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Abstract

To make up for the lack of concern on the spatial information in the conventional mutual information based image registration
framework, this paper designs a novel spatial feature field, namely the maximum distance-gradient (MDG) vector field, for registration
tasks. It encodes both the local edge information and globally defined spatial information related to the intensity difference, the distance,
and the direction of a voxel to a MDG source point. A novel similarity measure is proposed as the combination of the multi-dimensional
mutual information and an angle measure on the MDG vector field. This measure integrates both the magnitude and orientation infor-
mation of the MDG vector field into the image registration process.

Experimental results on clinical 3D CT and T1-weighted MR image volumes show that, as compared with the conventional mutual
information based method and two of its adaptations incorporating spatial information, the proposed method can give longer capture
ranges at different image resolutions. This leads to more robust registrations. Around 2000 randomized rigid registration experiments
demonstrate that our method consistently gives much higher success rates than the aforementioned three related methods. Moreover,
it is shown that the registration accuracy of our method is high.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A crucial element in the image registration process is a
similarity measure to determine how well the images match
with each other through a hypothesized spatial transforma-
tion. Mutual information, a useful concept from informa-
tion theory, has been one of the most extensively adopted
measures. It was originally introduced as a similarity mea-
sure on image intensity. Generally promising results have
shown that mutual information is well-suited for multi-
modal image registration (Maes et al., 1997; Meyer et al.,
1997; Studholme et al., 1997; Wells et al., 1996; West
et al., 1997). An important and beneficial property of
mutual information is that it measures the statistical depen-
dence (or in other words, shared information) between two
1361-8415/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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image intensities, and does not assume any limiting (for
instance, linear) relationship between image intensities in
the images.

However, it has been suggested that the conventional
mutual information based registration can result in mis-
alignment in some cases (Penney et al., 1998; Pluim et al.,
2000) and thus room for improvement exists. The conven-
tional mutual information measure takes only image inten-
sities into account, since by definition, it depends on the
relative occurrence of intensities in individual images and
co-occurrence of intensity pairs in both images. A known
deficiency of mutual information is the lack of concern
for any (local or global) spatial information, which may
be present in individual images to be registered (Pluim
et al., 2003; Rueckert et al., 2000). In order to increase reg-
istration performance, several researchers have proposed
adaptations of the mutual information based registration
framework to incorporate spatial information from indi-
vidual images, for instance:
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Spatial feature vectors: Butz and Thiran (2001) applied
mutual information to edge measure (e.g. gradient magni-
tude) space, which aligned object surfaces in the images
to be registered. However, mutual information measure
on edge features is sensitive to the sparseness of joint edge
feature histograms. This may increase the difficulty of the
optimization procedure.

By multiplying an external local gradient term, Pluim
et al. (2000) incorporated both orientation and magnitude
of gradient into the conventional mutual information mea-
sure to ensure the alignment of locations of tissue transi-
tions in images. The plots of the similarity measure as a
function of misalignments around ground truth indicate
that the registration function of the combined measure is
smoother than that of the standard mutual information
measure.

On the other hand, some researchers applied mutual
information or other entropic similarity measures on
high-dimensional spatial feature extracted from the images,
and adopted estimators for high-dimensional distributions
(Ma et al., 2000; Neemuchwala et al., 2005; Sabuncu and
Ramadge, 2003).

Region-based information: Rueckert et al. (2000)
exploited second-order mutual information measure to
include local spatial information present with the neighbor-
ing point pairs, by considering the co-occurrence of inten-
sity pairs of adjacent points in individual images. This
method is shown to be robust with respect to local intensity
variation for non-rigid registration.

Moreover, Russakoff (2004) proposed the regional
mutual information (RMI) measure by considering the
co-occurrence of intensity groups of local neighborhood
regions. To estimate the high-dimensional mutual informa-
tion, they assumed that the high-dimensional joint distribu-
tion is approximately normally distributed. Various
neighborhood radii were tested in their work, and it is dem-
onstrated that RMI improves registration robustness.

Recently, Bardera et al. (2006) proposed to extend the
normalized mutual information (Studholme et al., 1999)
to consider the correspondence between voxel blocks.
The estimation of the high-dimensional joint histogram
was based on uniformly distributed random lines.
Improved registration accuracy and robustness are demon-
strated with the proposed method.

However, for the above adaptations, only the spatial
information in a relatively local neighborhood is consid-
ered. In order to incorporate more global spatial informa-
tion into the mutual information based registration
framework, this paper defines and introduces a new spa-
tial feature field, namely the maximum distance-gradient
(MDG) vector field. The MDG feature encodes both
the local edge information and spatial information at a
global level which includes (1) the intensity difference,
(2) the distance and (3) the direction of a voxel to a
MDG source point. By incorporating the magnitude
and orientation information of the MDG vector field,
we propose an adaptation of the conventional mutual
information based image registration framework. The
overall similarity metric consists of two components: (1)
the multi-dimensional mutual information measure on a
newly formed two-element attribute vector space, and
(2) an angle measure on the orientations of the MDG vec-
tor field of the images to be registered. To increase com-
putational efficiency and robustness of the proposed
method, we adopt a multi-resolution iterative registration
process.

Based on the results using clinical three-dimensional CT
and T1-weighted MRI image volumes from the retrospec-
tive image registration evaluation (RIRE) project (West
et al., 1997), it is experimentally shown that, at different
image resolutions, the proposed method can give longer
capture ranges than the conventional mutual information
based method and two of its adaptations (respectively pro-
posed by Pluim et al. (2000) and Rueckert et al. (2000))
with incorporating spatial information. This can obviously
make the multi-resolution image registration more robust.
Moreover, the results of around 2000 randomized rigid reg-
istration experiments reveal that our method consistently
gives much higher registration success rates than the afore-
mentioned three related methods. Finally, it is demon-
strated that our method can obtain high registration
accuracy.

The organization of the paper is as follows. Section 2
formulates spatial information as a novel MDG vector
field. Our objective function for multimodal image registra-
tion method is proposed in Section 3. Implementation
details for the computation of the MDG vector field and
also for the registration process are given in Section 4. Sec-
tion 5 presents the experimental results and discussions.
The conclusion is drawn in Section 6.

