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Abstract 

It is common  t o  assume sensor independence in 
the sensory data fus ion  and integration. In [l] and 
[2], we have illustrated that the t eam consensus ap- 
proach based o n  information entropy can remarkably 
improve the measurement accuracy. T h e  major  ben- 
efits of the approach are (a)  the simple linear com- 
bination of the weighted initial expected estimates f o r  
each sensor; and (b) the low order bivariate likelihood 
functions which can be represented easily. In this pa- 
per, we demonstrate specifically both the  positive and 
negative impacts of including dependent information 
in sensory data combination process; and show how 
the measurable consensus uncertainty level can be de- 
rived. A comparison of the t eam consensus approach 
with the  Bayesian approach is presented. 

1 Introduction 

This paper reveals both the positive and negative 
impacts of sensory data dependence. It has been 
shown [l] that data dependence can offer additional 
information about the interactions between the sensor 
observations. Consideration of dependence in the pro- 
cess of data combination is generally expected to give a 
higher quality of information. Hence, the information- 
theoretic entropy, which is a common tool to measure 
the randomness of a given data set, is used to de- 
scribe the nature and measure the degree of interac- 
tions among sensory data. Given two sensor observa- 
tions, if the interaction between two sensors can re- 
duce the overall uncertainty level, then one sensor is 
defined to be positively dependent on another sensor. 
Otherwise, it is regarded as negatively dependent. This 
situation should be measured and carefully handled in 
the combination process. 

It is well known that combining sensory data has 
two major advantages: redundancy and complemen- 
tarity [3]. Redundancy means not only is the sensory 
data duplicated, the correlation among sensors are 
also positive in terms of estimation errors. Positive er- 

ror correlation implies that when the estimation error 
of one of the redundant sensors increases, the estima- 
tion errors of the other redundant sensors also increase 
and vice versa. Complementarity means not only does 
each sensory data have an unique part of the obser- 
vation domain, the correlation among the sensors are 
also negative in terms of estimation errors. Negative 
error correlation implies that when the estimation er- 
ror of one of the complementary sensors decreases, the 
estimation errors of the other complementary sensors 
increase and vice versa. Hence, estimating error cor- 
relation gives a new and alternative definition to the 
sensor type. 

This paper is an extension of [l] in which we begin 
by introducing entropy as a measure of uncertainty 
among the data set, Xi, observed by sensor i. The 
initial local estimates, ui, of each sensor, based on 
the sensor observations, likelihood functions and en- 
tropy values, axe derived and then combined by the 
Markovian decision process cooperatively to form a 
team of dependent sensors. The major difference, as 
compared with [l] and [a],  is that the overall uncer- 
tainty level of the team consensus is measured before 
the data combination process is invoked. Sensors i 
and j are negatively dependent when the overall un- 
certainty level decreases after the dependent relation- 
ship is added. Therefore, they are then re-set to be 
independent to maintain the uncertainty level. The 
proposed approach is demonstrated by a team of two 
negative correlated sensors, namely a sonar sensor and 
a b/w CCD camera. 

2 Team Consensus Approach (TCA) 

ing a random variables @(E 0). Their individual and 
joint posterior distributions are given by 

Suppose that there are m individual sensors observ- 

Pi(812i) .(e) x qxile) 

Pij(el.i,q) =n(@ x l(%zjle) (1) 
where random variable xGz and xj are the observations 
of sensors i and j about 8, n(8) is a common prior dis- 
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tribution, and Z(xil6') and Z(xi, xjl6') are the univariate 
and bivariate likelihood function given 8. 

2.1 Entropy Measure 

Entropy,  which was introduced by Shannon [4] in 
1948, has long been used to measure the probabilistic 
uncertainty of a random variable. Its valuie is directly 
proportional to the degree of uncertainty (or random- 
ness) of the measured variable; the smallei- the uncer- 
tainty, the smaller the entropy. 

