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ABSTRACT

Multi-modal non-rigid image registration is widely used in

different areas, including medical image analysis and image

processing. In this paper, we introduce a new learning-

based method for non-rigid image registration. The proposed

method is based on a priori knowledge of the joint inten-

sity distribution of a pre-aligned image pair. The similarity

and dissimilarity of the expected and observed joint intensity

distributions are measured by two Kullback-Leibler distances

(KLD). Free-Form Deformation (FFD) is employed as the

transformation model along with the L-BFGS-B optimizer.

The derivatives of KLDs are derived to work with the L-

BFGS-B optimizer. Moreover, we have tested our method

with CT-T1 image pairs and compared the results obtained

by using the mutual information based FFD and the conven-

tional KLD based FFD. The experimental results show that

our method gives remarkable improvement on the registration

quality.

Index Terms— Non-rigid image registration, Kullback-

Leibler distances

1. INTRODUCTION
Non-rigid image registration is an essential technology of

medical image analysis [1]. According to the nature of trans-

formation, image registration can broadly be categorized into

two classes: rigid and non-rigid. 3D Rigid image registration

involves the optimization of transformation with six degrees

of freedom which consists of three angles of rotation and three

translation vectors. Different from rigid image registration,

transformation of non-rigid image registration has higher de-

grees of freedom which allows all voxels to transform freely

if no constraint is added to the deformation to keep the trans-

formation smooth. Therefore, due to the requirements of

smoothness and high degree of freedom, non-rigid image

registration is a challenging research problem.
Given a floating image If and a reference image Ir, the

goal of image registration is to find an optimal transformation
t∗ that realigns If to Ir. A dissimilarity function C(Ir, t(If ))
is usually used to measure the dissimilarity of the transformed
floating image t(If ) and the reference image. The whole pro-

cess is generally formulated as:

t∗ = arg min
t

(C(Ir, t(If )) + λS(t)), (1)

where S(t) is a penalty term that encourages the smoothness

of the deformation field and λ is a positive constant that gov-

erns the strength of the penalty.

In this paper, we mainly consider the dissimilarity func-

tion C(Ir, t(Ir)). Sum of Squared Differences (SSD), Sum of

Absolute Differences (SAD), Mutual Information (MI) and

Normalized Mutual Information (NMI) are widely used as

dissimilarity function in both rigid and non-rigid registration

tasks. Those four functions merely depend on the intensity of

the testing image pair. To incorporate the intensity relation-

ship learned from the training image pair into non-rigid im-

age registration, we extend the conventional Kullback-Leibler

distance (KLD) based method [2], which was originally pro-

posed for rigid image registration. This conventional KLD

based method has been utilized in rigid [2] and non-rigid reg-

istrations [3, 4]. Recently, for rigid registration, Chung et al.
[5] proposed a novel KLD based dissimilarity measure and it

was demonstrated that the combined use of the similarity and

dissimilarity measures improves the robustness and the qual-

ity of the rigid registration tasks. In this paper, the derivatives

of the similarity measure [2] and the dissimilarity measure [5]

are derived. We exploit the derivatives along with the “Lim-

ited memory Broyden Fletcher Goldfarb Shannon minimiza-

tion with simple Bounds”(L-BFGS-B) optimizer [7] to per-

form Free-Form Deformation (FFD) [6] based non-rigid reg-

istration. To the best of our knowledge, it is the first time to

apply the two similarity and dissimilarity measures together

with their derivatives into non-rigid registration (details will

be discussed in the next section). The experimental results

show that our method gives better registration quality than

MI based FFD and the conventional KLD based FFD.

The organization of this paper is as follows. In Sec-

tion 2, we will discuss our registration framework, including

the transformation model, our dissimilarity function and the

derivatives. Without lost of generality, our discussion is based

on three dimensional cases. The experimental results of our

method will be presented in Section 3. Finally, we conclude

our paper with future research in Section 4.
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2. METHODOLOGY

2.1. Transformation Model

We use Free-Form Deformation (FFD) described in [6] as our

transformation model along with the L-BFGS-B optimizer.

In FFD, a set of equal spacing control points is defined on

the floating image. Those control points can be moved freely

in 3D space during the registration process. The deforma-

tions of other points are calculated by B-Spline interpolation

on the displacements of nearby control points. With more

control points, the process has better ability to handle higher

frequency local deformation, but the deformation field will be

rougher. Therefore, we should keep a balance on the accuracy

and the smoothness of the deformation field by controlling the

number of control points.

