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Abstract

This paper presents a statistical approach to aggregating speed and phase (directional) information for vascular segmentation of phase
contrast magnetic resonance angiograms (PC-MRA). Rather than relying on speed information alone, as done by others and in our own
work, we demonstrate that including phase information as a priori knowledge in a Markov random field (MRF) model can improve the
quality of segmentation. This is particularly true in the region within an aneurysm where there is a heterogeneous intensity pattern and
significant vascular signal loss. We propose to use a Maxwell–Gaussian mixture density to model the background signal distribution and
combine this with a uniform distribution for modelling vascular signal to give a Maxwell–Gaussian-uniform (MGU) mixture model of
image intensity. The MGU model parameters are estimated by the modified expectation-maximisation (EM) algorithm. In addition, it is
shown that the Maxwell–Gaussian mixture distribution (a) models the background signal more accurately than a Maxwell distribution, (b)
exhibits a better fit to clinical data and (c) gives fewer false positive voxels (misclassified vessel voxels) in segmentation. The new
segmentation algorithm is tested on an aneurysm phantom data set and two clinical data sets. The experimental results show that the
proposed method can provide a better quality of segmentation when both speed and phase information are utilised.  2002 Elsevier
Science B.V. All rights reserved.

Keywords: Magnetic resonance angiography (MRA); Expectation-maximisation (EM) algorithm; Markov random fields (MRF); Flow coherence; MR
signal modelling and statistical segmentation

1 . Introduction background suppression and displays two high contrast
voxel types: vessel and background (Rinck, 1993). Medi-

Magnetic resonance angiography (MRA) is a collection cal diagnosis of vascular diseases is commonly performed
of non-invasive methods for vessel delineation. Three on the basis of an analysis of MRA speed images alone,
major groups of MRA techniques are time-of-flight (TOF) which assign high intensity to the moving blood and
MRA, contrast enhanced (CE) MRA and phase contrast cerebrospinal fluid (CSF). The work described in this
(PC) MRA. The main advantage of PC-MRA over TOF- paper was entirely driven by the growing need of PC-MRA
and CE-MRA is that it not only gives information about image segmentation for characterisations of vasculature
vascular morphology but also provides for each voxel a and aneurysms.
three-component estimate of flow direction (in the form of While most of the arterial anatomy can be shown clearly
phase images) and rate of flow (conveyed as a speed in MRA speed images, this is not the case for, for example,
image). Moreover, a PC-MRA speed image has good intracranial aneurysms. These can contain low or complex

flow and are poorly represented in the images (Steiger et
al., 1997; Wilcock et al., 1995). The presence of an
aneurysm causes significant vascular signal loss in the*Corresponding author. Tel.: 144-1865-280-934; fax: 144-1865-280-
MRA speed image with some intensity levels approximate-922.
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Fig. 1. (a) Time-of-flight (TOF) MRA; (b) phase contrast (PC) MRA. As shown in the figures, the presence of an aneurysm causes significant vascular
signal loss in the MRA speed image with some intensity levels approximately equal to those of background signal, thereby producing a heterogeneous
intensity pattern within the aneurysm. The inclusion of such regions of inhomogeneous intensities is a challenge to robust vascular segmentation.

heterogeneous intensity pattern within the aneurysm, as a multiscale method to detect the vessel centreline and
shown in Figs. 1(a) and (b). These inhomogeneous sub- estimate vessel width based on eigenvalue and eigenvector
regions are a challenge if vascular segmentation is to be analysis of the Hessian matrix. However, as with the
robust. This work was motivated by the need to develop a intensity-based gradient methods, partial differentiation of
fully automatic segmentation algorithm that could reliably the MRA speed images will not give reliable information
segment the vasculature including aneurysms, vessels at about the position of a vessel boundary in low flow or
the vicinity of the aneurysms and other regions of low or signal-to-noise ratio (SNR) regions.
complex flow from PC-MRA data. An alternative approach to reconstructing vascular

A variety of approaches have been proposed for the shape, proposed by Masutani et al. (1998), consists of
segmentation of MRA speed images. For instance, Ver- initial shape extraction followed by region-growing. The
donck et al. (1996) proposed to segment blood vessels by initial shape is obtained by thresholding. Then, a seed
iteratively estimating vessel centre axes and contours based point is placed manually inside the initial bounded space
on the maximum gradient points. McInerney and Ter- and is grown to extract a locally smooth surface by using
zopoulos (1997) proposed topologically adaptable surfaces binary mathematical morphological operations. The major
(T-surfaces), which is a variant of the classical deformable advantages of this method are that thin contacts by the
models but has an efficient topologically adaptable proper- adjacent vessel clusters can be removed and the dis-
ty for segmentation of intracranial vasculature. Another connected clusters of vessels can be grouped. However,
variant, geodesic active contour was proposed to segment due to the low SNR values inside an aneurysm, the
MRA speed images by Lorigo et al. (1999). In this case, aneurysmal and low SNR regions will not always be
the contour was implemented by using the level set extracted as the clusters in the initial bounded space.
methods (Sethian, 1999) to offer flexible topological Finally, based on the knowledge of MRA image acquisi-
adaptability, and has been subsequently extended to be tion, it has also been shown that the accuracy of vessel
more locally adaptable according to the properties of local width estimation can be improved by incorporating a
geometrical structure, for example, eigenvalues of the boundary criterion, which is defined as a percentage roll-
tensor (Westin et al., 2000). A fast vessel delineation off factor with respect to maximum luminal MR signal
method was suggested by iteratively reconstructing a (Frangi et al., 1999).
vessel segment defined by two user specified starting and Wilson and Noble (1999) used an adaptive statistical
end points (Wink et al., 2000). In all of these methods, an segmentation method for TOF-MRA data. In the current
intensity-based gradient function was employed to estimate paper, we extend that statistical method to PC-MRA data.
the boundaries of vessels. A drawback in using a gradient- There are two main reasons for this. Firstly, the statistical
based method is that, in practice, gradient values are not characteristics of the background and vascular signals can
sufficiently high in the low or complex flow regions for be accurately modelled based on the knowledge of image
robust segmentation. Krissian et al. (1998, 1999) proposed formation. Secondly, most of the previous segmentation
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methods segment the vasculature by using PC-MRA speed 2 . Statistical analysis of background and vascular
images alone. Rather than using just speed information, the signals
directional flow field (available in PC-MRA data only)
may give additional clues for segmentation. To the best of This section derives statistical distributions for the target
our knowledge, there is only one related work (Summers et vascular signals in MRA speed images as well as for
al., 1997) using both MRA speed and phase images, which background regions containing static, signal generating
uses a multi-resolution, model-based approach to extract tissues (brain, CSF and scalp) or signal-absent material
and visualize vascular flow features. (air, cortical bone) in accordance with the PC-MRA image