2. Maximum distance-gradient vector field

It is known that the conventional mutual information
based registration method does not consider spatial infor-
mation in the images. The aim of our approach is to
incorporate spatial information into the mutual informa-
tion measure in order to improve registration perfor-
mance, particularly with respect to registration
robustness. We define below a new spatial feature field,
namely the maximum distance-gradient (MDG) vector
field, to encode both the local edge information and glob-
ally defined spatial information, which includes (1) the
intensity difference, (2) the distance, and (3) the direction
of a voxel to a MDG source point. The adaptation of the
mutual information measure by associating the MDG
vector field with the conventional voxel intensity is pro-
posed in Section 3.

2.1. Conventional image gradient

Image gradient is a commonly adopted representation of
spatial information. The conventional image gradient is a
first derivative based operator, that is to say,



Fig. 1. The spatial distributions of the MDG source points for (a) CT and
(b) MR images. Note that, although two-dimensional slices are shown, the
computations of MDG source points were done in three dimensions. The
MDG source points are marked with green circles. From the figure, it is
observed that most of the MDG source points are located at or around the
object boundary in both images.
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rIðvÞ ¼ oIðvÞ
ox

~ix þ
oIðvÞ
oy

~iy þ
oIðvÞ
oz

~iz;

where I ¼ fIðvÞg is an intensity image volume, v ¼ ðx; y; zÞ
denotes a voxel position, and~ix,~iy and~iz are unit vectors in
the principal directions, respectively. At each point in the
image, the gradient vector points in the direction of the
largest possible intensity increase, and the length of the gra-
dient vector corresponds to the rate of change along that
direction.

Fundamentally, the conventional image gradient is
locally defined and normally used to detect the significance
of object boundaries, where voxels change their intensity
suddenly. By computing the magnitude of the image gradi-
ent, voxels at object boundaries would give large values,
while voxels within homogeneous regions would give small
and almost constant values. Specifically in medical images,
locations around tissue transitions, which only occupy a
very small proportion of the whole image volume, present
high information value (i.e., large gradient magnitude). On
the other hand, a large amount of voxels (i.e., locations
within background regions and anatomical structures)
have small and almost constant gradient magnitude and
thus the presented information for image registration is
very limited. Consequently, this may limit the use and effect
of image gradient features in voxel-based image registra-
tion. A graphical illustration for these behaviors is shown
in Fig. 6 and a further discussion is given in Section 2.2.2.

2.2. Maximum distance-gradient (MDG)

In this subsection, we define a new spatial feature field,
which we call the maximum distance-gradient (MDG) vec-
tor field. It contains not only the local edge information,
but also spatial information at a global level, which
encodes (1) the intensity difference, (2) the distance and
(3) the direction of a voxel to a MDG source point, which
will be defined in the next subsection. Moreover, the mag-
nitude of the MDG feature varies smoothly and gradually
from the object boundaries towards the interiors of homo-
geneous image regions.

2.2.1. Definition
To define the MDG vector field, we begin by defining a

distance-gradient operator, rd , on two arbitrary voxels in
an image. The distance-gradient of two voxels, v1 and v2,
in an image volume I ¼ fIðvÞg is a three-dimensional vec-
tor (or a two-dimensional vector when v ¼ ðx; yÞ), which is
defined as

rd Iðv1; v2Þ ¼ ðIðv1Þ � Iðv2ÞÞ
v1 � v2

jv1 � v2j2

¼ Iðv1Þ � Iðv2Þ
jv1 � v2j

~nv1v2
; ð1Þ

with

~nv1v2
¼ v1 � v2

jv1 � v2j
:

Here j � j denotes vector magnitude. Specifically, vector
rdIðv1; v2Þ points in the direction of intensity increase be-
tween v1 and v2, i.e., from v2 to v1 if Iðv1Þ > Iðv2Þ, and vice
versa. On the other hand, the vector length (or magnitude)
is in direct ratio to the intensity difference but in inverse ra-
tio to the location distance of v1 and v2. This means that
jrd Iðv1; v2Þj measures the average rate at which the inten-
sity function IðvÞ changes between v1 and v2. Note that
Eq. (1) is valid for any two voxels as long as they are from
different locations.

With the above definition, a MDG vector field,
G ¼ fGðvÞg, of the image can be derived by using

GðvÞ ¼ rd Ið�v; vÞ; ð2Þ
where

�v ¼ arg max
v02X
jrd Iðv0; vÞj: ð3Þ

Here X is the image volume domain. In other words, for
any voxel v, there exists a corresponding voxel, �v, which
gives the maximum distance-gradient magnitude with v

among all voxels in the image volume. Then, the MDG
vector at v is defined as the distance-gradient between �v
and v. Hereafter we call �v the MDG source point of v.

According to this formulation, the magnitude of GðvÞ
gives the maximum average rate at which the intensity
function I changes between v and any other voxels in the
image volume. Its orientation is in the direction of intensity
increase between v and �v. Based on Eqs. (1) and (2), �v (the
MDG source point of v) is generally located at or around
an object boundary, in order to simultaneously maintain
relatively large intensity difference and relatively small
location distance. Moreover, for empirical justification,
the spatial distributions of the MDG source points in a
two-dimensional slice extracted from the three-dimensional
image volume are plotted for both CT and T1-weighted
MR images, as shown in Figs. 1a and b, respectively. Note



Fig. 2. (a) An in-plane two-dimensional CT slice. (b) The signed-MDG feature field of (a). (c) A close-up of the field for the ROI within the box in (a). The
computation is just performed in the in-plane two-dimensional image slice for a better representation of vectors.

R. Gan et al. / Medical Image Analysis 12 (2008) 452–468 455
that the computations of MDG sources were done in three
dimensions. The MDG source points are marked with
green circles1. From the figure, it is observed that most of
the MDG source points are located at or around the object
boundary in both images.

More examples of the MDG vector field computed for
real clinical CT and T1-weighted MR images are shown
in Figs. 2 and 3. For a clear representation of vectors, in-
plane two-dimensional slices, as shown in Figs. 2a and
3a, are extracted from three-dimensional clinical CT and
MR image volumes obtained from the RIRE project.
Then, the computed MDG vector fields for these in-plane
slices are shown in Figs. 2b and 3b (see Section 4 for the
implementation details of the MDG vector field computa-
tion). Note that, in order to delineate the locations of the
object boundaries, Figs. 2b and 3b plot the signed-MDG
feature field, which will be defined in Eq. (8),

signðIð�vÞ � IðvÞÞGðvÞ;
1 For interpretation of the references to colour in the text, the reader is
referred to the web version of this article.
where the function signð�Þ indicates the sign of the intensity
difference. That is to say, instead of pointing in the direc-
tion of intensity increase, a vector always points in the
direction from a point to its MDG source point. Figs. 2c
and 3c show close-ups of the MDG vector fields for the re-
gions of interest (ROI) selected by boxes as shown in Figs.
2a and 3a.
2.2.2. Properties

Compared with the conventional image gradient, the
MDG vector field of the CT and MR image volumes has
at least two superior characteristic features, Feature I and
Feature II:

Feature I. When a voxel v is at or very close to an object
boundary, its MDG vector GðvÞ generally approximates
the conventional image gradient rIðvÞ, with respect to
both orientation and magnitude.

