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Segmentation of three-dimensional rotational angiography (3D-RA) can provide quantitative 3D
morphological information of vasculature. The expectation maximization-(EM-) based segmenta-
tion techniques have been widely used in the medical image processing community, because of the
implementation simplicity, and computational efficiency of the approach. In a brain 3D-RA, vas-
cular regions usually occupy a very small proportion (around 1%) inside an entire image volume.
This severe imbalance between the intensity distributions of vessels and background can lead to
inaccurate statistical modeling in the EM-based segmentation methods, and thus adversely affect
the segmentation quality for 3D-RA. In this paper we present a new method for the extraction of
vasculature in 3D-RA images. The new method is fully automatic and computationally efficient. As
compared with the original 3D-RA volume, there is a larger proportion (around 20%) of vessels in
its corresponding maximum intensity projection (MIP) image. The proposed method exploits this
property to increase the accuracy of statistical modeling with the EM algorithm. The algorithm
takes an iterative approach to compiling the 3D vascular segmentation progressively with the
segmentation of MIP images along the three principal axes, and use a winner-takes-all strategy to
combine the results obtained along individual axes. Experimental results on 12 3D-RA clinical
datasets indicate that the segmentations obtained by the new method exhibit a high degree of
agreement to the ground truth segmentations and are comparable to those produced by the manual
optimal global thresholding method. © 2005 American Association of Physicists in Medicine.
[DOI: 10.1118/1.2001820]
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I. INTRODUCTION

An accurate description of the cerebrovascular tree is impor-
tant to clinical diagnosis and quantitative analysis of the vas-
cular diseases. Based on the segmentation of the vascular
tree, a patient-specific three-dimensional (3D) vascular
model can be very useful to surgical planning. There are
various methods proposed for the segmentation of vessels.
For instance, model-based techniques explicitly modeling
vessel segments as tubular objects have been developed for
the segmentation of angiograms.l_3 Geodesic active contours
and level sets methods have been used for the segmentation
of vasculature in magnetic resonance angiography (MRA).*’
Alternatively, a 3D region growing algorithm has been intro-
duced for segmenting vasculature in time-of-flight (TOF)
MRA.° Furthermore, statistical segmentation methods based
on the expectation maximization (EM) algorithm have been
devised for extracting vessels in TOF-MRA"™ and phase
contrast (PC) MRA.!%12

3D rotational angiography (3D-RA) is a relatively new
imaging technique in neuroradiological interventions.'*™'® It
can provide morphological information of the cerebral ves-
sels during operations and is a very useful imaging tool for
assessing intracranial aneurysms, stenoses, and arteriovenous
malformations (AVM) in endovascular treatments.
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The global thresholding method is a practical and efficient
approach to 3D-RA vascular segmentation. Threshold-based
segmentations have been adopted in the evaluation of diffu-
sion techniques in 3D-RA images.17 As vessels are enhanced
by the use of a contrast agent, according to radiologists’
feedback, the segmentation of 3D-RA with a global threshold
is good enough for most of the clinical applications. Owing
to the relatively large variance in intensity values of vessels
among different images, it is apparently impossible to yield
satisfactory segmentations if a single predefined threshold is
used to segment all 3D-RA images. As such, for each image,
it is necessary for a radiologist to select the global threshold
manually in order to produce adequate segmentation. The
manual threshold selection process can be very subjective
among different radiologists and it is of low reproducibility.
Therefore, an automatic threshold selection method is pref-
erable in practice.

The finite mixture model (FMM) and the EM algorithm,
with the maximum likelihood (ML) estimation, provide com-
putationally efficient means for the automatic global thresh-
old selection. By working along the same line as Wilson et
al.,8 a double-Gaussian mixture model can be adopted to
estimate the intensity distribution of 3D-RA images consist-
ing of vessel (high-intensity values) and background classes.

© 2005 Am. Assoc. Phys. Med. 3017



3018

It is observed that the volume occupied by vessels typically
is very small (on average, around 1% of the total volume) in
clinical 3D-RA datasets. Such a severe imbalance between
the proportions of two classes makes it difficult to accurately
model the intensity distribution of 3D-RA images. The
Gaussian distribution corresponding to vessels may shift to
the low-intensity range as a result of the EM algorithm.
Hence, a relatively low threshold is selected and 3D-RA im-
ages are oversegmented.

To deal with this problem, based on our prior work,'® a
new approach is proposed to segment vasculature in 3D-RA
images. The method is also based on FMM and the EM
algorithm. But, the aforementioned problem in modeling the
imbalanced intensity distribution of 3D-RA images is ame-
liorated with the use of maximum intensity projection (MIP)
images. The method exploits a useful property of MIP, i.e.,
the proportion of vessels in the MIP image is larger than that
in the original 3D volume, to increase the stability in the
parameter estimation of FMM with the EM algorithm. It
takes an iterative approach to segmenting 3D-RA images
progressively with the segmentation of MIP images along the
three principal axes, and uses a winner-takes-all strategy to
combine the results obtained along individual axes. The
method is fully automatic and computationally efficient.

