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This paper describes an evaluation framework that allows a standardized and objective quantitative com-
parison of carotid artery lumen segmentation and stenosis grading algorithms. We describe the data
repository comprising 56 multi-center, multi-vendor CTA datasets, their acquisition, the creation of the
reference standard and the evaluation measures. This framework has been introduced at the MICCAI
2009 workshop 3D Segmentation in the Clinic: A Grand Challenge III, and we compare the results of eight
teams that participated. These results show that automated segmentation of the vessel lumen is possible
with a precision that is comparable to manual annotation. The framework is open for new submissions
through the website http://cls2009.bigr.nl.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Cardiovascular diseases account for 30% of all deaths worldwide
(Abegunde et al., 2005). Atherosclerosis, a disease of the vessel
wall, is the major cause of cardiovascular diseases such as stroke
(Frostegård, 2005). Atherosclerosis may lead to stenosis (luminal
narrowing), but it is also possible for atherosclerotic plaque to
build up without narrowing the lumen (Glagov et al., 1987).
ll rights reserved.

: +1 31107044722.
Hameeteman).

man (K. Hameeteman).
Cardiovascular imaging is an important means to monitor and
quantify the state of the vessel wall and lumen.

Manual lumen segmentation and stenosis quantification is
laborious and suffers from inter and intra rater variabilities (Scherl
et al., 2007). Consequently much work has been performed on
(semi)-automated cardiovascular image processing, of which the
majority focuses on lumen quantification and assessment of the
severity of luminal stenosis in various imaging modalities.

In 2004, Kirbas et al. (Kirbas and Quek, 2004) published a
review paper on vessel lumen segmentation algorithms. More
recently, an extensive review paper on the same subject was
published by Lesage et al. (Lesage et al., 2009). Both papers provide
an overview of the currently published vessel segmentation
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methods, categorized according to the technology (Kirbas and
Quek, 2004) or the combination of method characteristics such as
the used vessel models, image features and extraction schemes
(Lesage et al., 2009). However, as explicitly indicated by Lesage et
al., direct performance comparisons of different approaches are
lacking because of the wide range of applications, and more gener-
ally, because of the lack of standard image databases and validation
criteria for most vascular segmentation applications. Moreover,
many of the reviewed algorithms are not publicly available which
hampers an objective and fair comparison by third parties.

The goal of the framework described in this paper (CLS2009
framework) is to provide a standardized evaluation framework
for carotid artery lumen segmentation and stenosis grading in
Computed Tomography Angiography (CTA). We focus on the caro-
tid bifurcation (Fig. 1), where the Common Carotid Artery (CCA)
splits into the External Carotid Artery (ECA) and Internal Carotid
Artery (ICA). The latter is one of the major blood supplying arteries
to the brain. In 25% of all stroke patients, the stroke is caused by
atherosclerotic disease in the carotid artery bifurcation. As shown
by the North American Symptomatic Carotid Endarterectomy Trial
(NASCET Collaborators, 1991) and the European Carotid Surgery
Trial (ECST Collaborators, 1998) the stenosis grade is an important
clinical measure in deciding whether or not to perform carotid
endarterectomy (surgical procedure to remove the atherosclerotic
plaque from the vessel). Carotid endarterectomy is indicated in
case of a stenosis of 50–99% (Rothwell et al., 2003). So the accuracy
of stenosis analysis influences clinical decision making. Tradition-
ally stenoses around the carotid bifurcation have been assessed
with intra-arterial catheter angiography, i.e. Digital Subtraction
Angiography (DSA), which is still considered the gold standard.
DSA has a 0.3–1% risk of neurological deficits such as stroke
(Waugh et al., 1992; Hankey et al., 1990) which makes the use of
less invasive diagnostic imaging preferable. CTA is a good, less
invasive alternative to DSA for the assessment of stenosis in the
carotid bifurcation (Binaghi et al., 2001; Koelemay et al., 2004).

Besides the assessment of the stenosis caused by atherosclerotic
plaque, imaging also allows for the evaluation of the atheroscle-
rotic plaque itself. Much research is currently focused on the ques-
tion whether specific plaque features like composition or
morphology are associated with an increased risk for clinical
events. However, in current practice the degree of stenosis is still
the only biomarker which influences clinical decision making.
40 mm

15 mm

20 mm

IC
A

ECA

bifurcation
slice

10 mm

20 mm

CCA

ECA Mask

(a)
Fig. 1. Region around carotid bifurcation: (a) schematic depiction of the region of interes
with the three initialization points and the reference segmentation.
Besides CTA, MRI and US are able to visualize the plaque. Cur-
rently it is not clear which technique is most suitable in providing
clinical useful information on both stenosis and the atherosclerotic
plaque.

Our choice for lumen segmentation of the carotid bifurcation is
motivated by the clinical relevance of this structure. Additionally,
the carotid is a medium sized vessel which makes it suitable as a
test case for a wide range of vessel segmentation algorithms, while
still having the typical challenges in segmenting diseased vessels,
such as calcifications and severe stenosis. Also the presence of a
bifurcation and nearby bone and veins imposes additional chal-
lenges on the segmentation. Moreover, lumen segmentation is a
first step in the assessment of stenosis, which is the clinical rele-
vant parameter that is assessed in the CLS2009 framework.

The remainder of this paper is organized as follows: in Section 2
previous work is discussed, followed in Section 3 by a description
of the CLS2009 framework for the segmentation of the carotid ar-
tery lumen and its stenosis grading. Section 4 gives a description of
the first use of the framework during the MICCAI workshop,
including a short description of the methods that were tested
and the results of these methods as produced by the framework.
This is followed by some concluding remarks in Section 5. This pa-
per is an extended version of the editorial of the carotid challenge
workshop proceedings (Hameeteman et al., 2009a).

2. Previous work

There is a growing number of initiatives that set up a publicly
available data repository and standardized evaluation framework.
This demonstrates an increasing interest in standardized evalua-
tion and the possibility to compare methods to each other. In this
section we give a few examples and we briefly discuss some pub-
lished lumen segmentations and stenosis grading methods.

