 
in Equation (15). 

6 Conclusion and Future Research 

In this paper, we have proposed and demon- 
strated a decentralized approach to  integrate multi- 
sensory data for a team of two independent sensors, 
namely, a sonar sensor and a b/w CCD camera. 

Moreover, the decentralized approach is best 
suited for the environment that has all the sensors 
widely separated physically and has noisy channels 
because the amount of data required to  transmission 
through the channels is much less than that required 
by the Bayesian approach. 

In addition to  that, the decentralized approach al- 
leviates the burden of the decision agent. In Bayesian 
approach, one of the major tasks of decision agent is 

to maintain and update the conditional probability ta- 
bles (CTP) of each sensor. These CTPs are solely used 
by the decision agent to  compute the estimated value 
based on Equation (15). However, in the decentralized 
approach, the self-entropy and initial expected values 
are computed by each sensor expert instead of the de- 
cision agent. It is obvious that each sensor expert can 
take over the responsibility of maintaining and updat- 
ing its own CTP. As a result, the decision agent will 
have a greater capacity to  deal with other robotic tasks. 

The approach proposed can be extended to  a team 
of n sensors in general. The difficulty we foresee in the 
extension lies in “solving” of Equation (6) to compute 
the values of each I E ~ .  We shall report the findings in 
due course. 
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