The proposed method has been tested on 12 clinical
3D-RA datasets. The results indicate that the segmentations
obtained by the method exhibit a high degree of agreement
to the manual segmentations (which are treated as the ground
truth). In a further comparison, it is found that the segmen-
tation from the new algorithm is comparable to the one pro-
duced by the global thresholding method with the manual
optimal threshold. Note that the manual optimal threshold is
an intensity value that gives segmentation in maximum
agreement to the ground truth, i.e., it can be found only if the
ground truth is known in advance.

Il. AUTOMATIC GLOBAL THRESHOLD SELECTION
WITH FMM AND THE EM ALGORITHM

The finite mixture model (FMM) and the expectation
maximization (EM) algorithm have been employed to seg-
ment medical images with the maximum likelihood (ML)
estimation. This approach is known as the EM-based seg-
mentation method (hereafter referred to as auto-GT, i.e., au-
tomatic global thresholding). It has been widely used in the
medical image processing community7_10’]2’19’20 because of
its simplicity and computational efficiency.

Auto-GT assumes that the image pixel or voxel intensity
values are independent and identically distributed (i.i.d.), and
the distribution of the observed intensity values can be ap-
proximated by a FMM. The method can be summarized as
follows: (1) statistical modeling with the FMM, (2) param-
eter estimation of FMM, and (3) global threshold selection
based on the ML criterion and the prior knowledge on the
intensity distribution.

FMM is a flexible and powerful probabilistic modeling
tool for univariate and multivariate data. In this paper, the
intensity distribution of 3D-RA images is approximated by a
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mixture of Gaussian distributions. Therefore, the distribution
of the voxel intensity values can be expressed as follows:

M
p() =2 o flilk), (1)
k=1

where i represents the intensity value, p(i) is the probability
(i.e., normalized frequency) of the intensity i, M is the num-
ber of distributions in the mixture model, f(i|k) is a distri-
bution function representing the likelihood probability of the
intensity i given the distribution k, and w, is a positive
weight representing the prior probability of the distribution k.
It is noted that 2,f(i|k)=1, 0<w,<1 (Vke{l,...,M}) and
S =1,

The parameters of FMM in Eq. (1) are then estimated by
the EM algorithm. The algorithm takes an iterative approach
to estimating the parameters by maximizing the log likeli-
hood of the mixture model.>' At each iteration, the EM algo-
rithm performs the following two steps: (1) E step and (2) M
step. Let ® be the set of parameters in Eq. (1), Z be the set of
intensity values in the image, and X be the set of labels for
all the distributions in the mixture model. The two steps of
the EM algorithm can be mathematically presented as fol-
lows: given the initial estimation @O, at the tth iteration:

E step: calculate the conditional expectations,

Q(®|0") = Ellog p(X.Z|®)|Z.0"); (2)

M step: maximize Q(®| DY) to derive d1),

®V = arg max Q(P|PY). (3)
[0}

The algorithm terminates if the changes in the log likeli-
hood and parameters are sufficiently small.

Finally, the global threshold is selected based on the prior
knowledge on the intensity distribution and the ML estima-
tion. Suppose it is known that the intensity distribution of
vessels in 3D-RA images is modeled by the distribution &
=M, the vessels can be segmented with the ML estimation.?!
In other words, a voxel is classified as vessel if the voxel
intensity value, i satisfies

M-1

opf(iM) > 2 wf(ilj). (4)
j=1

Because the positive weights w; (ke{l,...,M}) are con-

stant, a global threshold 7 for segmenting vessels in a
3D-RA image can be obtained by calculating the intersection
of wy,f(i|M) and the rest of the distributions in the mixture
model, i.e., X1 w (i ).

lll. STATISTICAL MODELING OF INTENSITY
VALUES IN 3D-RA IMAGES

To the best of our knowledge, a theoretical study on sta-
tistical modeling for PC-MRA was conducted,'"** while
there is no work on statistical analysis of the intensity distri-
bution for TOF-MRA and 3D-RA. Nevertheless, in the EM-
based segmentation algorithm for TOF-MRA presented by
Wilson et al.,8 it is assumed that each intensity class has a
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FIG. 1. (a) A slice of a typical 3D-RA dataset. (b) Manual segmentation. (c)
(d) A close-up.

Gaussian distribution of intensities. In this section, a similar
empirical study on statistical modeling of the intensity values
in 3D-RA images is presented.