The method we propose draws on the fact that the flow reconstruction process and physical characteristics of blood
pattern in the vasculature is locally coherent. In other flow. These two models are then combined additively to
words, if blood is flowing in a direction v, neighbouring form a complete distribution of an MRA speed image.
voxels should have a high probability of exhibiting flow in
the same direction v. A local phase coherence (LPC) 2 .1. Construction of speed images
measure can be derived to estimate the degree of coher-
ence amongst neighbouring voxels. In this paper, we 2 .1.1. Definition of MR phase angle and its properties
present a statistical approach, which incorporates the LPC The phase angle of a complex-valued MR signal S is1measure as a priori knowledge in a Markov random field 21defined as f and computed by arg S 5 tan (ImhS j,s d1 1 1(MRF) model to improve the quality of vascular segmenta- RehS j), where RehS j and ImhS j denote real and imagin-1 1 1tion. Related work can be found in the literature of MRF- ary components of the signal respectively, as illustrated in
based segmentation of conventional MR images, rather Fig. 2. It is assumed that the real and imaginary com-
than MRA, including mean field approximation (Kapur et ponents are statistically independent and corrupted by
al., 1998), simulated annealing (SA) and iterated con- 2zero-mean Gaussian noise with equal variance s (Henkel-
ditional modes (ICM) (Held et al., 1997) and hidden man, 1985). The probability density function (PDF) of f1Markov random fields (Zhang et al., 1999). In this paper, is then given by (Lathi, 1983),
we employ ICM to perform a maximum-a-posteriori

2(MAP) estimation purely because of its efficiency. A exps 2 a d
]]]f f 5s dthorough comparison of different maximisation methods f 11 2p

can be found in (Li, 1995). ] ]2 2]Œ3 1 1 pa cos f 2f exp a cos f 2fh s d s s dd1 1 1 1Moreover, in this paper, we derive the background and
]vascular signal statistical models based on knowledge of 3 1 1 erf a cos f 2f , (1)f s s dd g j1 1

the MRA image formation process and physical charac-
] ]Œ Œwhere f [ 2 p, p , a 5 M / 2s, erf x 5 2/ p ?f d s d s dteristics of blood flow, and use them to derive update 1 12 ]x 2we e dw is the error function, f is the mean phase andequations for expectation-maximisation (EM) based pa- 0 1

M is the magnitude of signal S . Note that f 5 0 forrameter estimation. In particular, we show that the pro- 1 1 f1

posed Maxwell–Gaussian finite mixture distribution repre- f [⁄ 2 p, p . The PDFs at different signal-to-noise ratiosf d1

sents the background signal more accurately than a Max- (SNR 5 M /s 5 0, 1, 3 and 6) are plotted in Fig. 3. Note1

well distribution used in prior work (Andersen and Kirsch,
1996). The proposed model shows a better fit to clinical
data and gives fewer false positive voxels (misclassified
vessel voxels) in segmentation.

This paper is organised as follows. In Section 2, we
derive the statistical distributions of background and
vascular signals in MRA speed images. Section 3 presents
an initial EM based segmentation algorithm based on these
models and illustrates the problem of segmentation by
using the MRA speed images alone. We then define a local
phase coherence measure using three orthogonal phase
images and further modify the segmentation algorithm by
incorporating the MRF a priori model based on the LPC
measure. In Section 4, we present in-vitro and in-vivo
experimental segmentation results on an aneurysm phan-
tom and clinical data sets. We conclude with a summary
and a discussion of current and future work in Section 5.
Early versions of this work were presented at the third
conference on Medical Image Computing and Computer- Fig. 2. Difference between phase angles of two signals gives the velocity
Assisted Intervention (Chung and Noble, 2000). induced phase shift Df 5 f 2 f .2 1
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sitely oriented bipolar gradients are used for each velocity
component, while for a four-point reconstruction method
(N 5 4) a single image acquired with a null bipolaracq

gradient (i.e. no velocity sensitivity) is used in combina-
tion with each of three velocity encoded images (Bernstein
et al., 1994). We will refer to this reconstructed image as
the ‘magnitude-weighted speed image’ though convention
is simply to use the term ‘speed image’ (since the phase
shifts are flow sensitized along the three orthogonal
components, x, y and z, the result is directly proportional
to the speed).

2 .2. Statistical analysis of vascular signals

In modelling the intensity characteristics of vessel
voxels, we assume a laminar flow pattern is present. In this
case, for a circular vessel cross-section, the velocity flow is
then parabolic (Caro et al., 1978), as shown in Fig. 4, and
the intensity profile for a vessel is given byFig. 3. Probability density functions (PDF) of a phase angle f for1

different signal-to-noise ratios (SNR). Note that the PDF becomes
2runiformly distributed when the SNR is zero, and tends to a Gaussian

]i(r) 5 C ? 1 2 , (3)S D2distribution when the SNR is sufficiently high. R

where i is the intensity and is a function of r, C is a
constant (incorporating the signal magnitude M), R is thethat the PDFs progress from being uniformly distributed
vessel radius and r is the distance from the vessel centre towhen the SNR is zero, to Gaussian distributed when the
the boundary. The PDF f i for a vessel voxel that hass dvesselSNR is high.
intensity i is directly proportional to the image area,
a x 5 i , in which all the voxels have the same intensity i.s d

2 .1.2. Definition of speed image and its properties f i is calculated as the rate-of-change of area havings dvesselFor each velocity component at a voxel, two complex- intensity greater than or equal to i, i.e.,
valued signals, S and S , are acquired. These signals2 1

experience the same pulse sequence excitation and spatial da x > is dU U]]]f i ~ . (4)s dvesselencoding during imaging but differ by the polarity or di
strength of a bipolar gradient applied along the axis of the
velocity component being measured. A velocity induced
phase shift (phase difference) Df is produced by the
angular difference between the two signal phases (Pelc et
al., 1991), i.e. Df 5 f 2 f 5 arg S 2 arg S , as showns d s d2 1 2 1

in Fig. 2. The resulting net phase Df for a voxel is directly
proportional to the flow rate of material in the voxel in the
specified direction. An MRA speed image is reconstructed
on a voxel-by-voxel basis by taking the modulus of the
three corresponding phase shifts, Df , Df and Df , andx y z]
applying an average magnitude mask M to suppress the
spurious phase shifts in extremely low signal regions (e.g.
background air), i.e.,