It can be illustrated by using a clinical CT image volume
(Fig. 4a) and a clinical T1-weighted MR image volume
(Fig. 4f) obtained from the RIRE project. For the CT
image volume, the gradient and MDG vector fields were



Fig. 3. (a) An in-plane two-dimensional MR slice. (b) The signed-MDG feature field of (a). (c) A close-up of the field for the ROI within the box in (a).
The computation is just performed in the in-plane two-dimensional image slice for a better representation of vectors.
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estimated, and Figs. 4b and 4c show the estimated gradient
and MDG magnitudes, respectively. Boundary points were
selected based on a threshold, which was set to 33% of the
maximum gradient magnitude. Points (or voxels) having
gradient magnitude above the threshold were marked as
the boundary points. At each boundary point, the corre-
sponding gradient and MDG vectors were kept (see
Fig. 4d for gradient and Fig. 4e for MDG); otherwise, vec-
tors were set to zero at the non-boundary points. For all
the marked boundary points, pairs of gradient and MDG
magnitudes are plotted in Fig. 5a and the cross-correlation
is 0.9648. Similarly, all pairs of gradient and MDG orien-
tations are plotted in Fig. 5b and the cross-correlation is
0.9522.

For the MR image volume, Figs. 4g and h show the esti-
mated gradient and MDG magnitudes, respectively. Using
33% of the maximum gradient magnitude as the threshold,
points (or voxels) having gradient magnitude above the
threshold were marked as the boundary points. The gradi-
ent and MDG magnitudes on the boundary points are plot-
ted in Figs. 4i and j, respectively. For all the boundary
points, pairs of gradient and MDG magnitudes are plotted
in Fig. 5c and the cross-correlation is 0.9427. For orienta-
tions, the cross-correlation is 0.9518, and pairs of gradient
and MDG orientations are plotted in Fig. 5d. In the above
CT image volume and MR image volume, between gradi-
ent and MDG vectors, it is observed that the values of
magnitude and orientation cross-correlations are relatively
high at the marked boundary points.

This feature can also be partly explained as follows.
When a voxel v is at or very close to an object boundary,
if its MDG source point �v is very close to v, then the vector
Dv ¼ �v� v becomes very small. Based on the Taylor’s the-
orem (Spivak, 1980), we have

Ið�vÞ ¼ Iðvþ DvÞ � IðvÞ þ rIðvÞ � Dv:



Fig. 4. (a) An in-plane two-dimensional slice selected from a clinical CT image volume. (b) and (c) The corresponding slices for the gradient magnitude
and the MDG magnitude, respectively. (d) The corresponding slice which only shows the values of gradient magnitude, obtained from (b), at the boundary
points. (e) The corresponding slice which only shows the values of MDG magnitude, obtained from (c), at the boundary points. (f) An in-plane two-
dimensional slice selected from a clinical MR image volume. (g) and (h) The corresponding slices for the gradient magnitude and the MDG magnitude,
respectively. (i) The corresponding slice which only shows the values of gradient magnitude, obtained from (g), at the boundary points. (j) The
corresponding slice which only shows the values of MDG magnitude, obtained from (h), at the boundary points. All computations are performed in the
three-dimensional image volume.
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Fig. 5. (a) and (c) Scatter plots which show all pairs of gradient and MDG magnitudes at the boundary points in the clinical CT and MR image volumes,
respectively. (b) and (d) Scatter plots which show all pairs of gradient and MDG orientations at the boundary points in the clinical CT and MR image
volumes, respectively.
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Subsequently, based on Eq. (2), it is true that

GðvÞ ¼ rd Ið�v; vÞ ¼ rd Iðvþ Dv; vÞ � rIðvÞ � Dv

jDvj
Dv

jDvj

¼ jrIðvÞj cos ĥ
Dv

jDvj ; ð4Þ

where ĥ is the angle between rIðvÞ and Dv.
On the other hand, since it is assumed that �v is very close

to v, the MDG magnitude for v can be found by searching
the voxels close to v. In this situation, according to the def-
inition of the MDG vector field (Eqs. (2), (3)), the MDG
magnitude for v is given by

jGðvÞj ¼ max
h
jrd Iðvþ h; vÞj; ð5Þ

where h denotes a small vector, vþ h 2 X, and X represents
the image volume domain. In other words, we just need to
search voxels vþ h which are close to v. When jhj becomes
very small, using Eq. (4) and Eq. (5) can be approximated by

jGðvÞj � max
h
jrIðvÞjj cos hj ¼ jrIðvÞj; ð6Þ

where h is the angle between rIðvÞ and h. This shows that
the magnitude of GðvÞ approximates that of rIðvÞ, when v

is located at or very close to an object boundary and �v is
very close to v. Furthermore, by combining Eqs. (4) and
(6), we derive ĥ � 0, which implies that the orientation of
GðvÞ tends to coincide with that of rIðvÞ in this situation.

Feature II. The MDG vector field of homogeneous
regions, e.g. anatomical structures and background
regions, provides rich information related to the intensity
change, the distance, and the direction of a voxel to a cer-
tain object boundary point, which is the MDG source
point. This property differs markedly from the limited
information provided by the conventional image gradient
in the homogeneous regions.

Specifically, when the voxel position varies from the
object boundaries towards the interiors of homogeneous
regions, the magnitude of the MDG vector decays smoothly

and gradually. It is worth pointing out that the MDG
source points of the neighboring locations may not be the
identical or neighboring points. Moreover, when the voxels
are located relatively far away from the boundaries, such a
decrement in magnitude can be very small.