In the field of computer vision the following frameworks can be
used: the Range Image Segmentation Comparison (Hoover et al.,
1996), the Retrospective Image Registration Evaluation Project
(West et al., 1997), the Berkeley Segmentation Dataset and Bench-
mark (Martin et al., 2001), and the Middlebury Stereo Vision eval-
uation (Scharstein and Szeliski, 2002).

Several workshops involving the setup of an evaluation
framework in the field of medical imaging, have been organized
at the MICCAI and SPIE conferences. Reports on some of these
(c)(b)
t; (b) a rendering of this region for one of the datasets; (c) visualization of a dataset
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frameworks have appeared recently (Heimann et al., 2009; Schaap
et al., 2009; Niemeijer et al., 2010; Van Ginneken et al., 2010). More
initiatives can be found at the website http://www.grand-
challenge.org/.

The carotid bifurcation segmentation and stenosis grading
framework in CTA images (CLS2009 framework) was initially pre-
sented at the 3D Segmentation in the Clinic: A Grand Challenge III
workshop during the MICCAI 2009 conference in London. There
are two challenges that are related to CLS2009: the Rotterdam Cor-
onary Artery Algorithm Evaluation Framework which does not ad-
dress lumen segmentation, but centerline extraction and the
EXACT09 framework, which compares submitted segmentations
of the airways to each other and generates a reference standard
from these submitted segmentations. In contrast to the CLS2009
framework the EXACT09 framework does not have a gold standard
obtained from manual segmentations.

Some CTA vessel lumen segmentation methods have been eval-
uated on carotid arteries around the bifurcation (Manniesing et al.,
2007; Baltaxe et al., 2007; Cuisenaire et al., 2008). All these meth-
ods use different evaluation measures, and different datasets.
Manniesing reports a Dice similarity index (Dice, 1945) of 0.77
for 14 out of 20 carotid arteries for which a path through the car-
otid lumen could be obtained. Algorithm parameters were trained
on a separate set of 10 CTA datasets. Milwer reports a sensitivity of
0.85 and a positive predictive value of 0.80 (equivalent to a Dice
similarity of 0.82) on a set of 65 2D cross-sections of 13 CTA data-
sets. The algorithm parameters were determined empirically. Cui-
senaire performs a visual assessment on failure or success by an
expert and reports a 93% success score on extraction of six mod-
eled head and neck vessels in 28 CTA datasets.

Results of semi-automatic stenosis grading methods for carotid
arteries in CTA images have been reported by Berg et al. (2005),
Scherl et al. (2007) and Wintermark et al. (2008). The level of auto-
mation varies, and only Scherl gives an extensive description of the
lumen segmentation and stenosis grading algorithm. Different
evaluation measures are used, although they all report an agree-
ment measure, correlation (Berg), difference (Scherl), regression
and Bland Altman analysis (Wintermark), with DSA (Berg) or man-
ual (Scherl and Wintermark) measurements. Both Scherl and
Wintermark use the minimal diameter as a quantity to measure
the stenosis, but neither of them explicitly defines this measure.
The number of included patients for the evaluation differs widely:
Berg uses 36 CTA datasets, Scherl 10, and Wintermark 125.
3. Evaluation framework

The CLS2009 framework comprises a publicly accessible data
repository, a set of standardized evaluation measures and an online
evaluation system. This section starts with a description of the seg-
mentation tasks, followed by a description of the datasets and their
acquisition protocols. Next we describe the procedure that was
used to generate manual segmentations and stenosis gradings, fol-
lowed by a description of the used procedure to merge the differ-
ent manual segmentations into a reference standard. The section
concludes with the description of the evaluation measures.
Fig. 2. Examples of our definition of the diameter of a cross-sectional contour.
3.1. Lumen segmentation and stenosis grading

The evaluation framework focuses on the CCA and ICA (see
Fig. 1), the clinically most relevant parts of the carotid bifurcation.
A small part of the ECA is also included, to allow evaluation of the
segmentation at the location where the ECA bifurcates from the
ICA.

The segmentation task focuses on the lumen of the CCA, ICA and
the ECA around the carotid bifurcation in a CTA dataset. The exact
region of which the lumen must be segmented is defined around
the bifurcation slice, which is defined as the first (caudal to cranial)
slice where the lumen of the carotid artery appears as two separate
lumens: the lumen of the ICA and the lumen of the ECA. The seg-
mentation must include the CCA, starting at least 20 mm caudal
of the bifurcation slice, the ICA, up to at least 40 mm cranial of
the bifurcation slice, and the ECA, up to between 10 and 20 mm
cranial of the bifurcation slice, see also Fig. 1.

The performance measures are computed in the region of inter-
est. The bifurcation slice is not revealed to the participants, who
must ensure that their segmentation at least includes this region.
Our definition of the bifurcation slice and the region of interest
should be sufficient to determine a suitable region of interest for
the segmentations.

The segmented lumen of the ECA should be cut between 10 and
20 mm cranial of the bifurcation slice. To allow for some flexibility
in cutting of the ECA lumen, the region around the ECA between 10
and 20 mm cranial of the bifurcation slice is a ‘‘masked’’ region,
where the evaluation measures are not evaluated, see also Fig. 1a.

The lumen segmentation must be represented as a partial vol-
ume segmentation, i.e. an image where each voxel value represents
the occupancy of the voxel by the vessel lumen: a value of 0 means
no lumen present, and a value of 1 means fully occupied with
lumen.

The second use of the CLS2009 framework is the evaluation of
stenosis gradings for the ICA. Two stenosis grades must be deter-
mined for each ICA: an area-based and a diameter-based stenosis
grade.

We use the following NASCET-like (NASCET Collaborators,
1991) definition for the area-based stenosis grade Sa:

Sa ¼ 100%� 1� am

ar

� �
ð1Þ

where am is the minimal cross-sectional area along the CCA and ICA,
and ar the average cross-sectional area over a distal reference part
of the ICA. For the diameter-based stenosis grade Sd we similarly
use:

Sd ¼ 100%� 1� dm

dr

� �
ð2Þ

where dm and dr are the minimal and average reference cross-
sectional diameter, respectively. We define the diameter of a
cross-section as the shortest straight line that divides the contour
in two equally-sized areas. Using this definition, the diameter of
non circular or non elliptic cross sections is well defined. See
Fig. 2 for examples of the diameter for several contour shapes.
The reference measure in Eqs. (1) and (2) should be based on a ves-
sel section, distal to the location of the stenosis and should reflect
the normal luminal diameter or area.