]]]]]]] 2 2 2i 5M Df 1 Df 1 Dfx y zœ
]]]]]]]]]] ] ]2 2 2

5 M Df 1 M Df 1 M Df , (2)s d s ds dx y zœ
] Nacqwhere i is the image intensity and M 5 o S /N is then51 n acq

average magnitude of all signals acquired at the same
voxel. The number of acquisitions (N ) at each voxelacq Fig. 4. We assume a vessel model, in which the intensity characteristics
depends on the pattern of bipolar gradients applied: for a of the vessel voxels are assumed to exhibit a laminar flow pattern. The
six-point reconstruction method (N 5 6) a pair of oppo- velocity profile across the circular vessel cross-section is then parabolic.acq



A.C.S. Chung et al. / Medical Image Analysis 6 (2002) 109 –128 113

The area a x > i is given by, using Eq. (3), zero-mean Gaussian distribution. The distribution de-s d
scribed by the modulus of three independent zero-mean

i 22 2 Gaussians with equal variance s (where p denotes the]S Da x > i 5 pr 5 pR 1 2 . (5)s d pC phase value) is a Maxwell distribution. Hence, according to
Therefore, the PDF f i is constant and can be regarded Eq. (2), the PDF of the background signal is given by as dvessel

as a uniform distribution, which can be expressed as Maxwell distribution (Andersen and Kirsch, 1996; Parzen,
1960),f i 5 w f i , (6)s d s dvessel U U

2 22 i 2 iwhere w is a weight (or prior probability) assigned to theU ]]] ]]f (i) 5 exp , (7)] S DM 3 2Œuniform distribution, f i 5 1/I , and I is the maxi-s d 2p s 2sU max max M M
mum intensity in the observed frequency histogram. Al-
though, in practice, the vessel voxel intensities mainly where s 5 s and i > 0. Figs. 5(a) and (b) show aM p

spread over the high intensity region, the number of vessel region-of-interest (ROI) inside an in-vivo magnitude-
voxels is only a small proportion (1–4%) of the frequency weighted speed image and its corresponding histogram,
histogram of the entire PC-MRA image volume. Hence, respectively. A Maxwell distribution was fitted to the

]Œfor the sake of simplicity, we assume that the uniform histogram by using the relationship s 5 I / 2, whereM peak

distribution spreads over the entire intensity range I is the intensity value at which the histogram achievespeak

0 . . . I . its maximum, i.e. df i /di 5 0 at i 5 I . In Fig. 5(b), itf g s dmax M peak

is observed that the Maxwell distribution fits well in the
2 .3. Statistical analysis of background signals low intensity region, but not in the high intensity region

(indicated by an arrow in the figure).
A more involved description is required for signals in The reason for the failure of the Maxwell distribution in

regions of background as a wide range of signal intensity describing the background signal is the deviation of the
]

and phase shift behaviour may be encountered. In par- magnitude-weighted phase values M Df in Eq. (2) from aj

ticular, the magnitude of the MR signal from air, for Gaussian distribution. Neither of the tails of the mag-
example, is negligible while blood and static tissue have nitude-weighted phase image histogram is properly fitted
comparable intensities. The effect of noise on the phase by a Gaussian distribution when the SNR in the image
angles is modulated by the signal magnitude, with the background is relatively low (indicated by the arrows in
consequence that the lower the signal intensity, the more Fig. 6(b)). As plotted in Fig. 3, the low SNR makes the
uniform will be the distribution of phase differences. In distributions of phase angles, f and f , deviate from the1 2]
previous work (Andersen and Kirsch, 1996), M Df in Gaussian distribution, which in turn affects the shape ofj

Eq. (2) (where j 5 x, y or z) was assumed to follow a distribution of Df. Together with the Rician nature of

Fig. 5. (a) Region-of-interest (ROI) inside a speed image and (b) its corresponding histogram (dashed), respectively. In (b), observe that the Maxwell
distribution (solid) fits well in the low intensity region, but not in the high intensity region (indicated by an arrow in (b)).
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]
Fig. 6. (a) Region-of-interest (ROI) inside a phase image M Df and (b) its corresponding histogram (dashed). It is observed that both tails of the phase
image histogram are not perfectly fitted by a Gaussian distribution (solid) (indicated by the arrows in (b)).

noise in the signal magnitude (Andersen and Kirsch, the individual distributions. As mentioned earlier, after the
modulus operation, a Maxwell distribution is formed by1996), it is not surprising that the distribution of their

] the modulus of the three zero-mean Gaussian distributions,product, the magnitude-weighted phase value M Df, is not
whereas the modulus of the residual non-zero meanentirely Gaussian when the SNR is low.
Gaussian distributions (with relatively high SNR53) givesTo reduce the error in fitting the background signal, we
a Gaussian distribution (Chung, 2001; Andersen andintroduce two small, non-zero mean Gaussian residual
Kirsch, 1996; Gudbjartsson and Patz, 1995). Hence, thedistributions to the model of the magnitude-weighted phase
PDF of background signal consists of a linear mixture of avalues. Thus, for each encoding direction, the PDF of

2] Maxwell distribution f i with variance s and a Gaus-s dM Df consists of a zero-mean Gaussian (located at the M M
2sian distribution f i with mean m and variance s , i.e.,s dcentre) and two non-zero mean Gaussian distributions G G G

(located at each side). Fig. 7(a) shows the fitted distribution f i 5 w f i 1 w f i , (8)s d s d s dbackground M M G Gusing one zero-mean Gaussian distribution and two oppo-
site non-zero mean Gaussian distributions. Fig. 7(b) shows where w and w are weights (or prior probabilities)M G

Fig. 7. (a) The fitted distribution (solid) using one zero-mean Gaussian distribution and two opposite non-zero mean Gaussian distributions. (b) It reveals
the individual distributions (solid). Dashed histogram shows the given phase image histogram.
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Fig. 8. Histogram of an MRA speed image (solid). The histogram was subsequently fitted by a Maxwell–Gaussian mixture distribution (dashed). It shows
that the Maxwell–Gaussian mixture model achieves a better fit than the Maxwell model, as shown in Fig. 5(b).

