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Algorithms relying on noise distribution models have been 
applied to MR data for such purposes as spectral peak 
extraction, image segmentation and restoration.‘-5 It is 
noted that mapping from complex (vector image) values to 
a real-valued intensity scale using modulus or phase 
operators modifies the noise characteristics.6,7 In 
discussions however, we have found that the behaviour of 
noise under image operations is not fully appreciated. We 
have examined the impact of some non-linear operators 
commonly used to manipulate and display of MR images. 

The noise associated with the acquired MR signal 
is generally taken to be additive, uncorrelated and 
Gaussian with zero (or low value) mean and of comparable 
variance for each quadrature channeLa” A similar 
distribution thus holds for each component of the complex- 
valued image formed by Fourier transformation because of 
its linearity. This is a characteristic of linear operators 
(including: averaging, scaling and offset correction). They 
may affect the mean and variance of the no%j but do not 
alter the shape of the noise distribution itself. 
Non-linear operators do not necessarily share this 
distribution preserving behaviour. In particular, the shape of 
the noise distribution can become dependent on the local 
signal value.5 The modulus operator for instance 
progresses from a Rayleigh to a Gaussian noise 
distribution with increasing signal to noise ratio. A rather 
different trend is seen with the phase operator. Here, a 
uniform probability distribution exists at negligible signal 
levels which, again, becomes more Gaussian with 
increasing signal levels. 

Some further operators of interest in MR are 
square logarithm. For a signal z = Re(z) + i*lm(z), and 
assuming that the real and imaginary components are 
corrupted by independent and uncorrelated Gaussian noise 
(with equal standard deviation 0, and different means, foir 
which square root of the square sum of means is A), the 
summary probability density functions for the noise 
distributions arising from these operators are: 

f(ln I z I> = 2 I z I2 f(l z I’> 
where IzI is modulus of z, k is the number of real and 
imaginary components (In general, k=2*number of 
orthogonal image decoding directions), I is the modified 
Bessel function of the first kind, u(z) is a unit step function. 
Methods - Tl and T2/PD wtd spin echo, phase contrast 
MRA and time of flight MRA sequence images were 
acquired on a 1.5T scanner. Conventional modulus and 
phase contrast “speed” images were used to form squared 
and logartihm images. The noise models differ from 
Gaussian most substantially when SNR is low. Therefore, 
to compare the fit of these new MR noise models and 
standard Gaussian noise each model was fitted to 
histograms obtained from regions of interest chosen in 
background air. 
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Results - Examples of theoretical and Gaussian model 
noise fits to image results (dotted histogram) following A) 
squaring operator and B) logarithm operator. 

Mean Squared Error: Theoretical & Gaussian noise Fitting 
Gaussian Theoretical 

Squaring Operator 9.4473 2.5740 
Natural Log Operator 8.7271 3.6529 

Discussion - It is clear that the square and In operators lead 
to non-Gaussian noise distributions in regions of low signal 
intensity. The use of appropriate noise models as 
described here will therefore be a useful inclusion in any 
model-based processing. Filtering, and coherent noise may 
account for some of the discrepancy with observed noise. 

These particular operators are of interest in quite 
distinct areas of MR. The squaring operator has been 
suggested as a means of maximising contrast in phase 
contrast MR angiograms.13 Thus, preceding steps would 
typically involve complex subtraction of two or more 
images. Although these linear operations retain the 
Gaussian noise distribution they serve to reduce the signal 
intensity for most (non-moving) parts of the image. It would 
then be the case that squaring transforms the Gaussian 
noise distribution into a Maxwell distribution given here for 
air and static tissue. 

The logarithm operation may be used to linearise 
data for curve-fitting when deriving relaxation times. The 
results here highlight the change in behaviour of noise for 
low signal intensities, implying that appropriate noise 
models are needed for fitting to heavily decayed sample 
points. 

3. D. Nell, D. Nishimura, A. Macovski. IEEE-TM1 1991;10:154-1634. A. 
Chung, J. Noble. MICCAl’99 : 82-89 
5. M. Brummer, R.Mersereau et al. IEEE-TM1 1993;12:153-166 
6. C. Constantinides, E. Atalar, E. MeVeigh. MRM 1997;38:852-857 
7. A. Andersen, J. Kirsch. Medical Phys. 1996;23:857-869 
8. H. Gudbjartsson, S. Pate. MRM 1995;34:910-4 
9. R. Henkelman. Med. Phys. 1985;12:232-5 
10. J. Sijbers, A. Den Dekker et al. MRI 1998;16:87-90 
11. L.Couch II. Digital and analog communications systems 4’” ed. 
Macmillan Publishing Co. 1993 
12. R. Zeimer, W.- Tranter. Principles of communications: systems, 
modulation, and noise 3ti ed Houghton Mifflin 1990 
13. C. Dumoulin, S. Sousa et al. MRM 1989;9:139-49 

Proc. Intl. Sot. Mag. Reson. Med. 8 (2000) 1779 