Vessels in 3D-RA images are usually bright or in high
intensity values. Figure 1(a) shows a slice image of a typical
3D-RA dataset. With the help of a consultant radiologist, the
vascular structures are segmented manually, and Fig. 1(b)
shows the manual segmentation. Figure 1(c) shows the inten-
sity distributions, which are estimated based on the manual
segmentation, of the nonvessel (aka background) and vessel
volumes in the dataset. A close-up on the right tail of the
intensity distribution of the background volume is shown in
Fig. 1(d) for a better illustration of the vessel intensity dis-
tribution. It is evident that the intensity values of vessels are,
in general, higher than those of the background. Similar to
Wilson et al.,8 the intensity distribution of vessels in 3D-RA
images is approximated by a Gaussian distribution with a
higher mean, while that of the background is modeled by a
Gaussian distribution with a lower mean. In other words, the
observed intensity distribution of a 3D-RA image can be
approximated by a double-Gaussian mixture model as fol-
lows:

) : 1 { (i- ﬂk)2:|
pli) = g wkm exp| - 2—(7% ) (5)

where u; and w, (u; <u,) are the means, and o and o, are
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The intensity distributions of the vessel and background volumes in the dataset.

the standard deviations of the two Gaussian distributions,
respectively.

In the experiments on 12 3D-RA datasets, it is observed
that the segmentations produced by auto-GT are less than
satisfactory (see Sec. V C for more details). The 3D-RA im-
ages are oversegmented with relatively low thresholds. A low
threshold is selected in auto-GT because the volume occu-
pied by vessels in a 3D-RA dataset is too small, as compared
with the background volume. It is found that, among the 12
clinical datasets, the proportion of vessels in the 3D-RA im-
age, which is computed based on manual segmentations, is
around 1%. The large difference between sample sizes of
background and vessels introduces great difficulty to the EM
algorithm in accurately estimating the parameters of the
double-Gaussian mixture model. It is a well-known and prac-
tical problem that the EM algorithm would be biased against
small structures that just occupy a very small portion, when a
severe imbalance exists between the proportions of different
intensity classes. Owing to the fact that there are very few
voxels in high-intensity values, the Gaussian distribution
with a higher mean may shift to the low-intensity range (left)
in the parameter estimation process, as illustrated in Fig. 2.
Figure 2(a) shows the estimated Gaussian distributions (solid
lines) for approximating the observed intensity distribution
of the aforesaid 3D-RA dataset in Fig. 1 [dotted lines plot the
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FIG. 2. (a) The estimated Gaussian distributions (solid lines) for approximating the intensity distributions (dotted lines) of the dataset presented in Fig. 1. (b)

A close-up.

same distributions as in Fig. 1(c)]. Figure 2(b) shows the
close-up on the right tail of the Gaussian distribution with a
lower mean.

In order to improve the parameter estimation of FMM
with the EM algorithm, we suggest that the parameters of
FMM should not be estimated with the whole 3D volume.
Instead, the parameter estimation is performed with maxi-
mum intensity projection (MIP) images of the volume. MIP
is the simplest volume rendering technique and is commonly
used to visualize 3D vascular morphology on 2D image (i.e.,
the MIP image).”** The MIP image is a 2D projection of a
3D volume, where the intensity value assigned to a pixel is
the highest one found in the 3D volume along the projection
line. Because of the nature of the MIP image formation, it is
an effective visualization tool if the objects of interest are
brighter than the unwanted structures in the volume. This
results in an ideal application of MIP in visualizing angiog-
raphies such as MRA,25 contrast-enhanced (CE) computed
tomography angiography (CTA)* and 3D-RA. Recently,
MIP is also used in a preprocessing step of a vascular seg-
mentation method for TOF-MRA.® which exploits the MIP
depth Z buffer to generate seed points for further 3D region
growing segmentation.

In this paper, a property of MIP, i.e., the proportion of
vessels in the MIP image is larger than that in the original 3D
volume, is exploited to estimate the parameters of FMM
more robustly. Figure 3(a) shows one axial MIP image of the
dataset presented in Fig. 1. Figure 3(b) plots the intensity
distributions of the vessel and background volumes, which
are determined with reference to a manual segmentation. It is
observed that, among the 12 clinical datasets, the proportion
of vessels in an axial MIP image is around 20%. This pro-
portion is much greater than that in 3D volume, which is
around 1%.

Without loss of generality, a double-Gaussian mixture
model is adopted to approximate the MIP image intensity
distribution. Figure 3(c) shows the estimated Gaussian distri-
butions (solid lines) for the observed intensity distributions
presented in Fig. 3(b). Note that the Gaussian distribution
with a higher mean approximates the vessel intensity distri-
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bution better than the estimation shown in Fig. 2(b), where
the Gaussian function is shifted to the low-intensity range.
Because of the increase in the proportion of vessels in MIP
images, the intensity distribution of vessels can be approxi-
mated more accurately. Further experimental results are
given in Sec. V A to justify this proposition.