We distinguish two categories for the lumen segmentation and
the stenosis grading task: a category for fully automatic methods,

http://www.grand-challenge.org/
http://www.grand-challenge.org/


Table 1
Distribution of the datasets over the five stenosis categories based on the reference
standard.

Stenosis category Stenosis degree (%) Number of datsets

0 0 12
1 0–30 10
2 30–50 6
3 50–70 10
4 70–99 18
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which do not require user interaction, and one for semi-automatic
methods where three initialization points may be used. To elimi-
nate dependency on these initialization points, they are incorpo-
rated in the available data repository. The image data for both
tasks (lumen segmentation and stenosis grading) is the same: the
CTA dataset (including header information such as voxel size and
world coordinate system). The three points are located within
the carotid artery proximal and distal to the above defined region
of interest (see Fig. 1c):

1. A point in the CCA, at the level of the cranial side of the thyroid
gland.

2. A point in the ICA, just before the artery enters the skull base.
3. A point in the ECA, where the artery is close to the mandible.

3.2. CTA data

The dataset repository consists of 56 CTA datasets from three
different medical centers: the Erasmus MC (Rotterdam, The
Netherlands), Hôpital Louis Pradel (Bron, France) and the Hadassah
Hebrew University Medical Centre (Jerusalem, Israel). All datasets
were routinely acquired CTA datasets of the carotid bifurcation.
The medical center in which a dataset was acquired is made known
to the participants. Example slices of the datasets from the three
research centers are shown in Fig. 3.

The datasets were selected such that they contain a large range
of stenosis degrees and all stenosis categories (as listed in Table 1)
contained an equal number of datasets. The initial stenosis degrees
were determined by visual inspection. Creating the reference stan-
dard and measuring the stenosis based on lumen area slightly
changed this distribution. The distribution, based on the measure-
ments from the reference standard, is shown in Table 1.

The details of the scanning protocols for each of the medical
centers are provided in Sections 3.2.1, 3.2.2, 3.2.3. The CTA scan-
ning parameters are summarized in Table 2.

3.2.1. Erasmus MC protocol
The CTA data from Erasmus MC was acquired on a 16-row CT

scanner (Sensation 16 – Siemens Medical Solutions, Forchheim,
Germany) with a standard scan protocol using the following
parameters: 120 kV, 180 mAs, collimation 16 � 0.75 mm, table
feed per rotation 12 mm, pitch 1.0, rotation time 0.5 s and scan
time 10–14 s. The CTA scan range is from the ascending aorta to
the intra cranial circulation (2 cm above the sella turcica). All pa-
tients received 80 ml contrast material (Iodixanol 320 mg/ml,
Visipaque Amersham Health, Little Chalfont, UK), followed by
40 ml saline bolus chaser, both with an injection rate of 4 ml/s.
Synchronization between the passage of contrast material and data
Fig. 3. Examples of a slice of the CTA datasets. From left to right a slice from Erasmu
acquisition was achieved by real time bolus tracking at the level of
the ascending aorta. The trigger threshold was set at an increase in
attenuation of 75 Hounsfield Units (HU) above baseline
attenuation (approximately 150 HU in absolute value). Image
reconstructions were made with in-plane pixel sizes of 0.23–
0.26 � 0.23–0.26 mm2, matrix size of 512 � 512 (real in-plane res-
olution 0.6 � 0.6 mm), slice thickness of 1.0 mm, increment of
0.6 mm and with an intermediate reconstruction kernel (B30f).

3.2.2. Hadassah protocol
The CTA data from the Hadassah Hebrew University Medical

Centre was acquired on a 64-row CT scanner (Brilliance 64 –
Philips Healthcare, Cleveland, OH) with a standard scan protocol
using the following parameters: 120 kV, 251 mAs, collimation
64 � 0.625 mm, pitch 1.20, rotation time 0.75 s and scan time
7.30 s. The CTA scan range was from the ascending aorta to the
intra cranial circulation (2 cm above the sella turcica). All patients
received 75 ml contrast material (Iopamiro, Bracco Diagnostics,
Milano, Italy), with an injection rate of 3.5 ml/s. Image reconstruc-
tions were made with in-plane pixel sizes of 0.55 � 0.55 mm2,
matrix size of 512 � 512, slice thickness of 1.0 mm, increment of
0.5 mm and with an intermediate reconstruction kernel (B).

3.2.3. Louis Pradel protocol
The CTA data of Hôpital Louis Pradel was acquired on a 64-row

CT scanner (Brilliance 64 – Philips Healthcare, Cleveland, OH) with
a standard scan protocol using the following parameters: 120 kV,
300 mAs, collimation 52 � 1.5 mm, rotation time 0.35 s and scan
time 10–14 s. The CTA scan range was from ascending aorta to
the intra cranial circulation (2 cm above the sella turcica). All pa-
tients received 80 ml contrast material (Iomeron 4000 mg/ml,
BRACCO, Milano, Italy) followed by 40 ml saline bolus chaser, both
with an injection rate of 4 ml/s. Synchronization between the pas-
sage of contrast material and data acquisition was achieved by real
time bolus tracking at the level of the ascending aorta. The trigger
threshold was set at an increase in attenuation of 75 HU above
baseline attenuation. Image reconstructions were made with
s MC, the Hadassah Hebrew University Medical Centre and Hôpital Louis Pradel.



Table 2
Overview of scanning parameters of CTA datasets, EMC = Erasmus MC, Hd = Hadassah, LP = Louis Pradel.

Scanner In plane voxels Slices Pixel size (mm) Z-spacing (mm) Slice thick. (mm) Kernel

EMC Sensation 16 512 � 512 395–579 0.23–0.26 0.6 1 B30f
Hd Brilliance 64 512 � 512 750 0.55 0.5 1 B
LP Brilliance 64 512 � 512 636–827 0.414–0.547 0.45 0.9 B

Fig. 4. Example of two longitudinal contours drawn on a CMPR image.
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in-plane pixel sizes of 0.414–0.547 � 0.45 mm2, matrix size of
512 � 512 (real in-plane resolution 0.6 � 0.6 mm), slice thickness
of 0.9 mm, increment of 0.45 mm with an intermediate reconstruc-
tion kernel (B).