assigned to the Maxwell and Gaussian distributions, re- modified EM algorithm can be used to estimate the
parameters by maximising the log-likelihood of the mix-spectively. As shown in Fig. 8, a Maxwell and Gaussian
ture distribution at each iteration (Bishop, 1995). Asmixture model achieves a better fit to the given histogram
shown in Appendix A, the update equations can beof a PC-MRA speed image, as compared with Fig. 5(b)
derived. These update equations are listed in Table 1.(the fitting procedure used in this case is discussed in

In our implementation, the initial estimates of parame-Section 3).
init initters were found automatically. Let h i , h i and h is d s d s dM G

2 .4. Statistical model for magnitude-weighted speed be the observed, initial Maxwell and initial Gaussian
images histograms, respectively. The initial standard deviation of

]init Œthe Maxwell distribution s is set to I / 2. The initialM peak
With reference to Eqs. (6) and (8), we conclude that the histogram of the Maxwell distribution is then given by

init init ]overall PDF f i of a PC-MRA magnitude-weighted speeds d Œh i 5 Cf ius , where C is set to e p /4 h I Is ds d s d s dM M M peak peak
initimage can be modelled as the summation of a Maxwell- to ensure that h I has the same height as h I , ass d s dM peak peak

Gaussian and uniform finite mixture distribution, namely a
Maxwell–Gaussian-uniform (MGU) model, Table 1

Update equations and posterior probabilities at kth iteration for eachf i 5w f i 1 w f i 1 w f (i) , (9)s d s d s dM M G G U U
#%%%%"!%%%%$ #%"!%$ distribution

Background signal Vascular signal

1where w 1 w 1 w 5 1. k11 kM G U ]Maxwell (M) w 5 o h(i)P (Mui) andM iN
k 2o h(i)P (Mui)ii2 k11 ]]]]s 5 ,s dM k3o h(i)P (Mui)i3 . Segmentation algorithm

k k k kwhere P (Mui) 5 w f (i) /f (i).M M

This section describes the overall segmentation scheme, 1k11 k]Gaussian (G) w 5 o h(i)P (Gui),G iwhich has two stages. First, MRA speed images are N
ko h(i)P (Gui)iik11segmented using the MGU statistical model, (Section 3.1). ]]]]m 5 andG ko h(i)P (Gui)iSecond, the result is then treated as an initial estimate of an

k k11 2o h(i)P (Gui)(i 2 m )i GMRF-based segmentation method (Section 3.2). 2 k11 ]]]]]](s ) 5G ko h(i)P (Gui),i

k k k k3 .1. Segmentation based on speed information where P (Gui) 5 w f (i) /f (i).G G

1k11 k]Uniform (U) w 5 o h(i)P (U ui),3 .1.1. Optimisation of statistical model parameters U iN
In Eq. (9), the mixture model has six parameters: w ,M k k k k k

2 2 where P (U ui) 5 w f (i) /f (i) and f (i) 5 1/I .U U U maxw , w , s , m and s , which need to be estimated. TheG U M G G
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illustrated in Fig. 9(a). Let A be the area of h i covered of the mean and standard derivation of the initial Gaussians dM
init 1by h i , and A be the total area covered by h i . Then distribution . The initial Gaussian distribution histogram iss d s dM total

init init init initw is defined as the ratio A /A . given by h i 5 Cf ium , s , where C is set tos ds dM M total G G G G] init init init initŒLet h i be the residual histogram, which is computed 2ph m s to ensure that h m has the sames d s ds dres res G G G G
initas height as h m (see Fig. 9(b)). Let A be the area ofs dres G G

init inith i covered by h i . Then, w is defined as the ratios d s dres G G
init init init init init inith i 5 abs h i 2 h i u i 2 I , (10)s ds d s d s d A /A . Finally, w 5 1 2 w 2 w if w 1 w ,s dres M peak G total U M G M G

where u i 2 I is a step function that ensures that m iss dpeak G
init initlarger than I . Then, m and s are defined as thepeak G G

1A formal definition of HPD interval can be found in (Box and Tiao,initial mean and standard derivation of the 95% highest
1973). In general, given a probability content (e.g. 95%), the HPDposterior density (HPD) interval of h i . The HPDs dres interval occupies the smallest volume in the parameter space (e.g.

represents most of the mass (95%) of the distribution (Box [0 . . . I ]), which contains most (95%) of the probability. Moreover, themax
and Tiao, 1973) and helps to avoid the influence of the probability density of every point inside the HPD interval is at least as
long (relatively low value) tail of h i on the estimations large as that of any point outside it.s dres

initFig. 9. (a) The observed histogram h(i) (dashed) and the initial histogram of the Maxwell distribution h (i) (solid). (b). The residual histogram h (i)M res
init(dashed) and the initial histogram of the Gaussian distribution h (i) (solid).G
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init init init1. Otherwise, the values of w , w and w are set to also contribute to the poorer fit of the Maxwell model inM G U

the empirical values, which are needed purely for ensuring the clinical data.
the robustness of the method. We have found that the
convergence of the modified EM algorithm is generally 3 .1.2. Determination of magnitude-weighted speed image
reached after 10–20 iterations. threshold for segmentation

An example of the performance of the MGU model Given an estimated mixture model, voxels on an MRA
applied to a clinical MRA speed image is shown in Fig. speed image can be segmented into two classes, v and b
10(a). For comparison, a Maxwell and uniform mixture denote vessel and background, based on the maximum-a-
model has been fitted using the modified EM algorithm in posteriori (MAP) criterion. Assume that the weights (or
Fig. 10(b). The MGU mixture model shows a noticeable prior probabilities) remain constant. Then, using the MAP
improvement over the Maxwell-uniform model in fitting criterion, a voxel is set to class v when the vessel
the background signal. It is worth noting that, in practice, probability w f i is greater than the background prob-s dU U

together with the imperfection of the Maxwell background ability w f i 1 w f i . A threshold can be defined ats d s dM M G G

signal model, ghosting artifacts and partial volume effect the intersection of the background and vessel probability

Fig. 10. (a) Histogram of an MRA speed image (dashed) and the Maxwell–Gaussian-uniform (MGU) mixture model (solid). The threshold t found byMGU

using MGU model tends to be more correct and is usually higher than the threshold t found by using MU model (as compared with (b)). (b) HistogramMU

of an MRA speed image (dashed) and the Maxwell-uniform (MU) mixture model (solid).
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distributions. As indicated by the arrows in Figs. 10(a) and aneurysm. It can be seen that there is (a) a vortex centred
(b), the threshold t found based on the MGU model at the singular point, at which the velocity becomes null,MGU

tends to be more correct and is usually higher than the and (b) a locally linear (coherent) motion around the
threshold t found by using the Maxwell-uniform (MU) neighbourhood of the singular point, which can also beMU

model. As shown in Figs. 11(a) and (b), fewer false regarded as a deformed circular flow. This is consistent
positives (misclassified vessel voxels) are detected if the with the results of clinical flow studies (Gobin et al., 1994;
threshold t is used in the segmentation process (the Low et al., 1993; Strother et al., 1992) and simulations ofMGU

original MRA speed image is shown in Fig. 5(a)). computational fluid dynamics (Foutrakis et al., 1999;
Ortega, 1998; Burleson et al., 1995). The locally linear

3 .1.3. Problem of segmentation based on speed motion exists not only inside the aneurysm, but also in
information alone most of the vasculature having a laminar flow pattern.