Based on the estimated statistical model of MIP image
intensity distribution, a global threshold for segmentation
can be selected with the ML estimation. But, the thresholds
for segmenting MIP images are not adequate for globally
thresholding original 3D volumes. It is found that the differ-
ence between the threshold for segmenting a MIP image and
the optimal threshold for segmenting the original 3D volume
varies significantly among different datasets. The optimal
threshold is an intensity value that can produce segmentation
with the global thresholding method, in maximum agreement
to the ground truth. As such, the 3D volume can be either
oversegmented or undersegmented if one uses the threshold
estimated from the MIP image intensity distribution for the
segmentation.

One may intend to compute a 3D bounding box or a local
3D region of interest (ROI) based on a rough segmentation
of the vascular structures (for instance, heuristic global
thresholding) to alleviate the large difference between
sample sizes of the background and vessels, which may
make the EM algorithm provide more accurate estimates on
the parameters of the double-Gaussian mixture model. How-
ever, some difficulties exist. First, some vessels may not be
included in the rough segmentation due to the variation of
intensity values inside vasculature. As such, it cannot guar-
antee that a 3D bounding box would cover the whole vascu-
lature. Second, the vessel voxels in the preliminary segmen-
tation can be scattered over the 3D space. Therefore, it is
apparently impossible to compute a 3D ROI locally with
respect to the vasculature. Finally, the vasculature commonly
spreads very widely in the volume and, as a result, comput-
ing a 3D bounding box may not obviously reduce the pro-
portion difference among the two classes.
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FIG. 3. (a) One axial MIP image of the dataset shown in Fig. 1. (b) The intensity distributions of the two classes. (c) The estimated Gaussian distributions

(solid lines).

IV. NOVEL SEGMENTATION TECHNIQUE USING
MIP IMAGES

In Sec. IV A we outline the new technique for segmenting
3D-RA vascular structures. The method compiles the vascu-
lar segmentation iteratively through the segmentation of MIP
images projected along a fixed direction. The iterative pro-
cess is terminated automatically based on a stopping crite-
rion discussed in Sec. IV B. A proper extension of the algo-
rithm to exploit the segmentations of MIP images projected
along multiple directions is presented in Sec. IV C. This ex-
tension is proposed for the robustness of the algorithm.

A. Outline of the method

The method begins with generating a MIP image from the
original 3D volume. To avoid unnecessary intensity interpo-
lation, the projection direction is set to one of the three prin-
cipal and orthogonal axes. The MIP image is then segmented
by the EM-based segmentation method (see Sec. II). A
double-Gaussian mixture model is used for approximating
the intensity distribution of the MIP image, as discussed at
the end of Sec. IIL

At each iteration, the 3D vascular segmentation is
achieved progressively based on the segmentation of the
MIP images. During the MIP image generation, the 3D po-
sition of the voxels that contributed to the MIP image (i.e.,
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voxels with their intensity values projected onto the MIP
image) is recorded. The voxels corresponding to vessel pix-
els, which are classified as vessel in the MIP image with the
EM-based segmentation method, are included in the 3D vas-
cular segmentation. Those voxels are then removed from the
3D volume and will not contribute to the MIP image genera-
tion at the next iteration.

A new MIP image is generated from the 3D volume (with
the exclusion of voxels counted on the 3D vascular segmen-
tation) at the successive iterations. Following the segmenta-
tion of the new MIP image, the voxels corresponding to ves-
sel pixels in the MIP image are added to the 3D vascular
segmentation, as mentioned in the previous paragraph. The
algorithm continues to iterate until no pixels are classified as
a vessel in the MIP image.

It is noted that, at each successive iteration, more vessel
voxels are added to the 3D vascular segmentation and ex-
cluded in the maximum intensity projection process. Due to
the significant decrease in the number of high-intensity pix-
els (i.e., the number of vascular pixels) in the subsequent
MIPs, as pointed out in Sec. III, the Gaussian distribution
with a higher mean in the mixture model may shift to the
lower-intensity region. A relatively low threshold is then se-
lected to segment the MIP image and, as a result, overseg-
mentation is produced. Therefore, a stopping criterion is pro-
posed for the iterative algorithm to detect the left-shift of the
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aforesaid Gaussian distribution and the termination of the
algorithm. The stopping criterion is presented in Sec. IV B.

The algorithm is implemented separately along three prin-
cipal axes. Segmentation results along individual axes are
then fused using a winner-takes-all strategy, which is pre-
sented in Sec. IV C.