Below we give a mathematical analysis on the magni-
tude variation of the MDG vectors within the homoge-
neous image regions. Suppose va and vb are two
neighboring locations in a homogeneous region, and �va

and �vb are their MDG source points, respectively. To esti-
mate their magnitude difference, kGðvaÞj � jGðvbÞk, we first
compute

krd Ið�va; vaÞj � jrd Ið�va; vbÞk

¼ jIð�vaÞ � IðvaÞj
j�va � vaj

� jIð�vaÞ � IðvbÞj
j�va � vbj

����
����: ð7Þ

Since va and vb are very close (i.e., adjacency), and also
IðvaÞ and IðvbÞ are very similar (i.e., homogeneity), we have

jIð�vaÞ � IðvbÞj ¼ jIð�vaÞ � IðvaÞj þ eI ;
and

j�va � vbj ¼ j�va � vaj þ ev;

where eI and ev are two small values, which approach 0. Let
Dva ¼ j�va � vaj and DIa ¼ jIð�vaÞ � IðvaÞj. Since va and vb are
away from the boundaries, it is reasonable to assume that
Dva > 2jevj. Consequently, Eq. (7) becomes

krdIð�va; vaÞj � jrd Ið�va; vbÞk ¼
DIa

Dva
� DIa þ eI

Dva þ ev

����
����

¼ DIa � ev

DvaðDva þ evÞ
� eI

Dva þ ev

����
����

6
DIa

Dva
� 2jevj
Dva
þ 2jeI j

Dva
:

It is obvious that, as long as va is not close to an object
boundary, we can find a small value e to satisfy

krdIð�va; vaÞj � jrd Ið�va; vbÞk < e;

and then with similar computation,

krdIð�vb; vbÞj � jrd Ið�vb; vaÞk < e:

Based on Eqs. (2) and (3), we have

jGðvaÞj � jGðvbÞj > jrd Ið�vb; vaÞj � jrd Ið�vb; vbÞj
> �e;

and

jGðvaÞj � jGðvbÞj < jrd Ið�va; vaÞj � jrd Ið�va; vbÞj < e:

The above two equations represent that the magnitude var-
iation of these two MDG vectors can be bounded by a
small value, that is

kGðvaÞj � jGðvbÞk < e:

As such, it can be verified that the magnitude of the MDG
vector within homogeneous regions changes smoothly and
gradually.

To summarize, the MDG vector field can encode the
local edge information as well as spatial information in a
more global sense which includes (1) the intensity differ-
ence, (2) the distance, and (3) the direction of a voxel to
a MDG source point.

To give a comparative example, the magnitude of the
conventional image gradient and that of the MDG vector
field of a three-dimensional clinical CT volume obtained
from the RIRE project are computed. All computations
are performed in the three-dimensional image volume. A
slice extracted from the volume is shown in Fig. 6a, while
Figs. 6b and c, respectively present the corresponding slices
for the magnitude of gradient and that of the MDG vector.

Note that values from individual images are re-scaled to
[�0.5, 0.5] for fair comparison.

It is observed that the gradient magnitude (Fig. 6b) only
exhibits the sharp edge information, which is also similarly
presented by the magnitude of the MDG vector (Fig. 6c).
In addition, unlike Fig. 6b, the smooth and gradual change
in the magnitude of the MDG vector can be demonstrated
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Fig. 6. (a) is a slice selected from a clinical CT image volume. (b) and (c) are the corresponding slices for the gradient magnitude and the MDG magnitude.
(d)-(f) Are value profiles of lines in (a)–(c), which are marked as dashed lines. All computations are performed in the three-dimensional image volume.
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in Fig. 6c, for instance, in regions close to the boundaries.
However, due to the limitation of image quality in the
paper, smooth magnitude variation within the background
regions and anatomical structures may not be clearly dis-
played in Fig. 6c.

For a detailed description, Figs. 6d–f, respectively pres-
ent the value profiles of the same line (marked as dashed
lines) in Figs. 6a–c. As shown in the figures, feature values
in Fig. 6e are very sparse, in which the overwhelming
majority are small and constant. In contrast, the value var-
iation from the object boundaries towards the interiors of
homogeneous regions in Fig. 6f is smooth and gradual. It
is worth noting that, although there is little intensity varia-
tion in the middle of the line in Fig. 6d, an evident and
smooth saddle can be found in Fig. 6f located at the corre-
sponding position. The raised white boundary slightly
below the line causes this saddle. This is because, unlike
the gradient operator, the MDG vector field is defined at
a more global level.

2.3. Signed-MDG

In order to distinguish between voxels of objects with
different intensities based on the magnitude of the MDG
vector, we further introduce a so-called signed-MDG fea-
ture field, Ĝ ¼ fbGðvÞg, as follows:
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kbGðvÞk :¼ signðIð�vÞ � IðvÞÞjGðvÞj;
Orientation of bGðvÞ :¼ Orientation of GðvÞ;

ð8Þ

where kbGðvÞk denotes the magnitude of bGðvÞ, �v is the
MDG source of v, and the function signð�Þ indicates the
sign of the intensity difference.

According to this modified definition, the magnitude of
a signed-MDG feature can be either positive or negative
with respect to the intensity difference between a voxel
and its MDG source, i.e., a voxel of relatively low intensity
would have a positive signed-MDG magnitude and vice
versa. Note that the orientation as well as the absolute
value of the magnitude of bGðvÞ are identical with those
of GðvÞ. Hereafter, the absolute value of magnitude ofbGðvÞ is referred to as absolute magnitude of bGðvÞ.

For comparison, Figs. 7a and b, respectively show the
corresponding slice and value profile of the magnitude of
the obtained signed-MDG for the aforementioned CT
image volume as shown in Fig. 6. The magnitude of
signed-MDG preserves all the properties presented by the
magnitude of the MDG vector (i.e., Fig. 6c). Furthermore,
as shown in Fig. 7b, the voxels of objects with different
intensities are distinguishable by the sign of the magnitude.
Hereafter, we adopt the signed-MDG field to encode spa-
tial information for registration tasks. The implementation
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Fig. 7. (a) Corresponding slice of the magnitude of the signed-MDG for
the aforementioned CT slice shown in Fig. 6a. (b) The value profile of the
line in (a), which is marked as the dashed line.
details for the computation of signed-MDG field is given in
Section 4.1.
3. Incorporation of spatial information in image registration

As we have discussed in Section 2, the signed-MDG fea-
ture field encodes both local edge information and spatial
information at a global level:

� The orientation of the signed-MDG feature is along the
direction of a voxel and its MDG source, which is
located at a MDG source point.
� The absolute magnitude of the signed-MDG measures

the maximum average rate at which the intensity func-
tion changes between a voxel and any other voxels in
the image volume. The sign of the magnitude indicates
the relative intensity level between a voxel and its
MDG source point.

In Sections 3.1 and 3.2, we separately incorporate the
two components of the signed-MDG feature field (i.e.,
magnitude and orientation) into the registration process,
and propose a new objective function in Section 3.3.

