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ABSTRACT

Brain magnetic resonance (MR) images consist of different

structures and features when they are observed at different

scales and layers. Conventional non-rigid brain MR image

registration methods mainly estimate the optimum transfor-

mation by relying on the information of a single layer and

this can lead to the loss of information contained in other lay-

ers. In this paper, we propose a multi-layer framework for

non-rigid brain MR image registration with different kinds

of features extracted from different layers. The input images

are factorized into three layers: global intensity layer, texture

information layer and local anatomical layer. The general-

ized survival exponential entropy based mutual information

(GSEE-MI), multi-scale brainton features and rotation invari-

ant feature transform (RIFT) are used to represent the global

intensity layer, texture information layer and local anatomi-

cal layer respectively. Information extracted from all layers is

then embedded into a new similarity measure function. The

role of each layer is identified through systematic experiments

and it is shown that information conveyed by different lay-

ers is complement with each other. The proposed framework

exhibits significant improvement of registration accuracy as

compared with other widely used registration methods on the

real 3D databases obtained from IBSR.

Index Terms— Image registration, Medical image pro-

cessing

1. INTRODUCTION

Human brains are topological objects and they have different

structures and properties when they are observed at different

scales. Therefore, human brain MR images contain rich in-

formation across different scales and layers. For example,

macroscopic layer can provide us with the overall intensity

distribution information, while microscopic layer gives the

information of local structure configurations and spatial re-

lations. Motivated by the belief that features from different

scales of brain MR images play different roles in the charac-

terization of the input images, we propose a new framework

to tackle the non-rigid image registration problem by adopting

different kinds of information extracted from different layers.

Each image is decomposed into three layers in this paper:

(1) Global intensity layer; (2) Texture information layer; and

(3) Local anatomical layer. Many previous non-rigid image

registration methods typically focus on a single layer alone.

For example, [1] focuses on the global intensity layer by using

the mutual information (MI) to guide registration. However,

it is known that using MI purely based on the intensity distri-

butions of input images can often suffer from being trapped in

the local maxima [2]. This limitation stems from the loss of

information from other layers, e.g. spatial configurations of

local structures. Several attempts [3, 4] were proposed trying

to embed the information from other layers into the conven-

tional MI. However, it results in the calculation of joint prob-

ability distributions in a much higher dimension, which is not

recommended due to the increase of statistical uncertainties.

We argue that features from different layers should be sep-

arately extracted by using their own suitable representations

instead of simply gathering them in a single way.

In this paper, the generalized survival exponential entropy

based mutual information (GSEE-MI) [2] is used to repre-

sent the global intensity layer. The texture information layer

is characterized by the multi-scale brainton texture features.

The information contained in the local anatomical layer is

mirrored by the rotation invariant feature transform (RIFT)

[5] representations. Different kinds of information is then ag-

gregated into a new similarity measure function. The role

of each layer is identified through systematic non-rigid brain

MR image registration experiments on the 3D real datasets

obtained from IBSR. The whole framework is also compared

with other widely used registration methods and it is shown

that the proposed framework achieves the highest registration

accuracy among all the compared methods.

2. MULTI-LAYER REPRESENTATIONS

In this section, we describe the information representations of

different layers and analyze the role of each layer.

2.1. Global Intensity Layer
The global intensity layer contains the information of global

intensity distributions of the template and subject images.
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In this paper, the generalized survival exponential entropy

based mutual information (GSEE-MI) [2] is used to repre-

sent this layer. The generalized survival exponential entropy

(GSEE) is defined as [2]:
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∫
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+
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where α ≥ 0 and β ≥ 0 define the order of GSEE and α �= β,

X = (X1, ..., Xm) is a random vector in Rm. |X| denotes the

random vector with components |X1|,...,|Xm|. The notation

|X| > x means |Xi| > xi for xi ≥ 0, i = 1, ...,m. The

multivariate survival function F |X|(x) of the random vector

|X| is defined by:

F |X|(x) = P (|X| > x) = P (|X1| > x1, ..., |Xm| > xm),
(2)

for x ∈ Rm
+ with Rm

+ defined by Equation 3:

Rm
+ = {x ∈ Rm : x = (x1, ..., xm), xi ≥ 0, i = 1, ...,m} .

(3)

GSEE has several advantages as compared with the conven-

tional Shannon entropy: (1) GSEE is always nonnegative; (2)

GSEE has consistent definitions in both the continuous and

discrete domains; and (3) the Shannon’s entropy is calculated

based on the density of the random variable p(X). However,

p(X) may not exist as pointed out in [2], while the survival

function always exists.