B. Stopping criterion

The intensity distribution of the MIP image is evolving
across iterations. The number of high-intensity pixels de-
creases as the algorithm proceeds. Figure 4(a) shows the
axial MIP image generated at the 16th iteration in the execu-
tion of the iterative segmentation method on the same
3D-RA dataset presented in Fig. 3. The white spot on the
middle left-hand side in Fig. 4(a) indicates the presence of
vessels. Figure 4(b) shows the segmentation obtained by the
EM-based segmentation method. Figure 4(c) plots the esti-
mated Gaussian distributions (solid lines) and the observed
intensity distribution (dotted line) of the MIP image. It is
observed that, in Fig. 4(c), the number of pixels in the
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higher-intensity range decreases, as compared with the inten-
sity distribution of the MIP image at the first iteration shown
in Fig. 3(b). This leads to the left-shift of the Gaussian dis-
tribution with a higher mean in the mixture model. Conse-
quently, a relatively low threshold is selected to segment the
MIP image, as a result of oversegmentation, as illustrated in
Fig. 4(b).

In this paper we propose an automatic mechanism to de-
tect the left-shift of the Gaussian distribution with a higher
mean to the lower-intensity region. Suppose that the current
iteration of the algorithm execution is k. Let &} be the esti-
mated background intensity distribution at iteration k ob-
tained with the threshold #,_; calculated at the previous itera-
tion k—1. The distribution hf is given by

hk(i), ifi << tk—l;
hE(i) = 6
£ 0, otherwise; ©)

where £, is the observed intensity distribution of the MIP
image at iteration k and i is the intensity value. Let h,? be the
estimated Gaussian distribution with a lower mean in the
mixture model and hU¢ be the overall distribution of the
double-Gaussian mixture model. The proposed mechanism
calculates the sums of absolute difference (SAD) between hf
and the two distributions, hf and th, respectively. The dif-
ferences between SAD(h? ,h,?G) and SAD(h® ,h,(f) are evalu-
ated. If the Gaussian distribution with a higher mean is left-
shifted, it is expected to have a smaller SAD value between
Ry and h{C than the one between 4 and kY. This is because
th gives a better approximation on hf when the Gaussian
distribution with a higher mean is shifted to the low-intensity
range. The stopping criterion of the algorithm is, therefore, to
see if SAD(h?,h{)>SAD(h?,h{C).

For a better illustration, Fig. 5(a) shows the difference
between  SAD(h, thG) and  SAD(h},hY) [i.e.,
SAD(h{ ,h{%)~SAD(h ,h{)], obtained throughout the algo-
rithm execution in an experiment on the dataset presented in
Fig. 4. It is observed that the SAD value difference decreases
from 0.15 to —0.03 as the algorithm proceeds. The difference
is below O at the 16th iteration. This indicates the effect of
the left-shift of the Gaussian distribution with a higher mean.
Among the other 11 clinical datasets, similar patterns of a
decreasing SAD value difference are observed, as presented
in Figs. 5(b)-5(1). With these figures, the convergence of the
algorithm can be shown experimentally.

According to the proposed stopping criterion, the only
condition that makes the algorithm fail to converge and ter-
minate is that the left-shift of the Gaussian distribution with
a higher mean never occurs. In other words, a severe imbal-
ance between the proportions of the vessels and the back-
ground never occurs for the MIP image. However, during the
algorithm execution, more and more vessel voxels are ex-
cluded in the MIP image generation. That is, the proportion
of the vessels keeps decreasing and that of the background
keeps increasing. The imbalance between the two propor-
tions only becomes more and more severe, until finally the
aforesaid left-shift occurs and the algorithm terminates.
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Once the stopping criterion is satisfied at the last iteration,
the algorithm stops generating and segmenting MIP images
and gives the compiled 3D vascular segmentation as the final
segmentation. However, it does not imply that no vessel
voxel can be found in the rest of the 3D volume, which is
referred to as the volume that excluded all the segmented
vessel voxels. As such, in order not to leave out any vessel
voxels, the threshold selected at the second last iteration
(hereafter referred as to 7) is applied to segment the rest of
the 3D volume. Note that the threshold estimated at the last
iteration cannot be used because the Gaussian distribution
with a higher mean has already left-shifted and then the es-
timated threshold can lead to oversegmentation.

One may be confused by the aforesaid step and presume
that the method produces vascular segmentation that is iden-
tical to the one obtained by the global thresholding method
with the threshold 7. However, if the two segmentations are
compared, it is not difficult to realize that the two methods
do produce different vascular segmentations. As a further
justification of this proposition, it is empirically observed
that, for all the 12 clinical datasets, the threshold estimated at
the second last iteration 7 is not the smallest threshold among
the others. This implies that voxels with intensity values
lower than 7 are picked up and added to the 3-D vascular
segmentation before the stopping criterion is satisfied. As
such, it is clear that the segmentation produced by the pro-
posed method can be different from the one obtained from
the global thresholding method with the threshold 7.