3.2.4. Datasets for training and testing
Fifteen of the 56 datasets are made available for training. The

reference standard for these training datasets is also available for
download. The training datasets were chosen such that they were
equally distributed over the five stenosis categories. The reference
standard of the remaining 41 datasets is not made available for
download. These datasets are used for testing the performance of
the algorithms. The distribution of the number of datasets over
the training and testing sets and over the different centers is
shown in Table 3.

3.3. Reference standard

The reference standard was created by averaging three manual
segmentations of the lumen in the CTA datasets. This section
describes the manual annotation process, the creation of a partial
volume representation from each observers’ annotations and the
averaging of the observers’ segmentations to obtain the reference
standard.

3.3.1. Manual annotations
Three different observers annotated the carotid lumen bound-

ary and graded the stenosis in the ICA for each dataset. Each con-
tributing center performed the annotations on the data it
provided, thus the three observers for each of the three centers
were different and there were nine observers in total.

The manual annotations for the lumen segmentation and steno-
sis grading were performed with a custom made tool, based on
MeVisLab (MeVis Research, Bremen, Germany). The annotation
procedure was as follows:

1. The bifurcation point was identified and manually selected.
2. Positions along the centerlines for both the ICA and ECA were

clicked, starting in the CCA, 20 mm caudal of the bifurcation
slice, and extending to 40 mm cranial of the bifurcation slice
for the ICA and 20 mm cranial of the bifurcation slice for the
ECA. This way two centerlines were defined: CCA-ICA and
CCA-ECA The part in the CCA thus was annotated twice.

3. Resampled centerlines were used to generate Curved Multi Pla-
nar Reformatted images (CMPRs), in which longitudinal con-
tours were drawn for three different orientations (each 60�
Table 3
Datasets per center, and distribution over training and testing sets.

Center Training Testing Total

Erasmus MC 9 27 36
Hadassah 3 7 10
Louis Pradel 3 7 10
Total (#) 15 41 56
apart) of the CMPRs. Fig. 4 shows an example of one of the three
orientations with two longitudinal contours.

4. Cross-sectional contours orthogonal to the centerline were cre-
ated at 1 mm intervals along the centerline. These contours
were created by fitting a Catmull–Rom spline (Catmull and
Rom, 1974) through the (six) positions where the cross-
sectional plane intersects the longitudinal contours. Fig. 5
shows a visualization of a subset of these contours together with
the longitudinal contours, the centerline and a cross-sectional
image plane that is perpendicular to the centerline. The longitu-
dinal contours of Figs. 4 and 5 are the same. The contours were
edited and updated if they did not match the luminal boundaries.

The contours were drawn on a display with fixed window level
settings (center = 176 HU, width = 800 HU).
Fig. 5. Example of two longitudinal contours (yellow and green, which correspond
to the ones shown in Fig. 4) with cross-sectional contours that are spline
interpolations of the six intersection points (green dots) of longitudinal contours
with the plane (shown image plane) that is perpendicular to the centerline (dark
blue dots). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3.3.2. Observers’ contours processing
The contours of each observer were separately processed to ob-

tain the partial volume segmentations (see Fig. 6):

1. The contours (both for the ICA and the ECA) were converted to
partial volume segmentations, using a Thin Plate Spline interpo-
lation between the contour points (Turk and O’Brien, 1999).

2. Signed distance maps (both for the ICA and the ECA) were gen-
erated from the partial volume segmentations of the ICA and
ECA.

3. The ICA and ECA signed distance maps were combined, where
the resulting value was the signed minimum absolute value if
both distances had the same sign and the minimum value if
the distances differed in sign. Thus a voxel that is inside the ves-
sel in either the ICA or the ECA segmentation is also part of the
vessel in the combined segmentation and a voxel outside the
vessel in both segmentations will get the minimum distance
of both distance maps. The result is a signed distance map for
the complete bifurcation.

4. The partial volume (pv) segmentations of the ICA and ECA were
also combined by taking the voxel-wise maximum to obtain the
partial volume segmentation of the bifurcation. In this way we
effectively combine the two parts, since at least the maximum
Fig. 6. Processing of observer annotations, left column shows a 3D visualization and
right column a 2D visualization. From top to bottom: initial contours, partial
volume from contours (left: isosurface at 0.5) and signed distance map from partial
volume (left: isosurface at 0.0).
of both pv segmentations is part of the combined segmentation.
This partial volume segmentation is used to rate the observer in
the same way as the contestants’ segmentations.

All signed distance maps used world distances in mm.

3.3.3. Combining observers’ lumen segmentations
The three segmentations of the observers were used to generate

the data of the reference standard: bifurcation slice number, eval-
uation region of interest and the lumen segmentation.

The bifurcation slice was computed by averaging the locations, as
indicated by the observers. This slice, and the bounding boxes of
the contours, were used to determine the region of interest for
the evaluation.

The region of interest was the bounding box of the contours, ex-
tended with 15 mm both in x- and in y-direction. The z-range was
determined from the reference bifurcation slice, and ranged from
20 mm caudal of the bifurcation slice to 40 mm cranial of the bifur-
cation slice.

The lumen segmentation of the reference standard contains three
representations: a signed distance map, a surface representation
and a partial volume segmentation. It also contains the mask for
the distal part of the ECA. These lumen representations and the
mask were constructed in the following way:

1. The signed distance map was obtained by averaging the observ-
ers’ signed distance maps, and subsequently performing a
signed distance transform on the zero-level set.

2. The surface representation was obtained by determining the
isosurface at zero of the reference signed distance map,
obtained in the previous step.

3. The partial volume representation was generated from the refer-
ence standard signed distance map by interpolating the distance
map on super-resolution, and determining the fraction of sub-
voxels that have a negative distance (i.e. that were inside the
lumen).