Based on the definition of GSEE in Equation 1, GSEE-MI

can be expressed by Equation 4:

GSEE-MI(Gt, T (Gs)) = Sα,β(p(Gt)) + Sα,β(p(T (Gs)))

−Sα,β(p(Gt, T (Gs))), (4)

where p(Gt) and p(T (Gs)) are the intensity probability dis-

tribution functions of the template and transformed subject

images respectively. Sα,β(p(Gt)) and Sα,β(p(T (Gs))) de-

note the marginal GSEEs with respect to p(Gt) and p(T (Gs)),
Sα,β(p(Gt, T (Gs))) is the GSEE defined based on the joint

intensity distribution p(Gt, T (Gs)). In this paper, the grid

search is used to find out the optimal parameters of α and β
in Equation 1 to maximize the value of GSEE-MI.

As compared to the conventional MI [1], GSEE-MI is

more robust against interpolation artifacts and has longer cap-

ture ranges as shown in [2] because it is defined based on the

survival functions. To the best of our knowledge, GSEE-MI

is firstly used for non-rigid image registration in this paper.

2.2. Texture Information Layer
Brain MR images also contain texture surfaces which con-

sist of repetitive patterns. For example, homogeneous white

matter and gray matter regions can be considered as highly

Algorithm 1 Learn braintons from the template image

Input: The template image Gt and a pre-specified number of braintons K.

Output: K braintons Bi (i = 1, ...,K) learnt from Gt.

1. Convolve Gt with a set of 3D Gabor filters (10 scales and 36
orientations) to form a 360-dim filtered response vector for each voxel.

2. Adopts the maximum response orientation (MRO) selection criteria in [7]

to make the response vectors rotation invariant.

3. Build the brainton dictionary by hierarchical agglomerative clustering:

(a). The filtered response vector of each voxel is initialized as a

singleton cluster Ci

(b). Find the nearest cluster pair according to the distance measure:

davg(Ci, Cj) =
1

ninj

∑
�x∈Ci

∑
�y∈Cj

‖�x− �y‖L2
,

where ni and nj are the number of voxels in Ci and Cj .

(c). The two nearest clusters are merged together to form a new cluster.

(d). Repeat steps (b) and (c) until the number of clusters is K.

Denote them as B1,...,BK

4. Return B1,...,BK

textured surfaces. Therefore, such regions are preferred to be

presented by texture features.

The texton based [6] approach is popular in computer vi-

sion to represent texture features. The term texton denotes

fundamental repetitive texture units. The rationale behind

texton based method is to first construct the texton dictio-

nary based on a set of filtered responses of different classes

of textures. Then a statistical model is formed by the texton

distributions.

Similar to the concept of texton, we denote the repetitive

and regular patterns which occur in the homogeneous tissue

regions of brain MR images as braintons. The texture fea-

ture contained in this layer is described by the brainton dis-

tributions. In this paper, brainton is constructed from the 3D

Gabor filtered responses. The 3D Gabor filter is defined by

Equation 5:

G(x, y, z) = S·exp
(
− (x2 + y2 + z2)

σ2

)
exp(j2π(xu+yv+zw),

(5)

where S is a normalization constant, f =
√
u2 + v2 + w2

is the center frequency, u = f sinφ cos θ, v = f sinφ sin θ,

w = f cosφ. 0 ≤ φ ≤ π and 0 ≤ θ ≤ π define the orienta-

tion in the 3D frequency domain. σ2 denotes the variance of

the Gaussian kernel.

During registration, the brainton dictionary is first learnt

from the template image, as described in Algorithm 1.

The MRO selection criteria in Operation 2 aims to make

the filter response rotation invariant, as rotation invariant is

a desired property for feature based non-rigid images regis-

tration stated in [8]. After learning the Braintons from the

template image, we can build Brainton histogram based repre-

sentations of the template and subject images. This procedure

can be summarized by Algorithm 2.

During the registration procedure, Algorithm 1 only need

to be performed once to build the brainton dictionary. The
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Algorithm 2 Construct brainton histogram for input images

Input: image G, K braintons Bi (i = 1, ...,K) learnt from Algorithm 1.

Output: Brainton histogram H of the input image G.

1. Convolve G with the same set of Gabor filters and adopts the MRO

selection criteria as in Algorithm 1. For each voxel vi, denote its

corresponding filter response vector as �fi.
2. For each voxel vi, assign it to one of the K-brainton clusters

by the closest cluster of �fi.
3. Obtain the K-bin histogram H by counting the voxels classified

to each cluster.