C. Extension to use multiple projection directions

As discussed in Sec. IV A, the algorithm segments the
MIP images projected along one of the three principal axes
in order to avoid unnecessary intensity interpolation. How-
ever, it is not clear how to decide which projection direction
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should be used. Moreover, it is not feasible to use a single
statistical mixture model to simultaneously approximate the
intensity distributions in the MIP images along the three
principal axes, due to the different proportions of the pro-
jected vascular regions in the three MIP images. As such, an
empirical study has been conducted to evaluate which pro-
jection direction yields better segmentation on the 12 3D-RA
datasets (see Sec. V B for more details). It is found that no
single projection direction outperforms the others across all
the datasets, and there is a large deviation in the quality of
segmentations produced with the MIP images generated
along different projection directions. Therefore, it is prefer-
able to have a more robust algorithm that can produce vas-
cular segmentation of high quality with reference to the sag-
ittal, coronal, and axial (projections along the X axis, Y axis,
and Z axis, respectively) MIP images.

In this paper we propose a proper extension of the above
proposed technique to exploit the segmentation of MIP im-
ages projected along the three principal axes. The extension
can be summarized as follows: (1) the aforementioned algo-
rithm is separately executed with MIP images generated
along the X axis, Y axis, and Z axis; and (2) the obtained
three segmentations are combined under an aggregation
scheme to derive the final vascular segmentation.

In this work we propose and evaluate the following ag-
gregation schemes: (1) union, voxels that have been counted
on any one of the three segmentations are included in the
final segmentation; (2) intersection, only voxels that have
been counted on all the three segmentations are included in
the final segmentation; and (3) winner-takes-all (WTA), vox-
els that have been counted on two out of the three segmen-
tations are included in the final segmentation. The evaluation
results are given in Sec. V B. It is found that WTA aggrega-
tion scheme demonstrates higher robustness than the other
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two schemes in the experiments on the 12 clinical datasets
and produces segmentations of 3D-RA images with stable
quality (see Sec. V B for more details). Furthermore, the seg-
mentations produced under the WTA aggregation scheme ex-
hibit a high degree of agreement with the manual segmenta-
tions.

V. EXPERIMENTS AND DISCUSSION

The proposed algorithm has been applied on 12 clinical
3D-RA datasets acquired by a Philips Integris imager at the
Department of Diagnostic Radiology and Organ Imaging,
Prince of Wales Hospital, Hong Kong. The data volume is
around 100X 100X 100 voxels with a voxel size of 0.75
% 0.75%0.75 mm?. The volume is cropped to exclude null-
intensity regions that contain no signal at all. Furthermore,
the 12 datasets were manually segmented with the help of a
consultant radiologist. The manual segmentations, which
were voxel-by-voxel selections, were treated as the ground
truth in all experiments presented in this section.

A. Experiments on statistical modeling

The statistical modeling of the intensity distribution of
vessels in the 3D-RA images and their corresponding MIP
images has been tested. The EM algorithm is used to esti-
mate the parameters of the double-Gaussian distribution, as
discussed in Sec. II. In order to compare the goodness-of-fit
of the estimated Gaussian distribution with the observed dis-
tribution for the vessel class, the sum of absolute difference
(SAD) is chosen to measure the similarity between the esti-
mated Gaussian distribution and the observed distribution of
vessels, which is obtained based on the manual segmenta-
tion. The value of SAD between two distributions is between
0 and 2. The SAD value is small and close to O if the two
distributions, i.e., the estimated mixture model and the ob-
served distribution, fit each other, while it is large and close
to 2 if the distributions do not overlap.

Figure 6 plots the SAD values between the estimated
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Gaussian distribution and the observed distribution of vessels
for the 12 3D volumes and the corresponding MIP images.
The mean and the standard deviation of the SAD values for
the 3D volumes are 1.35 and 0.23, respectively, while those
for the MIP images are 0.45 and 0.14, respectively. It is
indicated that the statistical modeling of the intensity distri-
bution of vessels in MIP images is more accurate than the
modeling in 3D volumes (the mean of SAD values equals
0.45 vs 1.35).

B. Justification of the extension to use multiple
projection directions

In order to justify the necessity of the extension to the
application of multiple MIP images, the algorithm with sag-
ittal (projection along the X axis), coronal (projection along
the Y axis), and axial (projection along the Z axis) MIP im-
ages have been separately tested on all the 12 datasets (here-
after referred as to MIP-SP-X, MIP-SP-Y, and MIP-SP-Z,
respectively). The obtained segmentations are then compared
based on a similarity measure toward the ground truth (i.e.,
the manual segmentations). Suppose X is one of the segmen-

tations produced by the proposed method and X is the corre-
sponding ground truth. The similarity between the two seg-
mentations is measured by the Dice similarity coefficient
(DSC).”” DSC is defined as the ratio of twice the common
vessel volume to the sum of the individual vessel volumes in
the two given segmentations. It takes both the sensitivity and
specificity into account in the measurement of agreement.
DSC is expressed as follows:

2. VX)) N V)
DSC(X)= ——, (7)
VX)|+ VX)|

where V(X) represents the set of all vessel voxels in segmen-
tation X, N denotes the intersection operator, and |V()| de-
notes the total number of elements in the set V().