4. For the separate branches of the ICA and ECA average distances
maps of the three observers were created. These average maps
of the two separate branches were used to create the mask of
the distal part of the ECA. This mask contains all voxels that sat-
isfied each of the following three criteria:

� the voxel is in the 10–20 mm range cranial of the bifurca-
tion, and

� the ECA signed distance map value of the voxel is less than
2 mm, i.e. the voxel is inside or close to the ECA, and

� the ECA signed distance map value is less than the ICA
signed distance map value, i.e. the voxel is closer to the
ECA than to the ICA.

3.3.4. Stenosis values
The ICA and CCA contours were used for stenosis grading. The

ECA contours were not used as atherosclerosis and luminal steno-
sis in this artery is of less clinical relevance. Graphs of the contour
area and diameter (see Section 3.1) along the centerline were cre-
ated, based on the corrected cross-sectional contours.

In the graphs, the longitudinal position of the minimal area or
diameter could be selected, after which a default reference segment
was shown 20 mm distal to the selected stenosis and 10 mm in
length. The position and length of the reference segment could be
manually edited, subject to the constraint that the reference area
should remain distal of the minimal area location, and should not ex-
tend outside the segmented region, i.e. beyond 40 mm cranial of the
bifurcation slice. The stenosis grade was determined using the val-
ues from these graphs. The three observer values for the stenosis
were averaged to obtain the reference standard stenosis values.



K. Hameeteman et al. / Medical Image Analysis 15 (2011) 477–488 483
3.3.5. Initialisation points
The three initialization points for the semi-automatic methods

(see Section 3.1) were annotated by one of the observers.

3.4. Evaluation measures and ranking

3.4.1. Lumen segmentation
The partial volume lumen segmentations as supplied by a par-

ticipant are evaluated using the following three performance
measures1:

� The Dice similarity index Dsi:
Dsi ¼
2� pvr \ pvp

�� ��
pvrj j þ pvp

�� �� ð3Þ

where pvr and pvp are the reference and a participant’s partial
volumes, respectively, the intersection operation is the voxel-
wise minimum operation, and j�j is the volume, i.e. the integra-
tion of the voxel values over the complete image.
� The mean surface distance Dmsd:
Dmsd ¼
1
2
�

R
Sr

sdmp

�� ��ds

Ar
þ
R

Sp
sdmrj jds

Ap

 !
ð4Þ

where jsdmpj and jsdmrj are the absolute signed distance maps
of the reference and a participant’s segmentation, respectively,
Sr and Sp are the lumen boundary surfaces (isosurfaces of the
signed distance map at the value 0) and Ai is the surface area
of surface Si, i.e. Ai ¼

R
Si

ds.
� The Hausdorff2 distance Dhd:
1 We
distance
remove

2 Dur
maximu
be more
Dhd ¼ max max
x2Sr

sdmpðxÞ
�� ��;max

x2Sp
sdmrðxÞj j

� �
ð5Þ
Both distance measures are symmetric, and all measures are
only evaluated in the region of interest that is specified in Section
3.1.

3.4.2. Stenosis grading
The stenosis grade error is defined as the absolute difference be-

tween the reference standard value and the value determined by a
participant. Because revealing the (exact) error per dataset also
reveals the reference stenosis grades, the stenosis errors are not
communicated per dataset, but only per ensemble (training or test-
ing). Providing the ranking per dataset may potentially be used to
determine the reference values by using multiple submissions.
Hence we also do not show the stenosis ranking per dataset. The
final ranking, however, is determined by averaging the (hidden)
errors per dataset and stenosis grade (diameter and area).

Stenosis grading is often performed after a lumen segmentation
is obtained. Thus, we developed a simple standard stenosis grading
algorithm and applied it to all segmentation results. The algorithm
takes the partial volume lumen segmentation of the participants as
input and determines the desired stenosis measure. The algorithm
first determines the vessel surface. Based on this surface a center
line is created using the vmtk package (Antiga and Steinman,
2004). Along this centerline the vessel surface is cut at 1 mm inter-
vals with a plane perpendicular to the centerline using the default
vtkCutter class (Schroeder et al., 2006). The intersection points are
used a fourth measure at the MICCAI Workshop: the root mean squared
, which is in between the other two distance measures. We decided to
this fourth measure, as it did not add valuable information.
ing the workshop we used the average instead of the maximum of the two
m surface distances. This measure gives similar rankings, but is considered to
informative.
then used to calculate the cross-sectional area and minimal diam-
eter of the vessel along the centerline. The resulting area and diam-
eter curves are smoothed using a Gaussian kernel with r = 3 mm.
The minimal value of these smoothed curves is found, which is de-
fined as the location of the stenosis. Using the found position, the
degree of stenosis is then determined from the un-smoothed curve
using both the minimum value and the average value of the refer-
ence area which is defined as 2 cm distal to the bifurcation and
1 cm long.

The stenosis values of this standard algorithm are determined
for each submission where there is a successful lumen submission,
but are not used in ranking the stenosis submissions.

3.4.3. Ranking
The evaluation measures lead to one performance value for

each participant, for each dataset and for each evaluation measure.
Per dataset and per evaluation measure a ranking of the partici-
pants is made, by ordering them from best to worst and giving a
rank according to their position in the list: 1 for the best submis-
sion and P for the worst (with P the number of participants). If
there are no results for a participant for a certain dataset the ranks
for all evaluation measures for that dataset are set to the highest
value (P).

In this way, we obtain N �M rankings (for N datasets and M
measures, with N = 41 for testing, M = 3 for lumen segmentation
and M = 2 for stenosis grading). The overall ranking for a partici-
pant is obtained by averaging the ranks of all these N �M rankings.

We also report the average values of the evaluation measures
per participant. The values of evaluation measures for missing or
failed datasets are not taken into account in this averaging, so
these values represent the results for the datasets that were suc-
cessfully processed. We also report the number of datasets on
which a method was successful.