4. Normalize this K-bin histogram such that
∑K

i=1 H[i] = 1.

brainton histogram construction procedure in Algorithm 2 for

the template image is also only need to be computed once.

But for the subject image, its brainton histogram must be up-

dated for each iteration by Algorithm 2.

2.3. Local Anatomical Layer
local anatomical layer provides information about subtle yet

distinctive local structural features of input images. It can

help refine the final registration results.

In this paper, the information of this layer is represented

by the 3D rotation invariant feature transform (RIFT) descrip-

tor [5], which is proved to be rotation invariant as well as

highly distinctive. In this paper, the RIFT descriptor for each

voxel vi is calculated from a sub-volume with size 15×15×15
centered at vi. We use four spherical rings and eight his-

togram orientations, thus the RIFT descriptor for each voxel

vi is a 32-dimensional feature vector, denoted as �R(i).

3. FUSION OF INFORMATION FROM ALL LAYERS

After extracting features from all layers, they are integrated

together to drive the registration. A new similarity measure

function is defined in Equation 6 to integrate the information

from all layers:

M(Gt, T (Gs)) = −C1 · GSEE-MI(Gt, T (Gs))

+C2 · JSD(HGt , HT (Gs))

+
C3

N
·

N∑
i=1

D( �Rt(i)‖ �Rs(i)), (6)

where the first, second and third energy terms are correspond-

ing to the global intensity layer, texture information layer

and local anatomical layer respectively. Gt denotes the tem-

plate image, T (Gs) denotes the transformed subject image,

GSEE-MI(·) is the GSEE-MI measure defined in Equation

4. JSD(·) denotes the Jensen-Shannon divergence, HGt
and

HT (Gs) denote the brainton histograms of the template and

the transformed subject image calculated by the Algorithms

1 and 2. D(·) denotes the Kullback-Leibler distance, �Rt(i)

and �Rs(i) denote the RIFT histogram of the ith voxel in the

template and transformed subject images respectively. N is

the number of voxels in the template and subject images. C1,

C2 and C3 are weighting parameters controlling the emphasis

of each layer. The registration procedure is now formulated

as an optimization problem to minimize the energy function

in Equation 6.

In the paper, the registration procedure is formulated in

a multi-resolution manner. The high resolution image is the

original image, the mid resolution image is obtained by down-

sampling the original image by a factor of two, the low reso-

lution image is obtained by downsampling the mid resolution

image by a factor of two. Registration is performed from the

low resolution level to the high resolution level. The regis-

tered result obtained from a lower level is served as the initial

point to the next level.

In the low resolution level, the global intensity informa-

tion plays a more important role to characterize the overall

appearance between the template and subject images. For the

mid resolution level, texture information becomes richer from

the medium vision point of view, the local salient details are

also become more obvious. Finally, in the high resolution

level, we can pay more emphasis in the local anatomical layer

to refine the final registration result, as now it is less likely to

be trapped in the local minima based on the results obtained

from the two previous levels. Therefore, for the low resolu-

tion level, mid resolution level, and high resolution level, the

weighting parameters are set to: C1 = 3, C2 = 1, C3 = 0.5;

C1 = 1, C2 = 2, C3 = 1; C1 = 0.5, C2 = 1, C3 = 3
respectively. Such settings were used throughout the whole

registration experiments in this paper.

4. EXPERIMENTAL RESULTS

In this section, we perform systematic non-rigid brain MR im-

age registration experiments to evaluate the proposed frame-

work and identify the role of each layer. The proposed frame-

work was also compared with other widely used registration

methods. The tri-cubic B-spline basis function is adopted as

the transformation model. The control point spacing was set

at 2.5mm as suggested in [9].

Eighteen high resolution brain MR images were obtained

from IBSR 1. Each image has resolution of 256× 256× 128
voxels, and the expert segmentation results of internal struc-

tures are also provided by IBSR. One of the images was used

as the template image, and others were used as the subject

images. The tissue overlap measure proposed in [9] was used

to evaluate the registration accuracy. It is defined as: P =
N(A∩B)
N(A∪B) , where A and B denote the regions of a specific

structure in two images. In this paper, we focus on eight struc-

tures: left and right caudate nuclei (LCN and RCN), putamina

(LP and RP), thalami (LT and RT) and cerebellum white mat-

ters (LCWM and RCWM) as they are of great interest in brain

anatomical studies. The mean values of P for LCN, RCN, LP

1http://www.cma.mgh.harvard.edu/ibsr/
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Average Value of P