Self-Entropy, which [5] measures how uncertain a 
sensor is about its own observation xi, is defined as 

hili(%) = - ~Pi(8 /x i ) logPi (6 ' /z i ) .  (2) 
e E e  

Condit ional  Entropy,  which [5] measures how un- 
certain sensor i is about the joint observations xi and 
xj given that observation of sensor x.j is unknown, is 
defined as 

hi l j (x i )  = - ~(xjlxi) z p i j ( @ [ x i , x j )  lOgPij(@/Zi,xj) 
x3 EX, BEO 

(3) 
where ~(xjlzi) is the conditional distribution of xj 
given xi. It shows that, given xi, hilj is simply the 
expected value of self-entropy of their joint observa- 
tions and is not necessarily equal to hjli. 

The conditional entropy manifests proFoundly the 
dependence between sensors i and j. It is used [l] 
to capture the essence of observation relevance ex- 
changed between sensor i and j. The properties of self 
entropy and conditional entropy are summarised as 
follows: Given observations of sensor i and j, (a) hiij 
is not necessarily equal to hjli, (b) if the self-entropy 
hip is equal to the conditional entropy hilj, then ob- 
servations are irrelevant (or independent)]. This im- 
plies sensor j ' s  observation does not help sensor i to 
improve its state of uncertainty; and (c) if the self- 
entropy hili is larger than the conditional entropy hilj, 
then observations are positively relevant. This implies 
sensor j ' s  observation contributes to reducing the un- 
certainty of sensor i; and (d) if the self-entropy hili 
is smaller than the conditional entropy then ob- 
servations are negatively relevant. Sensor i should at 
least maintain its uncertainty level and ignore sensor 
j ' s  observation. 

2.2 Combining Sensory Data 

Markov Cha in  has been used as a decision process 
to combine data because of two major reasons: (a) 

it is stated [6] that the consensus estimate is a lin- 
ear combination of the weighted local estimates which 
greatly simplifies the computation process; and (b) the 
weight (or transition probability) assigned by one sen- 
sor state to another sensor state is intuitively related 
only to the bivariate likelihood functions. Higher or- 
der functions are not necessary. Because of these rea- 
sons, the Markovian decision process is employed and 
briefly described as below. (see [2] for details) 

Let ui be an initial local estimate of sensor i based 
on some observations, the likelih_ood functions of xi 
and xj, and entropy values. Let Uo be an initial state 
vector of the initial local estimates (u1, . . . , U,)*, T 
denoting transposition, and gk be a state vector at 
the kth iteration. Let W be the transition matrix. Its 
nonnegative element wij is the weight (or transition 
probability) assigned by sensor state i to sensor state 
j and has the properties that wij = 1 and 0 5 
wij 5 1. Let K: be a vector of stationary transition 
probabilities ( K I , . .  . , K , ) ~ ,  where ni = 1 and 
0 5 I C ~  5 1. Markov chain recursively 2ombines and 
updates the individual sensor states of Uk-', 

4 

which is equivalent to 

(4) 
+ 
uk = wkp, 

+ 
and, as k trends to infinity, Uk converges to a consen- 
sus estimate U*, 

m 

i= I 

where W T f  = IC'. 
It is observed that, from Equations (4,5), ni is large 

if and only if wji is large for j = 1, .  . . , m. Weights 
lying in the same column of the transition matrix, W ,  
contribute positively to ~ i .  This means sensor i will 
have greater inference on the consensus value, U * ,  if 
and only if the weights (or transition probabilities) as- 
signed to sensor i are large. Equation (5) reveals that 
the consensus estimates are the linear com@natip of 
the initial local estimates. Moreover, WTK = K can 
be viewed as the eigenvector problem with eigenvalue 
equal to one. Therefore, ni, for i = 1 , .  ..,m, can 
easily be found by a variety of methods for solving 
eigenvector problems even though m is large. 

2.3 Weight Assignment 

This section adopted from [l] deals with how appro- 
priate weights are to be assigned based on self-entropy 
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and conditional entropy. Consider a state transition 
from sensor state i to sensor state j with weight wij. If 
this transition is treated as an information flow, then 
sensor j will definitely gain information about sensor 
i. Sensor j can in turn compute its conditional en- 
tropy, hjli, based on sensor i's observation. A greater 
weight should be assigned to this transition if the cal- 
culated conditional entropy, hjp, is small. This implies 
that the weight (or transition probability) is inversely 
proportional to the conditional entropy. The same 
discussion applies to the self-entropy. The larger the 
self-entropy, the smaller the corresponding weight. If 
hjli, is smaller than hili, then wij is larger than wii. 
This relationship is formulated as follows: 

where the weight assigned to sensor j by sensor i de- 
pends inversely on the conditional entropy of sensor j 
based on sensor i's observation and n can be adjusted 
to reflect this dependence. The greater the n, the 
smaller the entropy and the larger the weight. Since 
E;, wij = 1, it follows that the weight is given by 