3.4.4. Availability of the framework
The evaluation framework is publicly available through the

website: http://cls2009.bigr.nl. All CTA datasets, the reference
standard for the training set as well as binaries and source code
of the evaluation software can be downloaded from this website.
This software is the same as which is used by the framework to
evaluate the submitted results with the testing data. Participants
can use it together with the training set reference standard to
determine the evaluation measures without using the website.
The framework provides the possibility to submit results. The eval-
uation measures will be determined for submitted results and,
after confirmation by the registrant, included in the ranking of all
the methods. The website also provides the possibility to create
custom queries on the datasets based on the research center and
stenosis grading.
4. MICCAI workshop

The evaluation framework was used in a competition setup at
the MICCAI 2009 workshop 3D Segmentation in the Clinic: A Grand
Challenge III. Around 100 groups from academia and industry were
invited by e-mail to participate in the workshop. Thirty-one teams
registered at the website, 21 of which sent in the data confidenti-
ality form, which was required to download the data, 13 teams
downloaded the data and 9 teams submitted results. For the lumen
segmentation, there was one submission from a commercial com-
pany, which did not participate in the workshop. Eight teams par-
ticipated in the category for semi-automatic methods and one
team submitted results of a fully automatic method. Only three
teams submitted results for the stenosis grading, none of these
methods were fully automatic.

http://cls2009.bigr.nl
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The set of testing CTA datasets was divided in two parts for the
workshop: a set to be processed prior to the workshop (31 data-
sets), and an on-site set to be processed by the participants during
the morning session of the workshop (10 datasets). The results
presented here are the aggregate results over all 41 datasets of
the test set. Each team had the opportunity to resend a submission
after the workshop to eliminate practical problems (e.g. erroneous
file format submissions) during the on-site competition.

4.1. Evaluated algorithms

Below we provide a very brief description of the algorithms in-
volved in the MICCAI workshop challenge. For a more extensive
description we refer to the respective papers that are available
through the workshop issue of the Midas Journal (Hameeteman
et al., 2009a,b).

4.1.1. Krissian and Arencibia-García
The algorithm by Krissian and Arencibia-García (2009) is di-

vided into two main steps: first, two minimal cost paths are
tracked between the CCA and both the ECA and the ICA. The cost
functions are based on a multi-scale vesselness response. Second,
after detecting the junction position and cutting or extending the
paths based on the requested lengths, a level set segmentation is
initialized as a thin tube around the computed paths and evolves
until reaching the vessel wall or a maximal evolution time.

4.1.2. Freiman et al.
The algorithm by Freiman et al. (2009) uses a two-phase graph-

based energy minimization approach. Its inputs are start and end
seed points inside the vessel. The two-step graph-based energy
minimization method starts by computing the weighted shortest
path between the vessel seed endpoints based on local image
and seed intensities and vessel path geometric characteristics. It
then automatically defines a region of interest from the shortest
path and the estimated vessel radius, and extracts the vessels
boundaries by minimizing the energy on a corresponding graph
cut.

4.1.3. Zuluaga et al.
The algorithm by Zuluaga et al. (2009) consists of two stages:

intensity-based preprocessing and model-based lumen delinea-
tion. The intensity-based preprocessing contains denoising by a
Dual Tree Complex Wavelet Transform filter (Doré and Cheriet,
2009), pre-segmentation using typical HU ranges refined by a
Fuzzy C-means classifier, enhancement using gradient magnitudes
and an exponential function within the pre-segmented regions.
The model-based delineation extracts one centerline per seed-
point by use of an elastic model and multi-scale eigen-analysis of
the inertia matrix (Orkisz et al., 2008), which is followed by a dis-
tance-based identification of the bifurcation and surface pruning
along the centerlines.

4.1.4. Wong et al.
The algorithm by Wong et al. (2009) first generates a rough cen-

terline using a vesselness measure and Minimal Cost Path search.
This centerline is then simplified and used as initialization of an
algorithm to find the principal curve (Kégl et al., 2000). This algo-
rithm uses a 1D intensity model and results in a centerline with
associated vessel radii. By assuming circular lumen cross-sections,
both the segmentation and stenosis grading can then be
determined.

4.1.5. Cuisenaire
The algorithm by Cuisenaire (2009) is a fully automated method

that segments not only the carotid bifurcation but also the vessels
from the aortic arch to the circle of Willis (COW), as well as the
external branch and the vertebral arteries (Cuisenaire et al.,
2008). The centerline of each vessel is first extracted using a local
adaptive fast marching algorithm that is both seeded and con-
strained by an anatomical model. These constraints are adapted
to the individual patient using both registration of the brain and
segmentation of the brain and spine. Seeds are automatically
placed in the COW and the lower part of the neck. The vessel lumen
is segmented using 3D active objects initialized as a tube around
the centerline.

4.1.6. Florez Valencia et al.
In the algorithm of Flórez Valencia et al. (2009) the lumen is

modeled by right generalized cylinders (RGC) with piece-wise con-
stant parameters (Azencot and Orkisz, 2003). Their parameters are
identified from planar contours extracted along the minimal paths
between the end-points. The contours are extracted by use of 2D
Fast Marching. Identification of the parameters (observations) is
based on a geometrical analogy with piece-wise helical curves
(axis) and on Fourier series decomposition of the contours
(surface). Consistency from one piece to another is managed by a
Kalman optimal estimator (Flórez Valencia et al., 2006).

4.1.7. Gülsün and Tek
The algorithm by Gülsün and Tek (2009) uses graph-cuts

optimization technique together with centerline models for seg-
menting the carotid arteries. It first detects the centerline repre-
sentations between user placed seed points. This centerline
extraction algorithm is based on a minimal path detection method
which operates on a medialness map. The lumen of carotid arteries
is then extracted by a graph-cut optimization technique using the
detected centerlines as input.

4.1.8. Mille et al.
The algorithm by Mille et al. (2009) is based on an extension of

the minimal path method that models the vessel as a centerline
and boundary. This is done by adding one dimension for the local
radius around the centerline. The crucial step is the definition of
the local metrics to minimize. The tubular structure of the vessels
is exploited by designing an anisotropic metric. This metric is well
oriented along the direction of the vessel, admits higher velocity on
the centerline, and provides a good estimate of the vessel radius. In
order to deal with carotid stenosis or occlusions, the segmentation
is refined using a region-based level set method derived from the
Chan–Vese model (Chan and Vese, 2001).