Methods LCN RCN LP RP

1. Before Registration 0.3426 0.3804 0.2792 0.3216
2. FFD + NMI [10] 0.5268 0.4926 0.6004 0.6225
3. Demons [11] 0.5816 0.5584 0.6273 0.6187
4. HAMMER [8] 0.7163 0.7317 0.7263 0.7696

5. GSEE-MI 0.5493 0.5215 0.6274 0.6662
6. Brainton 0.6375 0.6488 0.6026 0.5764
7. RIFT 0.7735 0.8063 0.7802 0.8014
8. GSEE-MI + Brainton 0.6703 0.6962 0.6391 0.6877
9. GSEE-MI + RIFT 0.8237 0.8209 0.8094 0.8155
10. Brainton + RIFT 0.8308 0.8123 0.8046 0.8176
11. All Layers 0.8552 0.8437 0.8304 0.8784

Table 1. Mean values of P for: left caudate nucleus(LCN), right caudate nu-
cleus(RCN), left putamen(LP) and right putamen(RP) of the 18 images obtained from
IBSR. The highest value of P is bolded for each column. The values of P for different
layer combinations of the proposed method are listed from Row 5 to Row 11.

Average Value of P

Methods LT RT LCWM RCWM

1. Before Registration 0.4135 0.3827 0.4503 0.4288
2. FFD + NMI [10] 0.7347 0.7159 0.8032 0.7814
3. Demons [11] 0.7562 0.7417 0.8274 0.8063
4. HAMMER [8] 0.7803 0.7658 0.7963 0.8144

5. GSEE-MI 0.7501 0.7488 0.8506 0.8410
6. Brainton 0.8268 0.8150 0.7284 0.7491
7. RIFT 0.6773 0.7218 0.6225 0.6019
8. GSEE-MI + Brainton 0.8395 0.8413 0.8607 0.8503
9. GSEE-MI + RIFT 0.7815 0.7407 0.8582 0.8629
10. Brainton + RIFT 0.8432 0.8180 0.7210 0.6729
11. All Layers 0.8571 0.8613 0.8707 0.8970

Table 2. Mean values of P for: left thalamus(LT), right thalamus(RT), left cerebel-
lum white matter(LCWM) and right cerebellum white matter(RCWM) of the 18 images
obtained from IBSR. The highest value of P is bolded for each column. The values
of P for different layer combinations of the proposed method are listed from Row 5 to
Row 11.

and RP are listed in Table 1 and the mean values of P for

LT, RT, LCWM and RCWM are listed in Table 2 for various

methods.

It is observed that GSEE-MI (Row 5 in Tables 1 and 2)

has consistent higher registration accuracy compared with

conventional NMI using the same deformation model (Row

2), which implies the robustness of GSEE-MI. Also, Table 2

shows that GSEE-MI has superior registration accuracies on

LCWM and RCWM, as these two brain structures are mostly

related to the global intensity layer. The same trend can also

be observed in the Demons algorithm [11] as Demons is an

intensity based registration method which also focuses on the

global intensity layer. For the LT and RT structures, they are

relatively smooth regions which contain rich texture informa-

tion. It is matched with the fact that Brainton (Row 6 in Table

2) has large values of P with respect to these two structures.

LCN, RCN, LP and RP are small size deep brain structures.

Intuitively, they are more suitable to be represented by micro-

scopic features and it is also matched with the fact that RIFT

(Row 7 in Table 1) has good registration accuracies of these

four structures. The complementary property of the three

layers is also illustrated as any combination of two layers can

have better performance compared with using a single layer

alone. When information of all three layers is integrated, it

has the highest registration accuracies in all kinds of brain

structures (Row 11 in Tables 1 and 2).

Another observation is that HAMMER [8] has medium

registration accuracy among each brain structure. The reason

is that the multi-scale geometric moment invariant (GMIs)

features used in HAMMER contain partial information from

all layers. However, using GMIs alone cannot fully extract all

information from each layer. That is the reason why HAM-

MER has medium registration accuracy among each brain

structure. This fact strongly implies our argument that suit-

able feature representation should be designed for each layer

based on its property.

5. CONCLUSION

In this paper, we propose a new framework for non-rigid

brain MR image registration. Each image is factorized into

three layers: global intensity layer, texture information layer

and local anatomical layer. New representations are pro-

vided to extract features from these three layers. Systematic

experiments were conducted based on the real 3D datasets

obtained from IBSR to evaluate the proposed framework and

identify the role of each layer. It is shown that information of

three layers exhibits complementary behaviors and the whole

framework has significant registration accuracy improvement

compared with other widely used registration approaches.

This hopefully inspires a new thinking in non-rigid brain MR

image registration methods.
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