3.1. Multi-dimensional mutual information

To make use of the magnitude of the signed-MDG fea-
ture field, we associate it with the voxel intensity to form a
two-dimensional feature space, Z ¼ fZðvÞg. That is to say,
for a voxel v, it has a two-element attribute vector
ZðvÞ ¼ ðIðvÞ, kbGðvÞkÞ. The new feature space Z gives at
least one advantage over the intensity space. It differenti-
ates voxels more subtly than the intensity space alone, espe-
cially for voxels within homogeneous image regions which
generally occupy a large proportion of the whole image
volume. In fact, voxels with an identical intensity would
have different magnitudes of the signed-MDG because they
may have either different MDG source points or different
distances from their MDG source points.

The first element in our overall objective function is a
measure of the similarity between the newly defined two-
dimensional feature space Z of the two images to be regis-
tered. Mutual information, which is adopted in our work,
has been extensively exploited as a similarity measure on
random variables. It is an information-theoretic measure,
and does not make limiting assumptions on the relation-
ship (for instance, linear relationship) between variables.
Mutual information was originally introduced as a similar-
ity measure on intensity space for medical image registra-
tion, and correct (or optimal) registration is meant to
maximize the mutual information of intensity spaces of
two images over the registration transformation space.

The mutual information MI of two random variables A

and B is defined in terms of entropy in the following way
(Cover and Thomas, 1991; Vajda, 1989)

MIðA;BÞ ¼ HðAÞ þ HðBÞ � HðA;BÞ:
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Fig. 8. The relative frequency of the obtained values of angle measure for
the overall three-dimensional volume.
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Here Hð�Þ is the Shannon entropy of a random variable
with probability distribution p, and is defined as
�
P

p log p. Hð�; �Þ is the joint Shannon’s entropy of two
random variables with joint probability distribution
pð�; �Þ, and is defined as �

PP
pð�; �Þ log pð�; �Þ.

Let r and f denote the reference and floating images to be
registered, respectively. Then, the mutual information mea-
sure on the new attribute vector space Z of two images
with a registration transformation T is defined as

MIðTÞ ¼ MITðZf ;ZrÞ
¼ HTðZf Þ þ H TðZrÞ � HTðZf ;ZrÞ:

Since ZðvÞ is two-dimensional, the three terms in the equa-
tion are defined as

H TðZf Þ ¼ �
X

pTðIf ; kbGfkÞ log pTðIf ; kbGfkÞ;

H TðZrÞ ¼ �
X

pTðIr; kbGrkÞ log pTðIr; kbGrkÞ;

H TðZr;Zf Þ ¼ �
X

pTðIr; kbGrk; If ; kbGfkÞ

log pTðIr; kbGrk; If ; kbGfkÞ:

The computation of these joint probability distributions is
given in Section 4.2.1.

3.2. Contribution from orientation of signed-MDG

The second element in our objective function is the con-
tribution from the orientation information of the signed-
MDG feature field. The essential idea is an assumption,
which is always valid in practice according to our empirical
experience: for two precisely aligned multi-modal images,
the majority of the corresponding voxel locations are very
likely to produce signed-MDG features with similar orien-
tations. The directions can be either almost identical or
opposite.

This is because the signed-MDG feature always points
along the direction from a voxel to a MDG source point,
which presents the maximum average rate of intensity
change with that voxel. Meanwhile, two images acquired
by different imaging modalities (e.g. CT and MR-T1,
etc.) fundamentally depict the same anatomical structures.
As a result, the signed-MDG features of the corresponding
voxel locations from two images could present relatively
coincident orientations in general.

In our method, we quantitatively measure the orienta-
tion difference between the signed-MDG features from
two images at voxel location v as

j cosðhðvÞÞj:

Here hðvÞ is the angle between two signed-MDG features
and is obtained by

hðvÞ ¼ arccos
GrðvÞ � Gf ðvÞ
jGrðvÞjjGf ðvÞj

:

There may be a concern about the aforementioned assump-
tion: it is known that multi-modal images do not necessar-
ily delineate the same tissue transitions, which implies that
boundaries that appear in a certain modality may be absent
or less noticeable in another modality. However, based on
our empirical experience, this assumption is generally valid
for the voxel locations from the common structures present
in both images, particularly for those from background re-
gions, which occupy a very large proportion of the whole
image volume. For instance, more than 70% of the total
voxels belong to background for the datasets obtained
from the Retrospective Image Registration Evaluation
(RIRE) Project.

For illustration, the angle measure is computed on the
signed-MDG fields of two accurately registered three-
dimensional CT and MR-T1 image volumes. We then plot
the relative frequency of the obtained angle measure values
for the overall three-dimensional image volume in Fig. 8. It
is observed that the angle measure produces values of
> 0:866ð¼ cos 30�Þ at more than 70% of total voxels. Note
that here the signed-MDG features are three-dimensional
as the computations are performed on the overall image
volumes.

On the other hand, unlike the optimal registration dis-
cussed above, a misalignment would dramatically reduce
the relative coincidence in orientation, and result in large
angles between the signed-MDG features of corresponding
voxels. For instance, after an in-plane translation of the
above mentioned MR-T1 image volume, the relative fre-
quency of the obtained values of angle measure becomes
much more dispersed, as shown in Fig. 9. It is observed
that only around 40% of total voxels present values of
> 0:866ð¼ cos 30�Þ for the angle measure.

In order to get the overall contribution from the orien-
tation information of the signed-MDG field for registra-
tion tasks, the summation of the angle measure for all
voxels in the volume of overlap of the reference image r

and the floating image f is adopted. As such, at a registra-
tion transformation T, we have
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Fig. 9. The relative frequency of the obtained values of angle measure for
the same image volume pair, as mentioned in Fig. 8, but with an in-plane
misregistration.
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DðTÞ ¼
X

v2ðf\rÞ
j cosðhTðvÞÞj

as the second component in our registration objective
function.

3.3. Registration objective function

In order to combine the two elements proposed in the
above two subsections, we adopt multiplication rather than
addition to reduce the need for normalization. As a conse-
quence, at a registration transformation T, the total simi-
larity metric is defined as

SðTÞ ¼ MIðTÞ � DðTÞ: ð9Þ
As discussed above, both measures, MIðTÞ and DðTÞ,

achieve the maximal values at the accurate (or optimal)
registration. Therefore, the overall registration approach
is to estimate the optimal transformation bT by using

bT ¼ arg max
T

SðTÞ: ð10Þ

With this objective function, both the magnitude and
orientation information of the signed-MDG feature field
are included into the registration process.