With the empirical approaches, it is observed that no
single method (i.e., MIP-SP-X, MIP-SP-Y, and MIP-SP-Z)
outperforms the others across all the datasets. Furthermore, a
large deviation in the quality of segmentations is produced
by the algorithm with MIP images in different projection
directions.

Therefore, it is preferable to have an algorithm that can
produce the segmentation of high quality with reference to
the sagittal, coronal, and axial MIP images. This algorithm is
expected to be robust, since it does not depend on a particu-
lar maximum intensity projection direction. This paper tested
three aggregation methods to combine the segmentations ob-
tained by MIP-SP-X, MIP-SP-Y, and MIP-SP-Z. The three
aggregation methods are as follows: (1) union, (2) intersec-
tion, and (3) winner takes all as mentioned in Sec. IV C. The
corresponding algorithms were named MIP-MP-U, MIP-
MP-N, and MIP-MP-WTA, respectively. Figure 7 plots the
difference between the DSC values for the aforementioned
three aggregation algorithms and the highest DSC values
among MIP-SP-X, MIP-SP-Y, and MIP-SP-Z across differ-
ent clinical datasets. A positive difference indicates a more



3025 Gan, Wong, and Chung: Statistical cerebrovascular segmentation in 3D-RA based on MIP 3025

0.1 T T T T T T

0.05 &

-0.05F

Difference of DSC values
o

Difference of DSC values
o

0.1 L L L L L L
: 8 9 10 " 12

Dataset B MIP-MP—
Il MIP-MP-WTA

[ MIP-MP-

FiG. 7. The differences between DSC values for the three aggregation algo-
rithms and the highest DSC values among MIP-SP-X, MIP-SP-Y, and
MIP-SP-Z.

accurate segmentation than those produced by MIP-SP-X,
MIP-SP-Y, and MIP-SP-Z. It is observed that MIP-MP-WTA
can give a relatively small difference in DSC values, as op-
posed to MIP-MP-U and MIP-MP-N. As such, the results
suggest that MIP-MP-WTA is a better aggregation scheme
for the proposed method to be used in the clinical environ-
ment.

C. Performance comparisons of the algorithm

In order to study the segmentation accuracy of the pro-
posed method, auto-GT, and the new method (MIP-MP-
WTA) have been applied to the 12 clinical datasets for com-
parison. Implementation details of the two methods are listed
below.

(1) Auto-GT: the double-Gaussian mixture model [see Eq.
(5)] is used. The parameters w,, p;, and o are initialized by
calculating the proportion, the sample mean, and the stan-
dard deviation of the 99% highest posterior density (HPD)
interval of the observed intensity histogram, while the other
parameters w,, u,, and o, are calculated from the residual
histogram.

(2) MIP-MP-WTA: the parameters of the double-Gaussian
mixture model at each iteration are initialized in the follow-
ing way. At the first iteration, the parameters w;, w©;, and o
are initialized by calculating the proportion, the sample
mean, and the standard deviation of the 90% HPD interval of
the observed intensity histogram, and the other parameters
Wy, My, and o, are calculated from the residual histogram. In
the successive iterations, the parameters estimated in the last
iteration are used in the initialization of the current iteration.

Figure 8 presents the DSC values for auto-GT, MIP-MP-
WTA, and the segmentation produced by the manual optimal
global thresholding method (hereafter referred as to opt-GT).
The manual optimal threshold is an intensity value that can
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produce segmentation with the global thresholding method in
maximum agreement, measured by DSC, to the ground truth.
In other words, this threshold is the best global threshold that
an operator can obtain if the ground truth is known in ad-
vance. From the figure, it is indicated that the new method
(MIP-MP-WTA) consistently produces segmentations with
DSC values greater than 0.7. A DSC value that is greater
than 0.7 indicates excellent agreement.28 This implies that
those segmentations are in a high degree of agreements to
the ground truth, which can also be justified by the small
differences in the DSC values with the opt-GT. On the con-
trary, auto-GT gives very low DSC values, as low as 0.1,
which vary a lot across different clinical datasets.

As a further comparison, the false positive rate (FPR) is
also used to evaluate the accuracy of the obtained segmenta-
tions with respect to the ground truth. FPR is defined by one
minus specificity, i.e., the probability that a background
voxel is classified as a vessel. Figure 9 exhibits the FPR
values for opt-GT, auto-GT, and MIP-MP-WTA. It is shown
that the FPR values for opt-GT and MIP-MP-WTA are con-
sistently comparable and small. On the other hand, the FPR
values for auto-GT are relatively large, which implies that
the segmentations obtained via auto-GT are always overseg-
mented.