Figs. 12(a) and (b) show an MRA speed image and a Let us consider a way to quantify locally linear motion.
binary-segmented image produced using the MGU model Let V5 v , . . . , v be a velocity map, where N is theh j1 N

and the MAP classification method. The aneurysm is total number of voxels. Also let the three orthogonal
indicated by an arrow in the figure. Note that the resulting velocity components of a voxel be assigned as the phase
segmentation is adversely affected by the significant signal shifts along the corresponding scanning direction, i.e. for

x y z x y zloss inside an aneurysm located at the middle. This causes v 5 v , v , v , v 5 Df , v 5 Df and v 5 Df . Wes ds s s s s x s y s z

some of the intensity values to drop gradually to as low as define a phase feature P as the cosine of the angle between
that of background voxels. The same is seen in Figs. 13(a) the velocity v at voxel s and the velocity v of itss t

and (b). We will discuss how to overcome this problem in neighbouring voxel t, where s [ [1 . . . N]. The phase
the next subsection. feature P is given by a dot product of the two normalised

velocities, P v , v 5 v v /(uuv uu ? uuv uu), where P [ 2 1,fs ds t s t s t

3 .2. Integration of phase information into the 1 . To quantify the locally linear motion around voxel s,g
segmentation we measure its LPC by applying an in-plane 333 voxel

mask centred at s to the velocity map. LPC is defined by
In this section, we define a local phase coherence (LPC) considering the locally coherent motion of its 8 neigh-

measure, and propose an automated threshold determi- bouring voxels,
nation method applicable to the thresholding of LPC map.

LPC s 5 P v , v 1 P v , v 1 ? ? ? 1 P v , v , (11)To improve the quality of segmentation, the combination s d s d s d s d1 2 2 3 8 1

of the LPC measure and speed information in the seg-
mentation process is described. where LPC s [ 2 8, 8 and v are numbered as in Fig.s d f g i

15. In other words, LPC is a circular addition of dot
3 .2.1. Definition of local phase coherence products of the 8 adjacent normalised velocity pairs, and

Figs. 14(a) and (b) show the flow pattern in an captures the local flow-based textural information about

Fig. 11. (a) A segmented image using a threshold t found by employing the MGU model. (b) A segmented image using a threshold t found byMGU MU

employing the MU model. These figures show that fewer false positive voxels (misclassified vessel voxels) will be detected if the threshold t is used inMU

the segmentation process (the original MRA speed image is shown in Fig. 5(a)).
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Fig. 12. Patient 1. (a) An MRA speed image and (b) a binary-segmented image produced using the Maxwell–Gaussian-uniform (MGU) model and a MAP
classification method. The aneurysm is indicated by an arrow in the figure. It is noted that the resulting segmentation is adversely affected by the significant
signal loss inside an aneurysm located at the middle. The same happens in Figs. 13(a) and (b).

the coherence of motions within a pre-defined (333) voxel the non-vessel voxels have relatively low and random
mask. Fig. 16 shows an LPC map for the MRA speed valued LPC.
image of Fig. 12(a), in which the image intensity value is
directly proportional to the strength of LPC. Observe that 3 .2.2. Automated threshold determination for the LPC
the voxels inside the aneurysm and vessels exhibit high map
LPC and form a piece-wise homogeneous region, whereas We now present an automatic threshold determination

Fig. 13. Patient 2. (a) An MRA speed image and (b) a binary-segmented image produced using the Maxwell–Gaussian-uniform (MGU) model and a MAP
classification method. The aneurysm is indicated by an arrow in the figure. It is noted that the resulting segmentation is adversely affected by the significant
signal loss inside an aneurysm located at the middle. The same happens in Figs. 12(a) and (b).
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Fig. 16. Local phase coherence map.

described by three classes: background with low LPC,
brain tissue with slightly higher LPC, and vessel with high
LPC, which are shown in Figs. 18 and 19. Background (B)
and brain tissue (T) histograms overlap heavily because of
the non-stationary, but slightly coherent, motion of the
non-vessel brain tissue. By contrast, the vessel (V) histo-
gram is separated clearly from the background (B) histo-
gram. The point of separation—the desired threshold—is
indicated by an arrow in Fig. 19. We model the background
region and non-background regions, including vessel and
brain tissue, with two separate Gaussian distributions. It is
worth noting that theoretical modelling of the LPC histo-
gram is extremely difficult because of the high correlation
between the velocity random variables, and normalisation
and dot product operations of the correlated variables in
Eq. (11). A Gaussian distribution is employed to model the

Fig. 14. The flow patterns in the aneurysms. Each flow vector is non-background regions including both T and V histo-
represented by a cone. The vertex of each cone indicates the flow

grams. This is because the V histogram overlaps heavilydirection. The flow patterns appear to show (a) a vortex centred at the
with the T histogram, and occupies only a small portionsingular point, at which the velocity becomes null, and (b) a locally linear

(coherent) motion around the neighbourhood of the singular point, which (1–4%) of the LPC histogram. Moreover, as will be
can also be regarded as a deformed circular flow.

method for classification of coherent and non-coherent
voxels in an LPC map. A histogram of an LPC map is
plotted in Fig. 17. It shows that the histogram is right
shifted and skewed. In fact, the LPC histogram can be

Fig. 15. The 8 neighbouring velocities of voxel x . Fig. 17. Histogram of the local phase coherence map of Fig. 16.s
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Fig. 20. Histogram of LPC map (dashed) and fitting of the two-Gaussian
Fig. 18. Regions of interest (black and white boxes). B: background; V: model (solid).
vessel and T: brain tissue.

as a coherent voxel. Otherwise, it is labelled as a non-
discussed below, estimation for the B histogram is far

coherent voxel. As shown in Fig. 21, the coherent voxels
more important than that for the T and V histograms.