4. Implementation

In this section, the implementation details for the com-
putation of the signed-MDG feature field and also for
our proposed multi-resolution image registration method
are presented.

4.1. Signed-MDG

In our work, the signed-MDG field is computed by sep-
arating it into positive and negative components. Then, the
two components are calculated based on the Voronoi dia-
gram (Preparata and Shamos, 1985) by sequentially pro-
cessing voxels in intensity-decreasing and intensity-
increasing orders, respectively.

During either procedure, we keep updating a Voronoi
diagram and a (positive or negative) MDG field. When a
voxel v is processed, the Voronoi diagram is locally recon-
structed by adding v into the Voronoi sites. Then, we
update the MDG field by processing voxels within the
Voronoi cell V ðvÞ of v.

The reason for ignoring the region outside V ðvÞ is given
as follows. Suppose we process voxels in intensity-decreas-
ing order. Let x be a voxel in another Voronoi cell V ðv0Þ.
Then, based on the principle of Voronoi diagram, we have

jv� xj > jv0 � xj:
On the other hand, since v0 has already been processed and
added into the Voronoi sites prior to v, and x has not been
processed yet, we have

Iðv0ÞP IðvÞP IðxÞ:
Therefore, we have

jrd Iðv0; xÞj > jrdIðv; xÞj;
and there is no need to update the MDG vector for x after
adding v.

Similarly, in intensity increasing order, since Iðv0Þ 6
IðvÞ 6 IðxÞ, we also have

jrd Iðv0; xÞj > jrdIðv; xÞj:
Finally, to derive the signed-MDG field, the obtained posi-
tive and negative components are combined together
according to their absolute values. Specifically, at voxel v,
the signed-MDG field is obtained by comparing the abso-
lute values of the magnitude of the positive and negative
MDG fields at v, and it is set to the one, which has the lar-
ger absolute magnitude value. Note that in practice the im-
age volume is always preprocessed by convolving with a
Gaussian kernel before computation to minimize the effect
of noise and artifacts. The two Voronoi based processing
steps are terminated when all voxels are processed. A flow
chart for summarizing the above process is shown in
Fig. 10.

4.2. Multi-resolution image registration

4.2.1. Estimation of probability distribution

To compute the multi-dimensional mutual information
in our proposed similarity metric (see Eq. (9)), three joint
probability distributions need to be estimated (see Section
3.1). For computational efficiency, the estimation is
obtained by the normalization of joint histograms rather
than Parzen windowing (Bishop, 1995).

Given a transformation registration T, samples are
taken from the whole volume or a subset of the floating
image f, and then transformed by T into the reference
image r. For the construction of joint histograms in our
implementation, the sampling set V is not restricted within
the volume of overlap of f and r. The work by August and
Kanade (2005) and also our empirical experience show that



Fig. 10. The flow chart of computing the signed-MDG field.
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the regions from the non-overlapping volume play an
important role in information theoretic registration, and
by including them can increase the registration robustness.
Therefore, for all entropy-based similarity measures we use
(e.g. the proposed multi-dimensional mutual information,
the conventional mutual information, and other two mea-
sures tested in Section 5 for a comparative study), we con-
struct the probability distributions by sampling the whole
volume or a subset of f for a fair comparison.

By binning the feature vector pairs, Zf ðvÞ ¼ ðIf ðvÞ;
kbGf ðvÞkÞ and ZrðTðvÞÞ ¼ ðI rðTðvÞÞ; kbGrðTðvÞÞkÞ, for all
v 2V, a four-dimensional joint histogram, hTðIf ; kbGf k;
Ir; kbGrkÞ, is then constructed. Below are some implementa-
tion details for the construction of histograms in our work:

� The trilinear partial volume distribution interpolation
(Maes et al., 1997) is exploited to update the joint histo-
grams for non-grid alignment.
� When TðvÞ falls outside the volume of r, a feature vector

randomly selected from the background of r is used to
update the joint histograms.
� Due to the relatively high dimensionality, the number of

four-dimensional joint histogram bins should be limited.
In practice, we have found that histograms with 32 bins
both for the intensity and magnitude of signed-MDG
dimensions can give good performance for registering
two image volumes of size 256� 256� 26. (Note that
the number of histogram bins may be tuned for down-
sampled images in the multi-resolution registration
process.)

We estimate the probability distributions mentioned in
Section 3.1 as follows,
pTðIf ; kbGf k; Ir; kbGrkÞ ¼
hTðIf ; kbGfk; I r; kbGrkÞP

If ;kbGf k;Ir ;kbGrk

hTðIf ; kbGf k; Ir; kbGrkÞ
;

pTðIf ; kbGf kÞ ¼
X

Ir ;kbGrk

pTðIf ; kbGfk; Ir; kbGrkÞ;

pTðIr; kbGrkÞ ¼
X

If ;kbGf k

pTðIf ; kbGf k; Ir; kbGrkÞ:
4.2.2. Multi-resolution optimization

In order to accelerate the registration process, a multi-
resolution approach based on the Gaussian Pyramid repre-
sentation (Burt and Adelson, 1983; Cole-Rhodes et al.,
2003; Wells et al., 1996) is exploited. Rough estimates ofbT can be found using downsampled images with Eq.
(10), and then treated as starting values for optimization
at higher resolutions. Then the fine-tuning of the solution
can be derived at the original image resolution.

In our proposed registration method, three resolution
levels are used and the definition of resolution levels in
the Gaussian Pyramid representation follows the same
convention as in Burt and Adelson (1983), i.e., Level 0
image represents the highest and most original resolution
and Level 2 image represents the lowest resolution.
Smoothing is performed via the binomial filter with coef-
ficients [1,4,6,4,1] (Wells et al., 1996). For easier imple-
mentation, all voxels in the floating volume are used to
construct the joint histograms at all resolutions (see the
above subsection for details). For optimization at each
resolution, we use the Powell’s direction set method
(Press et al., 1992) with Brent’s 1D line minimization,
where the fractional precision convergence parameters
for the Powell and Brent methods are set to 10�4 and
10�3, respectively.
5. Experimental results and discussions

To demonstrate the proposed similarity metric defined
as Eq. (9) (hereafter referred to as MI4d*cos) and the pro-
posed multi-resolution registration method, we performed
a set of rigid image registration experiments on X-ray
computed-tomography (CT) and T1-weighted MRI (T1).
Besides our method, three other similarity measures and
registration methods in multi-resolution contexts were also
tested for comparison:

� The conventional mutual information measure on image
intensity (Maes et al., 1997; Wells et al., 1996) (hereafter
referred as MI2d).
� Adaptation of mutual information by incorporating

spatial information proposed by Pluim et al. (2000)
(hereafter referred as Pluim), which is the multiplica-
tion of the mutual information and a gradient term
based on both the magnitude and orientation of image
gradient.
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� Second-order mutual information proposed by Rueck-
ert et al. (2000) (hereafter referred as Rueckert), which
considers the co-occurrence of intensity pairs of adjacent
points in each of the images to be registered.

