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Abstract. In this paper, we present a novel approach to matching cere-
bral vascular trees obtained from 3D-RA data-sets based on minimiza-
tion of tree edit distance. Our approach is fully automatic which requires
zero human intervention. Tree edit distance is a term used in the field of
theoretical computer science to describe the similarity between two la-
beled trees. In our approach, we abstract the geometry and morphology
of vessel branches into the labels of tree nodes and then use combinato-
rial optimization strategies to compute the approximated edit distance
between the trees. Once the optimal tree edit distance is computed, the
spatial correspondences between the vessels can be established. By vi-
sual inspection to the experimental results, we find that our approach is
accurate.

1 Introduction

1.1 Why 3D-RA data-sets are used?

Three-Dimensional Rotational Angiography (3D-RA) images are playing an in-
creasingly important role in the study of intracranial vasculatures. Due to its
relatively higher voxel resolution and contrasting property than other image
modalities, a more accurate surface can be segmented out for further geometric
and morphological studies.

1.2 Clinical Motivations

Properties of intracranial aneurysms are under active research in the medical
field. Beck et al. [1] and Weir et al. [2] studied the relations between the probabil-
ities of rupture and the size and site of aneurysms. In specifying the locations of
aneurysms, they simply used the names of the arteries where the aneurysms were
located. We believe that a more accurate and specific coordinates for specifying
the locations of aneurysms is needed. In specifying the structure of aneurysms,
they usually used the diameters of the aneurysms. However, information about
the size and orientation of the vessels where the aneurysms were located was not



considered. We believe that an accurate matching between normal vessel and
problematic vessels can help locate and quantify the position of defection and
help give more information to assess the chance of aneurysm rupture.

1.3 Previous Work

The goal of vascular matching is to find spatial correspondences between two
sets of vessels. If they are acquired from the same patient, the problem can be
solved easily by using rigid registration. We are therefore focusing on vascular
mapping across different patients. This problem is ill-posed since the underlying
transformation is unknown and the vascular structures can vary significantly
across patients. Up to now, there is no standardized procedure for quantifying
the goodness or error of a matching. There is not much research on vascular
mapping in the literature. We present some previous work below.

Antiga & Steinman [3] suggested a methodology for mapping bifurcating ves-
sels. Vessel junction was decomposed into a geometric reference system. However,
the emphasis is on the bifurcating junction, but not on the whole vascular tree.
Cool et al. [4] presented a tissue-based registration approach to forming vascular
density atlas. However, the registration was based on brain tissues but not the
real geometry of the vessels. It only maps the position of the vessels with respect
to the embedded brain tissue. The geometry and morphology of the vessels, such
as radius and orientation information, were not used in the registration process.
Chillet et al. [5] suggested a method to form a vascular atlas using vessel-to-image
affine registration. However, the affine registration used may not be sufficient to
represent the underlying deformation to match the vessels, especially for those
which are highly curved and rolled. Jomier & Aylward [6] presented a model-
to-image registration approach to mapping vessels. In their work, a global rigid
transformation was performed first followed by local and piece-wise deformation
of branches via propagation. However, if the structural difference between the
vessels is significant, this method will not work since a mismatch of branch points
will propagate to the children branches.

Therefore, a global matching method which makes use of the geometry and
morphology of the vessels is desirable.

1.4 Outline

In our method, we abstract the geometry and morphology of vessel branches
into the labels of tree nodes. By doing so, we are able to use a tree edit distance
approach to find the best matching in a global perspective but without ignoring
the geometric and morphological properties of each branch. We will then use
combinatorial optimization strategies to compute the approximated edit distance
between the trees. Once the optimal tree edit distance is computed, the spatial
correspondences between the vessels can be found. Detailed procedures will be
explained in Section 2. In Section 3, experimental results will be shown and
explained. Finally, in Section 4, a conclusion will be made and possible future
work will be suggested.