form a number of vessel ‘clusters’, though there are some
Again, we use the modified EM algorithm (Bishop,

randomly distributed voxels due to random coherent noise,
1995) to fit the LPC histogram by a mixture of the two

small coherent motion of the non-vessel tissue during
Gaussian distributions, as shown in Fig. 20. Note that the

scanning and ghosting artifacts. These ‘outliers’ can be
two estimated Gaussians merge together and form a

ignored if they are far away and disconnected from the
smooth curve because the means of the two Gaussians are

vasculature, and their intensity values in a speed image are
close to each other (in this case, 1.6 for background and

low.
3.7 for non-background) and variances are relatively large
and roughly the same (in this case, 2.9 for background and 3 .2.3. Combining magnitude-weighted speed and LPC
2.2 for non-background). We define the mean and variance

image analysis for segmentation2of the background distribution as m and s , respectively,B B To improve the quality of the speed-based segmentation
and use m 1 as as a background threshold (a 52 or 3B B described in Section 3.1, we extend the segmentation
depending on the actual variation of background LPC

process through the use of information about the flow
values in the MRA data. We set a equal to 3 in this paper),

coherence of flowing blood (LPC measure) in the seg-
which is a variant of the background thresholding approach

mentation process.
(Brummer et al., 1993; Atkins and Mackiewich, 1998). A

Let X 5 x , . . . ,x be the true-segmented image, whereh j1 Nvoxel with LPC above the background threshold is labelled
x [ v, b and N represents the total number of voxels inh js

an image and let I 5 i , . . . , i be the observed MRAh j1 N

speed image, where i [ 0 . . . I . Then, our goal is tof gs max

Fig. 19. Individual histograms of regions of interest in Fig. 18. Arrow
denotes threshold between tissue (dashed) and vessels (solid). Clear
separation is seen between the vessel and background (dotted). Fig. 21. Coherent voxels.
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8maximise the probability of estimating the true-segmented
21binary image given the observed image, i.e. P XuI . By P x 5 Z exp U x and U x 5OE (x ), (14)s d s d h s d j s ds s s c s

c51Bayes’ theorem P XuI ~ P X P IuX , where P IuX repre-s d s d s d s d
sents the likelihood function of the observed image given where Z 5 o exp U x is a normalisation constant.h s d jx [ v,b sh jsthe knowledge of the image formation, and P X representss d These interactions among the voxels are measured by a
the prior probability of the true image. clique energy function E (x ), which encourages LPCc s

It is assumed that the observed intensity i at each voxels homogeneity and discourages the ‘outlier’ voxels far away
S is conditionally independent of the other voxels. The from the vasculature. As such, the clique energy functions
likelihood function is then given by for the vessel and background voxels are defined as

N

b , if x 5 v, and x and x are coherent,v c s cP IuX 5PP i ux , (12)s d s ds s E (x 5 v) 5Hs51 c s 0, otherwise,
0, if x 5 v, and x and x are coherent,c s cwhere, using the parameters estimated by the modified EM E (x 5 b) 5Hc s b , otherwise.algorithm in the previous section, the vessel likelihood b

P i ux 5 v and background likelihood P i ux 5 b at eachs d s ds s s s (15)
voxel are defined as

In practice, we set both b and b equal to 1. As such, thev bw f i 1 w f is d s df gM M s G G s Markov prior probability of vessel P x 5 v is directlys ds]]]]]]f i and , (13)s dU s w 1 ws dM G proportional to the multiplier of the number of adjacent,
and coherent, vessel voxels, whereas the background prior

respectively. As described in Section 3.1, with the prior
probability P x 5 b is directly proportional to the multi-s dsprobability P X assumed constant, each voxel in an MRAs d plier of the number of non-coherent or non-vessel voxels.

speed image is initially classified as one of the states,
Note that in similarity to the standard anisotropic Pottsv, b , by using the MAP method. This is used as a startingh j model, which weights cliques according to their orienta-

point of the Markov random field (MRF) based segmenta-
tions, b and b could be set to different values. Forv btion.
instance setting b to a higher value (e.g. 2 or higher)vThe LPC measure and the current state of each voxel are
would enhance the interactions between the coherent,

treated as a priori knowledge to define the prior prob-
vessel voxels (Ripley, 1991; Li, 1995; Mignotte et al.,

abilities of the vessel and background at each voxel. A
1999).

MRF framework is used because the local relationship
The iterated conditional modes (ICM) (Besag, 1986)

between neighbouring voxels can be enhanced in the
algorithm is employed to maximise the probability of the

segmentation process. Rather than using a global, constant
true-segmented binary image given the observed image,

threshold (as in Section 3.1), the local threshold at each
i.e. P XuI , by changing the tissue type (vessel or back-s dvoxel is made adaptive (Pappas, 1992) and depends on the
ground) at each voxel according to the LPC measure and

LPC measure and current tissue type of the surrounding
current tissue type of neighbouring voxels. The true

voxels. According to the Hammersley–Clifford theorem
segmentation X is initialized using the segmentation results

(Geman and Geman, 1984), the prior probability is given
based on speed information, as shown in Figs. 12(b) and

by a Gibbs function. With the assumptions that the state of
13(b). The ICM algorithm estimates a voxel class by using

each voxel is dependent only on the immediate in-plane 8
the MAP method, x 5 argmax P x ui , at eachs ds x [ v,b s sf gsneighbours, a second-order neighbouring system can be
voxel iteratively according to the Bayes’ theoremdefined with 8 two-site cliques, c 5 1, . . . ,8 , for eachh j
P x ui ~ P x P i ux , where P x and P i ux are defineds d s d s ds d s ds s s s s s s svoxel at the centre of a 333 window, as illustrated in Fig.
in Eqs. (14) and (13), respectively. The iteration process is22. The prior probability P x and the total energys ds repeated until the posterior probability is maximised andfunction U x for voxel s are defined ass ds there is no change in tissue type. Convergence is normally
achieved in around 10 iterations.