Figure 10 shows the regions of interests (ROI) of image
slices from 3 3D-RA clinical datasets. Three rows in the
figure are for individual datasets respectively. In each row,
column A shows the image of the ROI, column B shows the
manual segmentation (i.e., the ground truth), columns C, D,
and E show the segmentations obtained by opt-GT, auto-GT,
and MIP-MP-WTA, respectively. It is observed that the seg-
mentations obtained by opt-GT and MIP-MP-WTA are very
similar to manual segmentations. Among the segmentations
shown in columns B, C, and E, there are discrepancies in
only a few voxels. Contrarily, the segmentations obtained by
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auto-GT are less than satisfactory. The vascular segmenta-
tions include part of the dim nonvascular structures in the
background, as shown in column D.

Figure 11 shows volume-rendered images of 2 3D-RA
datasets. Two rows are for individual datasets, respectively.
In each row, Column A shows the axial MIP image, columns
B, C, and D show the volume-rendered images based on the
manual segmentation, auto-GT, and MIP-MP-WTA, respec-
tively. Volume rendering is performed by the Visualization
ToolKit (VTK). It is clear from the figures that the proposed
technique is capable of segmenting 3D-RA images automati-
cally with a high degree of agreement to the manual segmen-
tations. Although it is observed that there are some nonvas-

Column A Column B

Manual

Original

Column C
Opt-GT

cular structures included in the segmentations in column D,
they can be removed automatically by a connectivity filter.
The segmentation of major vessels is the current radiolo-
gists” primary interest in this work and it is expected that the
overall quality of the segmentations will not be affected after
the application of the connectivity filter. This is because
these nonvascular structures are sparse and highly isolated
from the major vascular structures, as opposed to those ob-
tained by auto-GT where the nonvascular structures are at-
tached to the major vessels (for better illustrations, see col-
umn D in Fig. 10).

The proposed method is computationally efficient. In all
the experiments presented in this section, it takes less than 20
iterations and less than 2 s to terminate for segmenting a
3D-RA image with around 100X 100X 100 voxels on a
2.26 GHz PC with 512 MB RAM.

VI. CONCLUSION AND FUTURE WORK

A novel automatic segmentation technique has been pre-
sented to extract vasculature for 3D rotational angiography
(3D-RA) based on maximum intensity projections (MIP). It
makes use of the fact that there is a larger proportion of
vessels in the MIP image as compared with the original 3D
volume. This can greatly help to increase the accuracy in the
parameter estimation of a finite mixture model (FMM) with
the expectation maximization (EM) algorithm. The new
method takes an iterative approach to segmenting 3D-RA
images progressively with the segmentation of MIP images
along the three principal axes. Once the results along indi-
vidual axes are obtained, the results are combined using the
winner-takes-all strategy. Apparently, the proposed method
differs much from the 3D region growing segmentation al-

Column D

Column E

Fi6. 10. Comparisons on ROI of image slices from 3 3D-RA clinical datasets, where each row is for an individual dataset.
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gorithm presented by Chapman et al..® which makes use of
continuity in the MIP depth Z buffer as a preprocessing step
to generate seed points.

In this work, the proposed algorithm has been tested and
verified on 12 clinical 3D-RA datasets. The experimental re-
sults have indicated that the novel automatic method can
produce more accurate vascular segmentation than the auto-
matic global thresholding method based on FMM and the
EM algorithm. Moreover, the algorithm is capable of produc-
ing satisfactory segmentations with a very high degree of
agreement to the manual segmentations. On average, the new
technique is computationally efficient, and takes less than 2 s
to segment a 3D-RA dataset with around 100X 100X 100
voxels. This makes the time-critical medical applications of
the method possible.

There are several areas that are of interest for future re-
search. A larger evaluation study with more consultant radi-
ologists is planned to validate the algorithm over a larger set
of clinical datasets. With more manual segmentations, less
subjective ground truth can be obtained via the method of
Warfield et al.”’ Alternatively, manual segmentations for
each dataset from different radiologists can be individually
used as the ground truth and the results can be evaluated
together for a more objective study. Further studies on statis-
tical properties of MIP images and performance evaluation in
view of a clinically relevant task (e.g., quantification of vas-
cular anomalies) will also be considered. Moreover, it is in-
teresting to apply and extend the technique to modalities
such as phase contrast magnetic resonance angiography
(MRA) and time-of-flight MRA. Finally, the incorporation
with other sophisticated segmentation techniques to refine
results obtained by the proposed method is part of the future
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work. For instance, the refinement via the Markov random
field-based method or the model-based method can be for
very small (or dim) fragmented vessels, and the refinement
via the level-set method based technique can be for achiev-
ing subvoxel accuracy.
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