2.4 Local Estimate 

Equation (5) shows that global consensus estimate 
is a weighted sum of local estimates. In turn, the lo- 
cal estimate is an estimation of sensor i about 8 based 
on (a) the information about the joint observation zi 
and xj which is represented by a posterior distribu- 
tion, pij(BJxi,zj); and (b) the entropy of the joint ob- 
servation xi and xj. The local estimate is given by 

m 

j=1 B E @  

for i = I,.  . . ~ m, where wij is defined by Equation (6). 
It is noted that pij(8Jxi,xj) is set to pij(81xi) when 
hili 2 hilj because the uncertainty level should at least 
be maintained in the case of negative relevance. 

By rewriting Equation (7), the local estimate can 
be viewed as an expected value of 8 from a local dis- 
tribution ui(8). 

= eui(e), 
BE@ 

where the local distribution is given by 
m 

j=1 
(9) 

Similarly, from Equation (5), consensus distribution 
can be found by substituting the local estimates by 
local distributions and is given by 

i= 1 

2.5 Consensus Variance and Entropy 

Consensus variance is a concept of variance for the 
consensus estimate. Consensus variance is defined lit- 
erally in terms of consensus estimate U* and consensus 
distribution ~ ' ( 8 )  and is given by 

(a*)2 = E(.* - e)2u*(e). (11) 
B E @  

Extending this concept, we then derive the consensus 
variance in terms of local estimates ui, local variance 
a: = Ce(ui - 8)2ui(8), and consensus estimate U * .  

Consensus Entropy is simply a concept of entropy 
for the consensus estimate and is crucial to the mea- 
surement and analysis of sensory data dependence 
From Equation (2 ) ,  consensus entropy is defined as 

Discrete : h, = - .*(e) log u*(B). (13) 
B E Q  

Suppose that the consensus distribution U* (8) follows 
a normal distribution with a p.d.f. f (BIu*, (o*)~) .  

CO 

Continuous : h, = - f In f d0 = ln(&a*) 

(14) 
where 

1 -(U* - 8 ) 2  
f (8Ju*, ( 0 * ) 2 )  = - exp( q a * > 2  1. 

&U* 

Given the consensus distribution is normal, Equation 
(14) expresses the relation of two important concepts: 
consensus variance and consensus entropy. Of course, 
a sensor is absolutely certain about its observation 
when consensus variance diminishes to zero. 

Consensus entropy h, has two roles to play: (a) to 
measure the uncertainty level of consensus estimate 
U* and more importantly (b) to reflect effectively the 
impact of dependence between sensor i and j upon 
a sensor pool with m(2 2) sensors. It differs from 
the self-entropy hili and conditional entropy The 

167% 



self-entropy and conditional entropies confine the un- 
certainty measurement to sensors i and j only. How- 
ever, the consensus entropy h, measures the uncer- 
tainty level of the whole sensor system wiith m(> 2) 
sensors. 

Based on the consensus entropy, we define two de- 
pendence concepts. Given observations x, and xj, if 
the consensus entropy h, decreases after a dependent 
relationship between sensors i and j is added, sensors 
i and j are defined as posit ively dependent which is 
interpreted as beneficial to the system performance; if 
the consensus entropy h, increases after a dependent 
relationship between sensors i and j is added, sensors 
i and j are defined as negatively dependent,  which is 
viewed as an adverse effect to the system performance. 
Therefore, the negatively dependent relationship be- 
tween sensor i and j is then re-set to be independent 
because the uncertainty level should be maintained. 