4.2. Workshop results

Table 4 shows the average results and ranking for all lumen
evaluation measures, for both the automatic and semi-automatic
algorithms. The ‘Total success’ column shows the number of data-
sets over which the average values were calculated (see Section
3.4.3). The only fully automatic method submitted by Cuisenaire
has similar distance and Dice measures as the team of Gülsün
and Tek, but because it is only successful in 33 of the 41 datasets
(the automatic method to find the bifurcation apparently did not
work in eight of the cases) it is ranked lower than the team of
Gülsün and Tek and the team of Krissian and Arencibia-García.

The table also contains the results of the observers, which have
been scored in the same ways as the other participants. Observer A
is the overall best observer (for each of the three clinical sites),
Observer C is the overall worst observer, and Observer B is the
remaining observer.

Fig. 7 gives a visual impression of the relation between the Dice
measure and the segmentation quality. The figure shows a CMPR
image of a region around a calcified bifurcation overlaid with three



Table 4
Lumen segmentation performance of all submissions. The average value and rank is shown for each of the three similarity measures as defined in Section 3.4.1. The algorithm by
Cuisenaire (in bold) is the only automatic method.

Method name Total success Dice Msd Hausdorff Processing time Total rank

% rank mm rank mm rank

Observer A 41 95.1 2.61 0.10 2.68 0.65 2.73 – 2.67
Observer B 41 94.6 3.34 0.11 3.37 0.83 3.07 – 3.26
Observer C 41 94.4 3.46 0.12 3.32 0.97 3.85 – 3.54
M.A. Gülsün and H. Tek 41 91.8 5.95 0.18 5.68 1.5 5.27 50 s. 5.63
K. Krissian et al. 41 87.3 6.05 0.54 7.02 4.4 6.83 15 min 6.63
O. Cuisenaire 33 89.6 8.05 0.17 6.90 1.7 7.00 1–2 min 7.32
J. Mille et al. 41 83.5 8.66 0.74 8.68 10 8.90 90 s 8.75
M. Freiman et al. 41 82.9 8.85 0.75 9.05 9.2 8.90 2 min 8.94
W.C.K. Wong et al. 41 77.5 9.34 1.1 9.73 11 9.07 90 s 9.38
M.A. Zuluaga et al. 41 80.9 9.63 0.82 9.68 10 9.07 4 min 9.46
L. Florez Valencia et al. 37 53.6 11.1 3.4 10.9 12 10.2 2 min 10.7

Table 5
Lumen measure of the three observers with respect to each other.

Observer AB BC CA Average

Dice 0.92 0.91 0.91 0.92
Msd 0.18 0.20 0.19 0.19
Hausdorff 1.23 1.39 1.41 1.34

Table 6
The average rank of all the methods specified for the different stenosis categories.

Method name Stenosis category

None 0–30 30–50 50–70 70–99

Observer A 2.58 2.73 2.57 2.50 2.96
Observer B 3.58 3.30 3.43 3.12 2.88
Observer C 3.62 3.63 3.19 3.88 3.33
M.A. Gülsün and H. Tek 6.08 5.90 5.09 5.62 5.33
K. Krissian et al. 7.46 6.03 6.38 6.29 7.12
O. Cuisenaire 7.12 6.50 6.71 8.54 7.83
J. Mille et al. 8.62 8.47 9.81 8.42 8.62
M. Freiman et al. 8.46 8.87 8.95 9.00 9.42
W.C.K. Wong et al. 9.50 10.2 9.52 8.75 8.79
M.A. Zuluaga et al. 8.62 9.83 9.57 9.46 9.75
L. Florez Valencia et al. 10.8 10.7 11.3 10.6 10.3
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different segmentations. The Dice measures are calculated over the
whole evaluation region and not just at the shown region.

We also determined the overlap and distance measures of the
three observers with respect to each other. Together with their
averages, which is the inter-observer variability, they are shown
in Table 5. To make these inter-observer measures better compara-
ble to the results of the participants, we only determined them on
the test data.

These results show that protocolized manual carotid artery
lumen segmentation in CTA can be performed with an average pre-
cision of around 0.19 mm, which is smaller than the voxel size. The
Dice and Msd of the observers with respect to each other are com-
parable to the results of the best semi-automatic method by M.A.
Gülsün and H. Tek. Only the Hausdorff distance of the last men-
tioned method is substantially worse. The method of Cuisenaire
also shows comparable results, but this fully automatic method
fails on eight cases, which makes comparison less straightforward
as these may be the more difficult cases.

Table 4 shows a substantial difference in the distance measures
between the best three methods and the others. This can be ex-
plained by the fact that some of those other methods use a circular
or elliptic model for the vessel cross-sectional area (Mille et al.,
2009; Zuluaga et al., 2009; Wong et al., 2009), whereas the best
three methods are based on graph cut (Gülsün and Tek, 2009), level
set (Krissian and Arencibia-García, 2009) and active surface (Cuise-
naire, 2009) algorithms, respectively, and do not have such hard
vessel model constraints. Since the segmented vessel contains a
bifurcation, the cross-sectional area is expected to deviate from
the circular model, which makes methods that use such a model
less successful. The lower scores of Florez Valencia et al. can be ex-
plained by failures in the initialization of the fast marching contour
extraction. This initialization is based on the extraction of a center-
line, which is not robust enough in the presence of complex
lesions.
Fig. 7. Visual impression of reference standard (yellow line) and user segmentations (red
88.4, example from O. Cuisenaire and (c) 88.1, example from L. Florez Valencia et al. (For
to the web version of this article.)
Note that the results of Zuluaga et al. in Table 4 reveal that the
procedure to calculate the ranks (as described in Section 3.4.3)
makes it possible for method A to have better average measures
than method B, while still having a worse average rank. If e.g. for
a certain dataset the measures of all methods are approximately
the same, this may lead to much higher rank for method A com-
pared to method B although their measures do not differ much.

Table 6 lists the average ranking for lumen segmentation in
each of the stenosis categories. It shows that the top three ranked
methods perform consistently best over the various categories.
) with different Dice measures: (a) 94.5, example from M.A. Gülsün and H. Tek, (b)
interpretation of the references to colour in this figure legend, the reader is referred



Table 7
Stenosis measures (as defined in Section 3.4.2) for all submissions. For both stenosis measures, the average difference with the reference stenosis and the rank is shown. The
values in italics have been calculated with the standard stenosis grading algorithm and have not been supplied by the participants. The lumens column shows the number of
lumen segmentations from which the standard values are calculated.