2 Methodology

2.1 Centreline Extraction

The first step is to obtain the centreline from a pre-segmented 3D-RA data-
set. Since we are interested in a tree representation of centreline. We use a
Voronoi diagram-based approach. The Voronoi diagram of the surface points on
the segmented vessel is computed. It is a graph G = (V,E, W ), where each node
v ∈ V is representing a point in R3, each edge e ∈ E is representing a line
segment in R3. W : E → R is a weight assignment function to each edge. Once
W is defined, we can find the weighted shortest path tree G′ = (V, E′) of G where
E′ ⊂ E. We set W (e) to be the reciprocal of the average Euclidean distance from
the edge e to the segmented surface. It is not difficult to observe that by using
this weight assignment function, for every pair of nodes v1, v2 ∈ V , the unique
simple path between v1 and v2 defined in G′ is one of the many paths between
v1 and v2 defined in G; and this simple path tends to keep the distance from the
segmented surface as large as possible throughout it. The next step is to detect
endpoints of the vessel. This can be done automatically as the major vessels
are usually intersecting with the bounding box of the 3D-RA data-set, since
3D-RA considers only the region of interest in the brain. Once the endpoints
are detected, the centreline is just the union of all paths from the endpoints
to the root in the shortest path tree G′. Note that the root is just an endpoint
where the internal carotid artery intersects with the bounding box of the 3D-RA
data-set, which can also be detected easily, because of its large cross-sectional
radius. Besides the centreline itself, the cross-sectional radius information of each
centreline point, which can be obtained from the Voronoi diagram, is also stored.

2.2 Branch Representation, Similarity and Importance Measure

A branch in a vascular tree is a vessel whose both ends are either a vessel
junction or an endpoint on the bounding box of the 3D-RA data-set, with no
other junctions in between. The whole vascular tree can be represented by a
union of all branches, which intersect at junctions. Since we will abstract the
geometry of branches into nodes in a theoretical tree, before outlining the tree
edit distance algorithm, we first present the similarity function between two
different branches and the importance function of a branch, which are equivalent
to node relabeling cost and node removal cost respectively in the theoretical tree.

A branch b can be represented by two parametric functions in range [0,1],
xb(s) and rb(s). xb(s) is a vector function which represents the normalized arc
length parameterized centreline curve of b, with xb(0) and xb(1) representing the
end closer to the root and the end further away from the root respectively. rb(s)
is a scalar function which represents the radius of b along the centreline curve
xb(s), with the same parameterizations, i.e., rb(t) is the radius associated with
the centreline point xb(t), where t ∈ [0, 1].

The similarity function (matching cost) S(b1, b2) of two branches b1 and b2

with length l1 and l2 respectively is defined as,

S(b1, b2) = αS1(b1, b2) + βS2(b1, b2) + γS3(b1, b2) (1)



where
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is the cost of matching the orientations of the two branches b1 and b2, weighted
by their average radius; and,

S3(b1, b2) = |l1 − l2| (4)

is the cost of matching the lengths of the two branches.
α, β and γ are weighting parameters and we set α = β = γ = 1 in our

experiment. Note that S(b1, b2) is zero if and only if the two branches b1 and b1

are identical, otherwise S(b1, b2) > 0.
The importance function (removal cost) D(b) of a branch b with length l is

defined as,

D(b) = l

∫ 1

0

rb ds (5)

which can be viewed as the surface area of the branch.

2.3 Tree Edit Distance

With the definition of matching cost and removal cost of branches in the previous
sub-section, now we can abstract the geometry of the branches into nodes in a
theoretical tree, and two nodes are connected together if and only if the two
branches they represent form a junction. Therefore the theoretical tree formed
can be viewed as a dual graph of the geometric tree of the centreline. For an
example, please see Fig. 1. Note that since it is difficult to assign an order to
the children of a node in a 3D tree, the theoretical tree is unordered, i.e, the
order of the children for any node is not important, but only the parent-child
relationship. Once we have it, everything about tree edit distance is manipulated
on the theoretical tree. The returned result will be the set of nodes to be removed
and the correspondences between the unremoved nodes of the two theoretical
trees, which are respectively equivalent to the set of branches to be removed in
order to yield the best matching and the correspondences between the unremoved
branches in the two vascular structures.

We will apply the algorithm in [7] to perform unordered tree matching. Let
T1 and T2 be two trees with sets of nodes N1 and N2 respectively. The paper
suggested a concept called marking. A marking K = (S1, S2) is two sets of nodes
S1 ∈ N1 and S2 ∈ N2 to be removed from T1 and T2 respectively. Removing a
node n means setting the parent of all the children of n to be the parent of n and
then ignoring n. Note that for a geometric vascular tree, removing a branch may



Fig. 1. The top row shows three geometric trees with the branches labeled and the
bottom row shows the corresponding theoretical trees with the nodes labeled. The left
column shows the trees before removing F , the middle column shows the trees after
removing F but before joining E and G, the right column shows the trees after joining
E and G.