Detection (28cm N 100cm) 
Sonar Sensor (28cm - 48cm), MSE2 

Sonar Sensor (49cm N 100cm), M S E z  
CCD Camera. MSEl  

3 Experimental Results 

MSE 
36.666667 
0.014582 
0.466399 

This section demonstrates the presented team con- 
sensus approach by considering a team of one b/w 
CCD camera and a sonar sensor. Their albservations 
are represented by two random variables: XI and x2 
respectively. The quantity observed is the distance be- 
tween sensors and object. The distance is represented 
by a random variable 8. 

In [2] and [l], we demonstrated the formulation of 
consensus estimate of independent and dependent sen- 
sors. In the experiment, the sonar sensor and the CCD 
camera are mounted on the gripper of a robot arm. 
Both sensors contribute to the decision process and 
finally reach a consensus, which is the estimated dis- 
tance between the gripper and the object. The aim of 
integration is to complement the weaknes,ses of sonar 
sensors and CCD cameras when they are estimating 
the object distance alone. 

It is shown from the experiment that the correla- 
tion COV(e1, ez) between the errors of CCD camera 
el and sensor el is negative. This reveals that the 
estimation errors are negatively cowelated. The corre- 
lation between el and e2 is derived by 

where 61 and e2 are the error means; and az,and tsz2 
are the error variances. Therefore, this team of two 
sensors compensate each other in the sense that for 
measuring distances less than 0.49m, the CCD cam- 
era can be expected to give better estimates and vice 
versa. 

3.1 CCD Camera and Sonar Sensor De- 
tection 

Table 1: Mean Square Error (MSE) of individual de- 
tection 

The actual distances between 28cm to lOOcm were 
observed by the camera as well as the sonar sensor. 
For sonar sensor, table 1 shows that for distances rang- 
ing between 49cm to 100cm, very good estimates are 
observed, whereas error, which is very large, increases 
dramatically when the distance falls below 49cm, the 
limitation of the sonar sensor given by the manufac- 
turer of the sensor. Thus, we use a b/w CCD camera 
to compensate the inadequacy of the sonar sensor by 
considering the size of a small black circle placed on 
the object and by measuring the length of the diameter 
of the circle observed, i.e. the number of pixels along 
the diameter in the image. The change in the size of 
the circle is significantly large as the gripper moves 
closer to the object giving better estimates. Whereas, 
the change in the size of the circle is small as the cam- 
era moves farther away from the object resulting in 
larger estimation error of the distance between object 
and gripper. In turn, this can be corrected by the 
sonar sensor’s observation. 

3.2 Team Consensus Approach assuming 
independence 

Team consensus approach is first implemented as- 
suming the independent relationship [2]. The result is 
then compared with that of dependent relationship. 

Figure 1: Team Consensus Approach assuming inde- 
pendence (Solid) vs Sonar Sensor Detection (Dashdot) 

In Figure 1, the application of team consensus ap- 
proach shows that, the mean square error is smaller 
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than that provided by any single sensor especially at 
the 48cm to 55cm range. This demonstrates that the 
team consensus approach can improve the measure- 
ment accuracy, as compared with the performance of 
each individual sensor. However, the experiment gives 
an insight into the disadvantage of the approach with 
the assumption of independent relationship [2]. Since 
the consensus estimate is the linear combination of the 
individual estimates based on its own observation in 
which weights are constant and predetermined, con- 
sensus estimate is obviously bounded by min{ui} and 
maz{ ui } . 

3.3 Team Consensus Approach assuming 
dependence 

With the consideration of observation dependence, 
Figure 2 shows that the mean square error is further 
reduced when compared with the performances with- 
out the dependence relationship and each individual 
sensor. Performance is greatly improved in the mid- 
range (49 ,., 73cm) because sonar sensor's observation 
is corrected by the dependence relationship with the 
CCD camera. 

Case 11 : Observations of sonar and CCD camera 
are negatively dependent  because the consensus uncer- 
tainty is enlarged (Ah, < 0). Moreover, the square 
error increases (ASE < 0) after the dependence has 
been introduced. 

Table 2: Change in Consensus Entropy Ah, and 
Change in Square Error ASE.  Positive Dependence 
(Case I). Negative Dependence (Case 11) 

From these two cases, it is observed that depen- 
dence (or h,) has a direct relationship with the square 
error (or SE) .  This observation can be used to  
improve the system square error by considering the 
change in consensus entropy Ah, and by setting the 
sensor relationship to be (a) dependent when it is pos- 
itive and (b) independent when it is negative. Ta- 
ble 3 shows that the system performance (MSE) has 
slightly been improved. This supports the expecta- 
tion of greater improvement in a larger scale (m > 2) 
sensor system. 