4 . Results

In this section, we present a comparison between the
MU model and MGU model in two clinical speed image
data sets. Results are also presented on data of one
aneurysm phantom and two clinical data sets. We show the
improvement of the new approach to segmenting vascula-Fig. 22. The 8 two-site cliques. The centre of the 333 mask is labelled

as x. ture as well as aneurysms.
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4 .1. Comparing the MGU and MU models shows that Maxwell–Gaussian mixture model is better
than the Maxwell model for describing the signal dis-

The purpose of this comparison was to show the tribution in PC-MRA speed images by an average of 13%.
difference between the MU and the proposed MGU models
for describing statistical characteristics of signals in MRA 4 .2. Clinical data sets
speed images. Intracranial scans (PC-MRA) of two pa-
tients were performed using a 1.5 T GE MR scanner at the The new segmentation algorithm was then applied to all
Department of Clinical Neurosciences, King’s College slices in the two clinical data sets. The segmentation
London. The data volume was 2563256328 voxels with results are shown in Figs. 24 and 25. Comparing this with

3a voxel size of 0.830.831 mm . The MU model was the results of Figs. 12(b) and 13(b), it is noted that there is
compared with the MGU model by computing the absolute a substantial improvement in segmentation, especially in
difference error between the observed histogram and the the region of the aneurysm. However, there are some false
estimated histogram for all slices (28 slices) in the two negative voxels near the singular point (near the middle of
scans. Results are plotted in Figs. 23(a) and (b). This the aneurysm). This is because the level of intensity is very

Fig. 23. The MU model (dashed) was compared with the MGU model (solid) by computing the absolute difference error for all slices in the two scans.
This shows that the MGU model is better than the MU model for describing the signal distribution in PC-MRA speed images by an average of 13%.
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4 .3. Aneurysm phantom data set

To validate the new segmentation approach, the ap-
proach was applied to an in-vitro silicon aneurysm model
(middle cerebral artery bifurcation aneurysm: MCA, kindly
provided by the Department of Neuroradiology, University
Hospital of Geneva, Switzerland). The model was scanned
using the PC-MRA protocol on a 1.5 T GE MR scanner as
before. The data volume was 2563256323 voxels with

3voxel dimensions of 0.830.831 mm . To alleviate the
problem of serious motion artifacts induced by the pul-
satile motion of the model, it was firmly mounted inside a
tailor-made, MR compatible Perspex box completely filled
with gelatin. The working fluid was whole blood obtained
from expired stocks of the blood bank of The Royal Free
Hospital, London. The mean flow rate was set to 300
ml /min for this study (McDonald, 1974).

Figs. 26(a) and (d) show the 3-D reconstruction and a
cross-section of the MCA aneurysm respectively, in which
the results of segmentation using speed information aloneFig. 24. Patient 1. The segmentation results obtained by using the new
are shown. For the purpose of visualisation, a smoothmethod based on both speed and phase information. There is a substantial

improvement in segmentation, especially in the region of the aneurysm surface was extracted from the segmented binary images of
(compare Figs. 12(b) and 13(b)). But still, there are some false negative all slices by using the Visualisation Toolkit (VTK) soft-
voxels near the singular point. This is because the level of intensity is

ware package with slight Gaussian smoothing on thevery low, and the flow pattern is seriously corrupted by noise.
surface (standard deviation was set to 1) (Schroeder et al.,
1998). A large improvement in segmentation is visually
apparent using the new segmentation method, whichlow, and the flow pattern is seriously corrupted by noise. A
utilises both speed and phase information, as shown inhigher level of understanding of flow topology is required
Figs. 26(b) and (e). The circle in the middle representsto tackle this problem.
regions near singularity of the velocity field, where the
flow is extremely low and almost zero. This can be a
useful feature to detect because it indicates to the radiolo-
gist the position of stagnant flow inside the aneurysm.
While it will not greatly affect the quality of visualisation
in 3-D because it is lying inside the aneurysmal surface, it
will affect any quantitative measure made on the
aneurysm. Dealing with such haemodynamic features is an
area of ongoing work.

5 . Discussion and conclusion

The purpose of this work was to develop fully automatic
and accurate vascular segmentation and quantitative analy-
sis methods for magnetic resonance angiography (MRA) to
provide patient-specific vascular models that can be used
for diagnosis, as well as endovascular treatment (e.g.
Guglielmi detectable coils (GDC) method) of aneurysms
and other arterial diseases.

We have derived a Maxwell–Gaussian-uniform mixture
(MGU) model of the background and vascular signal

Fig. 25. Patient 2. The segmentation results obtained by using the new characteristics of images generated by the phase-difference
method based on both speed and phase information. There is a substantial post-processing algorithm as used in PC-MRA. It has been
improvement in segmentation, especially in the region of the aneurysm

shown that the MGU model (a) fits better than a Maxwell-(compare Figs. 12(b) and 13(b)). But still, there are some false negative
uniform (MU) distribution for modelling a PC-MRAvoxels near the singular point. This is because the level of intensity is

very low, and the flow pattern is seriously corrupted by noise. image, and (b) gives fewer false positive voxels (mis-
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Fig. 26. (a) 3-D reconstruction of the model using speed information alone. (b) 3-D reconstruction of the model using both speed and phase information.
(c) Original speed image. (d) Segmented image using speed information alone. (e) Segmented image using both speed and phase information.

classified vessel voxels) in segmentation. Using this mix- of comparatively large competing distributions. The use of
ture model and a local phase coherence (LPC) measure of the LPC measure as a priori knowledge improves the
the velocity field, we have then presented a new statistical quality of segmentation based on a global threshold of the
approach for aggregating speed and phase information speed images by adaptively adjusting the local threshold
available in PC-MRA data, and demonstrated that inclu- for the extraction of voxels from within the bulk of the
sion of phase information as a priori knowledge in the background distribution. In this sense, the uniform dis-
MRF model can improve the quality of segmentation, tribution acts as a conservative bound on the performance
especially in the region within an aneurysm. of the segmentation in intensity regions below the speed

In developing the mixture model, we have paid par- image threshold. Since the freedom afforded by the
ticular attention to the behaviour of the background regions uniform distribution is less than that we would expect from
whilst maintaining a relatively simple model of the vascu- a full partial volume model, we can anticipate our seg-
lar signals. In practice, the fraction of the image volume mentation is not optimal, but errs on the side of mini-
attributable to fully resolved vessels (i.e. having diameters mising false positives. Nonetheless, the true positive rate is
.voxel dimensions) is around 1–4%. These voxels form improved over global threshold-based segmentation alone.
the majority of the extended high intensity tail in the In the segmentations performed, it can be observed that
frequency histogram of the magnitude-weighted speed ghosts in the image have sometimes been false positively
images. Given the limited spatial resolution of PC-MRA, a identified as part of the vascular region (e.g. a vertical band
larger number of voxels will contain both static tissue and in the phantom images). The acquisition of MR images is
vessel. A comprehensive model of the distribution of these prone to formation of duplicates of time varying structures
voxel values, which incorporates partial volume effects, (pulsatile vessels) displaced from the true structure in the
may be possible. However, they will still constitute a small phase encoding direction(s). The intensity and phase of
distribution heavily overlapping with that of the much these ghosts results from coherent superposition of specific
larger background population. The uniform distribution harmonics of the spatially encoded data due to modulation
therefore provides a simple estimate of the distribution of of the intensity and phase of the acquired Fourier data. In
fully resolved vessel signals based predominately on the our results such ghosting was particularly apparent in the
high speed region whilst avoiding some of the errors phantom data. Variability in the human heart rate and the
associated with fitting a small distribution in the presence damped pulsatility of the in-vivo intracranial circulation
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may account for this finding. The phase and intensity of where the Maxwell distribution f i is defined in Eq. (7),s dM