cause two existing unremoved branches join together to form a longer branch;
in the theoretical tree context, this is handled by joining the node which has
only one child into its parent. For a visual example, please see Fig. 1. A marking
K = (S1, S2) is legal if and only if the resultant trees after the removal of S1

and S2, denoted by K(T1) and K(T2) respectively, are isomorphic, i.e., there
exists a one-to-one correspondence of all nodes between K(T1) and K(T2) such
that parent-child relationship is preserved in the mapping. Note that since we
are considering unordered trees, the number of such isomorphic mappings can
be more than one in a marking. The removal cost of a marking K = (S1, S2),
D(K), is defined as,

D(K) =
∑

s∈S1

D(s) +
∑

s∈S2

D(s) (6)

which is the total removal costs for all removed nodes. The matching cost of a
marking K, S(K), is defined as,

S(K) = min
im∈IM

∑

(n1,n2)∈im

S(n1, n2) (7)

where IM is the set of all isomorphic mappings for K(T1) and K(T2), (n1, n2)
is a corresponding pair of nodes in the isomorphic mapping im, and S(n1, n2)
is the matching cost between the nodes n1 and n2. Also, S(K) is ∞ if K is
not a legal marking. So S(K) is the total matching cost of all corresponding
pairs in the best isomorphic mapping between K(T1) and K(T2). To find S(K),
we use the bottom-up matching algorithm suggested in [7], which uses bipartite



Fig. 2. (Color image) The two figures are two synthetic simple structures to be
matched. The branches in black color are those to be removed in order to obtain
the best matching. Two branches of same color across the figures are matched branch
pairs.

matchings to find the best mapping between the children sets of the two nodes.
Finally, the total tree edit distance between two trees T1 and T2, Dist(T1, T2) is
then defined as,

Dist(T1, T2) = min
K∈2N1×2N2

[D(K) + S(K)] (8)

which is the minimum of the sum of the delete cost and matching cost over all
possible markings. Note that 2N1 × 2N2 in the equation is the cartesian product
of the two power sets, which is the set of all possible markings. Since it is
exponential to the total number of nodes in the two trees, it is computationally
infeasible to find the exact tree edit distance which requires an exhaustive search
of all possible markings. Instead, we use an iterative improvement approach
suggested in [7], which randomly adds or removes a node from either or both
trees to find an approximated solution by a downhill optimization. Since this
approach is stochastic and easily gets trapped in local minima, it is executed
several times and the best solution is taken.

3 Experimental Results

We first apply our method on a pair of simple synthetic tubular structures. Since
the structures just consist of a few branches, we use the exhaustive search method
to enumerate through all possible markings. Fig. 2 shows the two structures and
the matching result. The branches in black color are those to be removed in order
to obtain the best matching. Branches of same color across the two structures
are matched branch pairs. It shows that the matching result agrees with the
intuitive mapping from visual inspection.

Then we apply our method to two sets of real 3D-RA data from two different
patients. There are more than 30 total branches in the data-sets, making ex-



Fig. 3. (Color image) The left and right columns respectively show the vascular data of
two different patients. The top and middle rows are two different views of the segmented
surfaces superimposed with the centerlines. The bottom row shows the matching result
of our method. The branches in black color are those to be removed in order to obtain
the best matching. Two branches of same color across the figures are matched branch
pairs (Some colors are used twice in the same figure).



haustive search impossible. So we execute the stochastic iterative improvement
method several times and take the best result. Fig. 3 shows the data and the
result. We can see that the major branches are matched correctly. For other
branches, the matching is consistent with their relative positions, although we
do not apply any positional mismatch penalty in our cost function. Therefore
by visual inspection, our method is accurate. This is our current research work
to further test our method on a larger set of 3D-RA data.

4 Conclusion

We have presented a novel method for matching vascular trees. Our method is
based on the concepts of theoretical tree edit distance. The geometry and mor-
phology of the vascular branches are abstracted into the nodes of the theoretical
trees. The branches similarity and importance measures are incorporated into
the nodes relabeling and removal costs of the theoretical trees. These make our
method able to perform the matching in a global perspective but still able to
consider the geometry of every branches. Experimental results show that our
method can work on both synthetic data and two sets of segmented 3D-RA
vessels from different patients. In the future, we will use different optimization
strategies to improve the suboptimal solution and perform experiments on more
real data-sets.
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