2.2. Kullback-Leibler Distances
With a priori knowledge of the joint intensity distribution

P̂ (if , ir) between floating and reference images, Chung et al.
[5] proposed a learning-based rigid registration method with
a novel dissimilarity function, which is constructed by three
Kullback-Leibler distances. Those three KLDs are denoted
as D1, D2 and D3. In this paper, we assume that all floating
images are registered to the reference image by a rigid trans-
formation and then an affine transformation before applying
our proposed method. Under this assumption, we only em-
ploy D1 and D2 into our dissimilarity function, and D3 is not
included since it is useful only if the overlap region of the
floating image and the reference image is small. The formu-
lations of D1 and D2 are:

D1(P
t
o(if , ir)||P̂ (if , ir)) =

∑
if ,ir

P t
o(if , ir) log

P t
o(if , ir)

P̂ (if , ir)
, (2)

D2(P
t
o(if , ir)||P̂ (if , ir)) =

∑
if ,ir

P t
o(if , ir) log

P t
o(if , ir)

P̂ (if )P̂ (ir)
,

(3)

where if and ir are the indices of the histogram bins of the

floating image and the reference image respectively, P̂ (if , ir)
is the expected joint intensity distribution, P t

o(if , ir) is the

observed joint intensity distribution, and P̂ (if ) and P̂ (ir)
are the expected marginal distributions of the training im-

age pair. Note that D1 is the conventional KLD used in [2,

3, 4, 5] and the product of expected marginal distributions,

i.e. P̂ (if )P̂ (ir), represents the distribution when the inten-

sity values of the input images are statistically independent.
Fig. 1 illustrates the functionalities of D1 and D2. The

cross symbols representing P t
o(if , ir) of different image pairs

before the registration. The similarity measure D1 and the
dissimilarity measure D2 like a pull force and a push force
respectively. When minimizing D1, t is optimized to pull the
observed joint distributions toward the expected joint distribu-
tion. When maximizing D2, t is optimized to push P t

o(if , ir)
away the condition that the testing image pair are statistically
independent. By utilizing the pull force and the push force
together, we can decrease the possibility that the registration

process is trapped in local minimum and also improve the reg-
istration quality. We denote the resulting dissimilarity func-

tion as D12 = D1 − D2 =
∑

if ,ir
P t

o(if , ir) log P̂ (if )P̂ (ir)

P̂ (if ,ir)
.

In the meanwhile, the objective of our non-rigid registration
process becomes finding the optimal transformation,

μ∗ = arg min
μ

(D12(P
t(μ)
o (if , ir)||P̂ (if , ir))). (4)

where μ = [μ1 μ2 . . . μ3n]T are 3n independent transfor-

mation parameters of t under FFD and n is the number of

control points. Note that the penalty term S(t) is omitted as t
is restricted by μ in FFD.

2.3. Derivatives of KLDs
Some optimizers, for instance, L-BFGS-B which is employed

in this paper, require the analytical form of gradient of the en-

ergy function. These optimizers usually converge faster than

other optimizers that do not require the analytical form of gra-

dient. It is because the extra information given by the gradient

can drive them to the global minimum or strong local mini-

mum.
To compute the derivatives of D1 and D2 efficiently, we

apply the Parzen window model using separable B-Spline ker-
nels [4, 8, 9] to model the joint intensity distributions.

P t(μ)
o (if , ir) =

1

card(V )

∑
�x∈V

β(0)

(
ir − Ir(�x) − I ′

r

Δbr

)

×β(3)

(
if − If (t(�x|μ)) − I ′

f

Δbf

)
, (5)

where β(0) is a zero-order B-Spline kernel used for the ref-

erence image, β(3) is a cubic B-Spline kernel used for the
floating image, V is a subset of voxels involved in the com-
putation of the joint intensity distributions, I ′r and I ′f are min-

imum intensity values of the input images, and Δbr and Δbf

are intensity ranges of each histogram bin of If and Ir re-

spectively. The kth derivative of Eq. 5 can be obtained by
applying the chain rule [8],

∂P
t(μ)
o (if , ir)

∂μk
=

1

card(V )Δbf

∑
�x∈V

β(0)

(
ir − Ir(�x) − I ′

r

Δbr

)
(

∂β(3)(u)

∂u

∣∣∣
u=if−

If (t(�x|μ))−I′
f

Δbf

) (
∂If (t(�x|μ))

−∂(t(�x|μ))

)T
∂t(�x|μ)

∂μk
.(6)

There are three derivative terms in Eq. 6. The first deriva-

tive term can be differentiated explicitly by a subtraction of

two second-order B-Spline kernels [8]. The second derivative

term is the gradient of the floating image on a point that is

transformed by t(μ). This term can be computed by finite el-

ement methods. The last derivative term is the derivative of

the transformation. As the transformation model FFD is lin-

ear with respect to the transformation parameter μk, the last

term is the coefficient of the parameter.
By Eq. 5 and Eq. 6, the derivative of a dissimilarity func-

tion C(·) is given as ∇C = [ ∂C
∂μ1

∂C
∂μ2

· · · ∂C
∂μ3n

]T . For D1 and
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Fig. 1. Illustration of the functionalities of (a) D1, (b) D2 and (c)

D12. The cross symbols representing the observed joint distributions

of different image pairs before the registration.