the ghosts reflects that of their generating vessel and leaves the Gaussian distribution f i is defined ass dG

the segmentation algorithm open to false positive identifi-
22 i 2 m1 s dcations of the ghosts. Measures to reduce ghosting by G

]]] ]]]]f i 5 exp , (A.1)s d ] S DG 2Œaltering the k-space sampling order (McGowan and Wood, 2ps 2sG G
1996) or by auto-focus methods (McGee et al., 2001) have

and the uniform distribution is defined as f i 5 1/I ,s dU maxbeen demonstrated but were not applied to the data herein.
where I is the maximum intensity in the observedmaxExtension of the technique to three dimensions is
frequency histogram of intensities. Given a mixture modelstraightforward. A possible advantage of doing so is the
of a Maxwell, Gaussian and uniform distributions, thereidentification of vessels traversing in the through-plane

2 2are six parameters: w , w , w , s , m and s , whichM G U M G Gdirection where the additional information from adjacent
need to be estimated.slices may be incorporated in the LPC measure and the

The modified EM algorithm is an iterative procedureMarkov random field framework. Moreover, in related
that can be used to estimate the parameters, whichfurther work, we have investigated the effects of including
maximise the log-likelihood of the mixture distribution atmore in-plane vector pairs in the 2-D LPC measure and the
each iteration (Bishop, 1995).possibility of extending the LPC measure to a higher

ImaxLet the log-likelihood function be L 5 o h i log f i ,s d s di50dimension. The results are published in (Chung, 2001).
where h i is the observed frequency histogram and f i iss d s dThe new segmentation method is being used as a
the mixture PDF in Eq. (9). The change in log-likelihoodvascular segmentation and reconstruction tool in a neuro-
function is given byinterventions planning project, which helps the neuro-

Iradiologist (a) to find the neck plane orientation of the max k11f is dk11 kaneurysms and (b) to simulate and select the optimal X-ray ]]L 2 L 5Oh i log , (A.2)s d S Dkf is di50projections before the GDC treatments (Wilson et al.,
1999). In that application, accurate segmentation and where index k represents the kth iteration step. We aim to

k11 kreconstruction of an aneurysm, as well as its surrounding maximise the change of log-likelihood L 2 L until the
vessels is very important to the success rate and procedural change is sufficiently small. Suppose that, given an
safety of the treatments. Future work will include detection intensity i, the posterior probabilities of the Maxwell,
of the flow singular point, which may indicate the presence Gaussian and uniform distributions are P Mui , P Gui ands d s d
of an aneurysm, perhaps by using knowledge of flow P U ui , respectively. Then P Mui 5 w f i /f i . The sames d s d s d s dM Mtopology (Helman and Hesselink, 1991) and more detailed applies to P Gui and P U ui . Also P Mui 1 P Gui 1s d s d s d s d
studies of the application of the methodology to a large P U ui 5 1. Eq. (A.2) can be rewritten ass d
number of aneurysms.

I k11 k11max w f is dM Mk11 k k ]]]]L 2 L 5Oh i log P Muis d s dS k kf i P Muis d s di50A cknowledgements
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k kwhere l 1 l 1 l 5 1. Let l 5 P Mui , l 5 P Guis d s d1 2 3 1 2
kand l 5 P U ui . Then from Eq. (A.3), we haves d3

A ppendix A
I k11 k11max w f is dM Mk11 k k ]]]]L 2 L >Oh i P Mui logs d s dS k kThis appendix shows how the parameters of the Max- f i P Muis d s di50

well–Gaussian-uniform (MGU) model can be estimated. k11 k11w f is dG GkRecall from Eq. (9) that, the overall probability density ]]]]1 P Gui logs d k kf i P Guis d s dfunction f i of an MRA speed image is given by,s d
k11 k11w f is df i 5w f i 1 w f i 1 w f (i) , (9) U Us d s d s d kM M G G U U ]]]]1 P U ui log . (A.5)s d#%%%%"!%%%%$ #%"!%$ Dk kf i P U uis d s dBackground Signal Vascular Signal
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2Therefore, maximising the right-hand-size of the inequality Setting the derivatives of Q with respect to m and s toG G G

in Eq. (A.5) is equivalent to ensuring the maximal lower zero gives
bound to the change in log-likelihood is achieved until the Imax

k k11log-likelihood converges to a stationary point (Bishop, Oh i P Gui i 2 m 5 0 (A.13)s ds d s d G
1995). i50

k11 k11 k11Maximisation with respect to w , w and w : theM G U and
right-hand-size of Eq. (A.5) can be rearranged to isolate

Ik11 k11 k11 maxthe terms related to w , w and w . LetM G U k k11 2 2 k11Oh i P Gui i 2 m 2 s 5 0. (A.14)fs d s d gs d s d G G
I i50max

k k11 k k11Q 5Oh i P Mui log w 1 P Gui log wss d s d s dw M G Therefore, we obtain
i50

k k11 k1 P U ui log w . (A.6)ds d O h i P Gui is d s dU ik11 ]]]]m 5G kO h i P Guis d s diThen we need to maximise Q under that constraintw
k11 k11 k11w 1 w 1 w 5 1, i.e. maximise Q 1 l 1 2sM G U w and
k11 k11 k11w 2 w 2 w , where l is the Lagrange multiplier.dM G U

k k11 2k11 k11 O h i P Gui i 2 ms ds d s dSetting the derivatives with respect to w , w and i G2 k11M G ]]]]]]]k11 s 5 .s dG kw to zero givesU O h i P Guis d s di

I Imax max

k11 k k11 k R eferenceslw 5Oh i P Mui , lw 5Oh i P Guis d s d s d s dM G
i50 i50
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k11 k
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