1 

Figure 2: Team Consensus Approach with Depen- 
dence (Solid) vs Sonar Sensor Detection (Dashdot) 

It is important to  note that dependence can be ei- 
ther positive (decrease in consensus uncertainty) or 
negative (increase in consensus uncertainty). It is fur- 
ther illustrated by two real cases in Table 2. Given 
the observations of sonar and CCD camera, let h,(1) 
denote the consensus entropy assuming independence, 
h, ( D )  denote the consensus entropy assuming depen- 
dence and Ah, denote the change in consensus entropy 
which is defined by h,(l) - h,(D). Let ASE which is 
equal to  SE(1)  - SE(D)  be the corresponding change 
in square error. 

Case I : Observations of sonar and CCD camera 
are posit ively dependent  because the consensus uncer- 
tainty is reduced (Ah, > 0). Moreover, the square 
error decreases (ASE > 0) after the dependence has 
been introduced. 

Table 3: Mean Square Error (MSE) of Team Consen- 
sus Approach (TCA) 

3.4 Bayesian Approach 

Figure 3: Bayesian Network Detection (Solid) vs Team 
Consensus Approach (Dashdot) 

Bayesian approach has been used extensively in the 
area of data fusion. It relies heavily on the conditional 
posterior distributions among the random variables in- 
volved and Bayesian combination rule which is given 
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by, for 2 sensors, 

E[8121, 221 = epij (8121, z 2 )  (15) 
e m  

where, by Equation (l), pij(OJq,m) in turn depends 
on the prior function, .(e), and bivariate likelihood 
function, l(zi,xjlO). Figure 3 reveals that the mean 
square error of the Bayesian approach shares the same 
error bound (0 N 0.04cm) with the team consensus 
approach. The MSE is 0.008409. 

3.5 Summary of the results 

Team consensus approach is establishe’d (a) to in- 
corporate the uncertainties of a single observation and 
joint observations into the Markovian decision process 
and (b) to measure the consensus uncertainty such 
that the interdependence between sensors can be re- 
flected effectively during the data combination pro- 
cess. The performance of the approach, as shown 
in Figure 2, when compared with the individual sen- 
sors in terms of mean square error, demonstrates its 
strength in improving measurement acciiracy for a 
group of dependent sensors. It provides strong evi- 
dence to the generalization of the technique to a pool 
of m sensors. It also shows that the aggregation of 
dependent and negatively correlated sensors is con- 
str uctive . 

A distinct advantage of the technique is its simplic- 
ity in terms of data structure and computation. A 
maximum of up to second order of likelihood function 
is necessary for m sensors by which it can greatly sim- 
plify the data structure to represent the interrelation- 
ships among sensors, and accelerate the computation 
of sensory weights. 

The Bayesian approach is a general and optimal 
tool for all decision problems. The experiment shows 
that the team consensus approach illustrizted in Fig- 
ure 3 gives satisfactory mean square error when it is 
compared with the Bayesian approach. It is shown 
that (See [l] for details) the Bayesian Network can 
be further viewed as a ‘virtual sensor’ to  relieve the 
physical constraints and mathematical limitations of 
the ‘sensors’. We have shown that the inclusion of the 
Bayesian sensor can improve the overall estimation ac- 
curacy. 

4 Conclusion and Future Research 

relationships, which leads to the decrease in the con- 
sensus uncertainty, is useful in the sense that the team 
consensus approach with dependence can remarkably 
improve the measurement accuracy, when compared 
with individual sensors. The major benefits of the ap- 
proach are the measurable consensus uncertainty level 
and, as shown in [l], (a) the simple linear combination 
of the weighted initial individual expected estimates; 
and (b) the low order bivariate likelihood functions 
which can be easily represented. In terms of computa- 
tion efficiency and data representation simplicity, the 
team consensus approach is attractive to implement. 

Future research will be the application of team con- 
sensus approach with dependence in a larger scale 
(m > 2) sensor system. 
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