Method Name Total Success Diameter Area Standard algorithm Total Rank

D% Rank D% Rank Diameter⁄, D% Area⁄, D% Lumens⁄

Observer A 41 3.40 2.15 2.90 2.02 6.70 8.20 41 2.09
Observer B 41 5.40 2.51 4.30 2.32 9.00 8.70 41 2.41
Observer C 41 5.70 2.66 5.00 2.68 11.2 10.3 41 2.67
M.A. Gülsün and H. Tek 41 – – – – 9.70 12.8 41 –
K. Krissian et al. 41 – – – – 14.3 19.8 41 –
O. Cuisenaire 33 – – – – 16.7 16.5 33 –
J. Mille et al. 41 – – – – 31.2 35.7 41 –
M. Freiman et al. 41 – – – – 24.5 29.4 41 –
W.C.K. Wong et al. 41 31.4 4.20 25.2 4.17 27.8 27.5 41 4.18
M.A. Zuluaga et al. 41 17.0 3.56 16.9 3.71 30.0 31.4 41 3.63
L. Florez Valencia et al. 41 43.3 4.73 37.0 4.39 36.2 39.7 37 4.56

Table 8
Pearson correlation coefficient between the standard stenosis measures and the
lumen measures.

Stenosis measure Dice Msd Hausdorff Total rank

Diam �0.87 0.78 0.97 0.93
Area �0.87 0.79 0.97 0.92
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Table 7 shows the average stenosis results on the test set. The
ranking of these methods does not change for the different stenosis
categories.

The difference in stenosis grading performance between the
observers and the participants is large when compared to the re-
sults of the lumen segmentation. This could be explained by the
fact that the teams that participated in the stenosis grading compe-
tition have a relatively large error in the lumen segmentation. As
the stenosis grades are determined from lumen segmentations,
inaccurate segmentations may lead to inaccurate stenosis grades.
This is also confirmed by looking at the standard stenosis grading
in relation to the lumen measures. Table 8 provides the correlation
between the lumen measures and the standard stenosis measures
and Fig. 8 shows a scatter plot of the area based standard stenosis
error and the Hausdorff distance of the used segmentation. As can
be seen there is a strong correlation between the Hausdorff lumen
distance and the error in both the diameter and area based stenosis
measures. The correlation between the standard stenosis measures
Hausdorff distance vs area based standa

Hausdorff distance
0 2 4 6 8

St
an

da
rd

st
en

os
is

er
ro

r
(a

re
a

ba
se

d)

5

10

15

20

25

30

35

40

45

Fig. 8. Average area based standard stenosis error with respect to the average Hausd
correlation coefficient is 0.97.
and the other lumen measures (Dice and Msd) is less strong. This
can be explained by noting that both Dice and Msd are averages
over the whole segmentation while a good stenosis measure re-
quires a good segmentation on one specific location: the location
of the stenosis. A large segmentation error on this location hardly
influences the Dice and Msd, while it will directly influence on
both the Hausdorff distance and the stenosis measures.

Note that in the standard stenosis algorithm, the orientation of
the centerline determines the cross-sectional planes from which
the area and minimal diameter are calculated. Thus the calculated
measures highly depend on the extracted centerline. These stan-
dard centerlines are defined using the radius of the maximum in-
scribed sphere. Some of the submitted methods extract a
centerline as an intermediate result, which may be a better center-
line for stenosis measurement than the one extracted by the stan-
dard stenosis algorithm.

5. General discussion and conclusion

We presented an evaluation framework for carotid lumen seg-
mentation and stenosis grading and made this framework publicly
available via the website http://cls2009.bigr.nl.

The evaluation framework focuses on the effectiveness of lumen
segmentation and stenosis gradings. Another important aspect for
getting a novel technology accepted in daily clinical routine is effi-
ciency. We decided not to take the computational costs into ac-
rd stenosis error

10 12

Reference
ObserverA
ObserverB
ObserverC
Gülsün and Tek 
Krissian and García
Cuisenaire 
Mille et al. 
Freiman et al.
Zuluaga et al.
Wong et al.
Florez Valencia et al.

orff distance for all methods. The line shows a linear regression fit. The Pearson

http://cls2009.bigr.nl
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count in our framework. The main reasons are the lack of a stan-
dard performance parameter, and the variety of hardware and soft-
ware platforms that is being used by the various groups
participating in the challenge. Additionally, several research
groups do not optimize their algorithms on computational costs,
and performance estimates on current hardware and software
platforms will be outdated soon because of rapid developments
and increases in computational power. However, to get an indica-
tion in the computational expenses associated with the compared
algorithms, we asked the current users to provide us with a rough
estimate of the computational time for the processing of one data-
set. Those values are listed in Table 4.

The framework we presented contains data from three medical
centers and two different CT scanner vendors (Siemens Healthcare
and Philips Healthcare), which prevents bias of the algorithms to-
wards a specific scanner or acquisition protocol. However, other CT
vendors (e.g. GE Healthcare, Toshiba Medical Systems) are still
lacking, and thus the variety of the CTA datasets could still be im-
proved. If other clinical centers want to contribute CTA data to our
framework we will support them. From the current participants,
only Wong et al. (2009) uses the provided scanner information to
resample the image data of Erasmus MC.

Quantitative evaluation of medical imaging algorithms is essen-
tial for progress in the field of medical imaging. An objective, unbi-
ased comparison of quantitative results is only feasible if the same
evaluation measures are used, and if the datasets used in the eval-
uation are similar. We intend to contribute with our framework to
the growing need for quantitative evaluations of medical image
processing techniques. New lumen segmentation and stenosis
grading algorithms can be evaluated using the described
framework.

The framework proved to be an effective tool in the comparison
of vessel lumen segmentation and stenosis grading techniques at
the 2009 MICCAI workshop 3D Segmentation in the Clinic: A Grand
Challenge III, and is available for new evaluations of lumen segmen-
tation and stenosis grading algorithms.
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