D2, ∂D1
∂μk

=
∑

if ,ir
log P t(μ)

o (if ,ir)

P̂ (if ,ir)
· ∂P t(μ)

o (if ,ir)
∂μk

and ∂D2
∂μk

=∑
if ,ir

log P t(μ)
o (if ,ir)

P̂ (if )P̂ (ir)
· ∂P t(μ)

o (if ,ir)
∂μk

respectively. Therefore,

the kth derivative of D12 is:

∂D12

∂μk
=

∑
if ,ir

log
P̂ (if )P̂ (ir)

P̂ (if , ir)
· ∂P

t(μ)
o (if , ir)

∂μk
. (7)

3. EXPERIMENTAL RESULTS

All images used in experiments were obtained from the Ret-

rospective Image Registration Evaluation (RIRE) Project [10]

and have been normalized with the intensity within 0 and 255.

In order to compare our D12 based FFD with the MI based

FFD and the conventional KLD based FFD [2], we have done

21 experiments, 7 experiments on each method. All experi-

ments were 3D to 3D multi-modal non-rigid registration and

run under the same configuration where 15 × 15 × 15 con-

trol point grid was used in FFD. We chose MR-T1 of pt-001

as reference image, and the pre-deformed CT of pt-001 and

CT of other 6 patients (pt-002 to pt-007) were floating im-

ages. All image pairs were pre-registered with a rigid trans-

formation followed by an affine transformation. The leftmost

columns of Figs. 2 shows slices of checker boards of im-

age pairs used in the experiments before non-rigid registration

was performed. For the experiments of the D12 based FFD

and the conventional KLD based FFD, we chose pre-aligned

CT-T1 image pair of pt-002 as the training image pair. All

programs used in experiments were implemented by using an

open source library, Insight Toolkit ITK [11]. For MI and its

derivative, we used the implementation described in [8] which

was provided by ITK. All experiments were performed on a

PC with an Intel 2.13GHz dual-core CPU with 3GB RAM.

Columns 2 to 4 of Figs. 2 shows the registration results

of different CT-T1 image pairs. The images shown were

slices of checker boards which were generated by the ref-

erence image (T1 of pt-001) and the registration results of

image pairs. As described in Section 2.1, we used FFD as

the transformation model. Since only control points can be

moved freely, whereas the movements of other voxels are

calculated by their neighborhood control points via B-Spline

function, the checker boards of the result images are similar.

However, it is easy to notice that our method gives obvious

improvements on registration quality. In general, inside the

brain region, the bright structures of CT should be mapped

to the dark structures of MR-T1. To show the differences,

we have circled observable misaligned regions. Among all

cases, our dissimilarity function D12 can obtain more precise

results than MI and conventional KLD, especially in pt-001,

pt-004 and pt-005. On the other hand, the results of MI and

conventional KLD are comparable. For pt-001, pt-005 and pt-

006, the results of MI are more precise than the conventional

KLD whereas conventional KLD can work better in other

cases. Note that D12 is composed of the conventional KLD,

i.e. the similarity measure D1, and the newly added KLD,

i.e. the dissimilarity measure D2. Therefore, the contribution

of D2 can be proved by comparing the results of D12 and

conventional KLD. It is observed that D2 improves the regis-

tration quality especially in pt-001, pt-005 and pt-006 where

conventional KLD performed worse in those cases.

4. CONCLUSION
In this paper, we have employed both similarity and dissim-

ilarity measures in the dissimilarity function, D12, for multi-

modal non-rigid image registration. We have also derived the

derivative of D12 so that it can be used in the optimizers,

which require the gradient of the energy function. This is es-

sential as many optimizers work on the basis of gradient and

those optimizers are usually faster than others. D12 has been

tested on 7 CT-T1 image pairs with FFD and the L-BFGS-

B optimizer, and compared with MI and conventional KLD

based non-rigid registration methods. Experimental results

show that the proposed method exhibits surpassing registra-

tion quality as compared to other two dissimilarity function

based registration methods, among all 7 image pairs. The fu-

ture research directions include applying D12 to other non-

rigid registration models like Markov Random Field (MRF)

model, and testing D12 with different types of images and

modalities.
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Fig. 2. Results of pt-001 to pt-007. (For viewing details, zoom-in the electronic file.)
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