The study on the behavior of four registration functions
with regard to capture range2 is presented in Section 5.2.
Section 5.3 shows the performance comparisons on regis-
tration robustness and accuracy between the proposed
method and other three methods.

5.1. Image datasets and ground truth

In the experiments described below, a CT–T1 registra-
tion problem was considered. A set of clinical CT–T1 data
were obtained from the RIRE project. Note that all the T1
images have been rectified for intensity inhomogeneity and
scaling. In general, the size of a CT image volume is
512� 512� 30 voxels and the voxel size is 0:65�
0:65� 4 mm3, and a T1 image contains 256� 256� 26
voxels of dimensions 1:25� 1:25� 4 mm3.

With regard to the CT–T1 data, we determined the
‘‘ground truth” for registration experiments as follows.
First, the multi-resolution mutual information based and
normalized mutual information (NMI) (Studholme et al.,
1999) based methods were used to register the image pairs
without incorporating the spatial information. The evalua-
tions of accuracy, measured as the target registration errors
(TREs) in ten volumes of interest (VOIs) (West et al.,
1997), were then obtained from the RIRE project. By
examining the median errors, four datasets (Datasets pt-
001, pt-003, pt-005 and pt-007) with less than 1mm regis-
tration error were selected and used in the experiments.
Then, the corresponding optimal transformations, whose
median errors were 0.5077 mm (for pt-001), 0.5194 mm
(for pt-003), 0.7807 mm (for pt-005) and 0.3254 mm (for
pt-007) respectively, were used as the ground truth
registrations.

5.2. Behavior of CT–T1 registration functions

To study the behavior of the four similarity measures,
i.e., MI2d, Pluim, Rueckert, and MI4d*cos, we compared
their capture ranges along different axes and at different
resolutions by using the probing tests.

Fig. 11 plots the probing curves in three translational
(the upper half) and three rotational (the lower half) axes
(i.e., translation coronal axis, translation sagittal axis,
translation transversal axis, rotation coronal axis, rotation
sagittal axis, rotation transversal axis) for registering a low
resolution (Level 2) CT–T1 image pair (pt-001).

We assume two images are pre-aligned before probing.
The first and third columns in the figure demonstrate
2 Capture range represents the range of alignments from which a
registration function can converge to the correct optimum.
that obvious local maxima occur for both MI2d and
Rueckert, when the in-plane translational misalignment
of two images is relatively large. On the contrary, as
observed in the second and fourth columns in the figure,
the shape of the probing curves along in-plane transla-
tional axes based on Pluim and MI4d*cos is significantly
improved, with noting that those local maxima almost or
entirely disappear. Moreover, it is shown that the MI4d*-

cos value keeps decreasing constantly as the increase of
the in-plane translational offset. On the other hand, the
Pluim value is almost constant when the in-plane transla-
tional offset is relatively large. This observation suggests
that the capture ranges of MI4d*cos along in-plane trans-
lational axes can be longer than those of the other three
measures. This is because:

� With the help of the proposed signed-MDG field,
regions with homogeneous intensities (including the
anatomical structures and background regions) can
provide useful and varying information related to (1)
the intensity difference, (2) the distance and (3) the
direction of a voxel to a MDG source point. There-
fore, when the in-plane misalignment increases, the
MI4d*cos values would keep decreasing. We believe
that such a behavior can benefit the optimization pro-
cedure for registration and hence increase the registra-
tion robustness.
� For the other three measures, relatively less or even no

spatial information has been considered:
– For MI2d, no spatial information is taken into

account.
– For Rueckert, only one adjacent neighbor for each

voxel is considered at a time.
– For Pluim, although strong gradient information in

both images has been incorporated, plenty of spa-
tial information from homogeneous regions is
discarded.

On the other hand, for the three rotational probes, the
capture ranges of the four similarity measures are compa-
rable (see the lower half of Fig. 11).

As a further study on the behavior of the four objective
functions, Fig. 12 plots the probing curves in an in-plane
translational axis for registering a CT–T1 image pair (pt-
001) at the original resolution (Level 0).

A similar observation that MI4d*cos gives a longer cap-
ture range in the in-plane translational axis than MI2d,
Pluim and Rueckert can be found.

It is worth noting that, although different anatomical
details are depicted in CT and T1 image volumes, as a
preliminary indicator, these probing tests demonstrate
the superior behavior of the proposed MI4d*cos measure
for CT–T1 registration. We may view this observation as
an empirical justification that the proposed method
has longer capture range than the other compared
methods.



Fig. 11. Probing curves for 3D–3D registration on a CT–T1 image pair (pt-001) at the low resolution (Level 2) in three translational and three rotational
axes. From the top row to the bottom row: translation coronal axis, translation sagittal axis, translation transversal axis, rotation coronal axis, rotation
sagittal axis, rotation transversal axis.
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Fig. 12. Probing curves for 3D–3D registration on a CT–T1 image pair (pt-001) at the original resolution (Level 0) along the translation coronal axis.

Fig. 13. A pair of successfully registered 2D image slices.
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5.3. Performance comparisons on registration robustness and

accuracy

In order to study and compare the registration robust-
ness of four registration methods based on MI2d, Pluim,
Rueckert and MI4d*cos, a series of randomized experi-
ments has been designed and performed on the aforemen-
tioned four CT–T1 image pairs from the RIRE project,
i.e., Datasets pt-001, pt-003, pt005 and pt-007 with all res-
olution levels.

The experiments took 100 tests on each testing image
pair for each method. At each trial, the pre-obtained
ground truth registration parameters (see Section 5.1) of
the testing image pair were perturbed by six uniformly
distributed random offsets for all translational and rota-
tional axes. The perturbed parameters were then treated
as the starting alignment for registration. In order to
show the high optimization capability of MI4d*cos with
respect to initial alignment, random offsets were generated
as follows: (1) For translation coronal axis, offsets were
drawn between around [�125, 125] mm; (2) For transla-
tion sagittal axis, offsets were drawn between around
[�160, 160] mm; (3) For translation transversal axis, off-
sets were drawn between around [�70, 70] mm; (4) For
each rotational axes, offsets were drawn between [�0.4,
0.4] radians, i.e., [�23, 23] degrees. (Note that the ranges
for translational offsets were set so that two brains in CT
and T1 images have at least 20% overlapping region.) For
fair comparison, the same set of randomized starting
alignments was used for all MI2d, Pluim, Rueckert and
MI4d*cos.

To evaluate each obtained registration result with
respect to the corresponding ground truth registration,
similar to Maes et al. (1997) and Knops et al. (2006), a tight
bounding box was fitted around the brain for each T1
image. For each of the eight corner points, the Euclidean
distance between the ground truth position and the posi-
tion transformed by the solution was computed. The med-
ian value of the eight distances was then taken for assessing
the registration success. A registration was judged to be
successful if the median error was smaller than or equal
to 4 mm, which was the largest voxel dimension of the
CT–T1 image pair; otherwise, it was considered a misregis-
tration. For illustration, a pair of successfully registered 2D
image slices is shown in Fig. 13.
The success rates of the multi-resolution registration
methods based on the four similarity measures on the four
CT–T1 image pairs are listed in Table 1. It is suggested
that: (1) The methods based on MI2d and Rueckert pro-
duce similar success rates; (2) The success rates for Pluim

are higher than those for MI2d by around 10% � 15%;
(3) The MI4d*cos based method consistently gives the high-
est success rates among all methods for all testing image
pairs, specifically, higher than those of the other three
methods by about 30%.

Furthermore, based on these experiments, it is noticed
that the majority of unsuccessful cases for the MI4d*cos

based method had large misalignments (i.e., about 180�)
in one or two rotational axes, while registration errors
for other axes were quite small. That is to say, after regis-
tration, the brain in the floating image was just inverted
along one or two rotational axes. (Hereafter we call such
a registration result a rotational failure.) More specifically,
the numbers of rotational failures for MI4d*cos are: 7 for
pt-001, 7 for pt-003, 6 for pt-005 and 6 for pt-007, respec-
tively. This observation may imply that the capture ranges
for MI4d*cos along the translational axes can be relatively
long and the proposed method is more robust to transla-
tional misalignment.

To compare the registration accuracy of the four regis-
tration methods, Table 2 lists the means and standard devi-
ations of the median errors (in millimeters) for the
successful registrations for each testing image pair, which
are obtained in the experiments discussed above. It is
observed that MI2d and Pluim produce slightly lower med-



Table 1
The success rates of the multi-resolution registration methods based on the five similarity measures on the four CT–T1 image pairs

Success rate

MI2d (%) Pluim (%) Rueckert (%) MI4d*cos (%) MI4d (%)

pt-001 56 69 57 94 56
pt-003 51 64 55 93 67
pt-005 58 67 55 95 71
pt-007 52 64 49 93 70

Table 2
The means and standard deviations of the median errors (in millimeters) for successful registrations for different CT–T1 image pairs

Registration errors: mean ± sd (in mm)

MI2d Pluim Rueckert MI4d*cos MI4d

pt-001 0.6134 ± 0.0525 0.6245 ± 0.1505 0.8532 ± 0.0384 1.3150 ± 0.1401 0.9527 ± 0.1802
pt-003 0.8492 ± 0.0747 0.4829 ± 0.0783 1.1934 ± 0.4096 0.8015 ± 0.2528 0.7931 ± 0.8036
pt-005 0.7353 ± 0.3608 0.5236 ± 0.5720 1.0636 ± 1.0425 1.2993 ± 1.0524 1.1692 ± 0.3597
pt-007 1.2950 ± 1.0485 1.2895 ± 0.8052 1.0952 ± 0.2633 1.2757 ± 0.2780 1.2107 ± 1.0273
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ian errors than Rueckert and MI4d*cos, while, the registra-
tion accuracy of the four methods are high in general.
Please note that these errors may not be exactly accurate
and objective, since we lack the gold standard registrations,
which remain sequestered in the RIRE project. The deter-
mination of the ground truth registrations, which we used
as reference, can be found in Section 5.1.

To study the impact of including orientation informa-
tion in the proposed similarity measure, the orientation
component in our registration objective function is
removed, i.e. SðTÞ ¼MIðTÞ (hereafter referred as MI4d)
and we have performed another set of randomized rigid
registration experiments for each pair of images. The
results are listed in the last columns of Tables 1 and 2.
By comparing MI4d*cos and MI4d, it is observed that
the robustness can be improved by incorporating the orien-
tation information of the MDG vector field in our pro-
posed metric, and the accuracies are comparable.

The average running times for MI2d, Pluim, Rueckert,
MI4d, and MI4d*cos were 42 s, 4 min 36 s, 12 min 18 s,
11 min 51 s, and 28 min 3 s, respectively. All the experi-
ments were conducted in a PC with 3.19 GHz CPU and
1GB RAM.

6. Conclusion

To overcome the lack of concern on the spatial informa-
tion in the conventional mutual information based image
registration framework, this paper has designed a new spa-
tial feature field, namely the maximum distance-gradient
(MDG) vector field, for registration tasks. The MDG vec-
tor field encodes both local edge information and globally
defined spatial information, which includes (1) the intensity
difference, (2) the distance and (3) the direction of a voxel
to a MDG source point. By considering the intensity differ-
ence between a voxel and its MDG source, we have further
extended it to become the signed-MDG feature field.
In order to include the magnitude and orientation infor-
mation of the signed-MDG feature field into the conven-
tional mutual information based registration framework,
our overall similarity metric is the combination (i.e., multi-
plication) of two separate measure components. The first
component is the multi-dimensional mutual information
measure on a two-element attribute vector space, which is
formed by associating the magnitude of the signed-MDG
feature with the image intensity. The second component
is based on an angle measure on the orientation of the
MDG field of the two images to be registered. To increase
computational efficiency and robustness of the proposed
method, the overall registration procedure has been a
multi-resolution iterative process.

The experimental results on clinical three-dimensional
CT and MR-T1 datasets from the RIRE project have
indicated that, at different image resolutions, the pro-
posed registration function has longer capture ranges
than the other three related similarity measures in the
comparison. Moreover, a large number of (around
2000) randomized experiments on precisely registered
clinical CT–T1 image pairs have demonstrated that the
success rates of our method are consistently and signifi-
cantly higher than those of the other three methods. It
has also been shown that the registration accuracy of
the new method is high.
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