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Abstract. This paper presents a statistical approach to aggregating speed and
phase (directional) information for vascular segmentation in phase contrast
magnetic resonance angiograms (PC-MRA), and proposes a Maxwell-Gaussian
finite mixture distribution to model the background noise distribution. In this
paper, we extend our previous work [6] to the segmentation of phase-difference
PC-MRA speed images. We demonstrate that, rather than relying on speed
information alone, as done by others [12,14,15], including phase information as a
priori knowledge in a Markov random field (MRF) model can improve the quality
of segmentation, especially the region within an aneurysm where there is a
heterogeneous intensity pattern and significant vascular signal loss. Mixture
model parameters are estimated by the Expectation-Maximization (EM) algorithm
[3]. In addition, it is shown that a Maxwell-Gaussian finite mixture distribution
models the background noise more accurately than a Maxwell distribution and
exhibits a better fit to clinical data.
Keywords: Medical image processing, Statistical segmentation and Medical
information fusion.

1. Introduction
Medical diagnosis of vascular diseases is commonly performed on the basis of MRA
speed images, which assign high intensity to the moving blood and CSF. The higher
the velocity, the higher the image intensity level assigned to it. While most of the
arterial anatomy can be shown clearly in the speed images, objects such as intracranial
aneurysms containing low and complex flow [17] are poorly represented in the
images. The presence of an aneurysm causes significant vascular signal loss in the
MRA speed image with some intensity levels approximately equal to those of
background tissue, thereby, producing a heterogeneous intensity pattern within the
aneurysm. This is problematic in vascular segmentation.

Phase contrast magnetic resonance angiography (PC-MRA) gives not only
speed information, but also encodes directional information, which is represented by
three separate phase images. Each phase image represents a directional component of
the flow. Typical methods for segmentation of MRA images include geodesic active
contours implemented using level set methods [14], multiscale-based tubular structure
detection [12] and topologically adaptable surfaces [15]. Rather than using just speed
information, the directional flow pattern may give additional clues for segmentation.
To the best of our knowledge, there is only one related work [19] using both speed
and phase images, which uses a multi-resolution, model-based approach to extracting
and visualizing vascular flow features.

The method we propose here draws on the fact that the flow pattern in the
vasculature is locally coherent. In other words, if blood is flowing in a direction v,
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neighbouring voxels should have a high probability of exhibiting flow in the same
direction v. Local phase coherence measures can be derived to estimate the degree of
coherence amongst neighbouring voxels. In this paper, we present a statistical
approach, which incorporates the local phase coherence as a priori knowledge in a
Markov random field (MRF) model to improve the quality of vascular segmentation.
Related works can be found in the literature of MRF-based segmentation of
conventional MR images, rather than MRA, including mean field approximation [11],
ICM [9] and MRF-EM [20].

Moreover, in this paper, we derive the background noise statistical model
based on knowledge of the image formation process and use it to derive update
equations for Expectation-Maximization (EM) based parameter estimation. In
addition, it is shown that the proposed Maxwell-Gaussian finite mixture distribution
noise model represents the noise more accurately than a Maxwell distribution used in
prior work [1] and shows a better fit to clinical data. It should be noted that a Maxwell
distribution describes the probability distribution of the modulus of three Gaussians
with zero-mean and equal variance, and the widely known Rayleigh distribution
describes the probability distribution of the modulus of two Gaussians with zero-mean
and equal variance.

2. Statistical Analysis of Noise and Vascular Signals
The phase angle of a complex-valued MR signal 1S  is defined as 1φ  and computed by
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1 SReSImtanSarg −= , where { }1SRe and { }1SIm  denote real and imaginary
components of the signal respectively, as shown in Figure 1. It is assumed that both
real and imaginary components are statistically independent between the two
quadrature channels and corrupted by zero-mean Gaussian noise with equal variance
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The PDFs at different Signal-to-Noise ratios ( 6 and 3 1, 0,ASNR =σ= ) are plotted in
Figure 2. It is noted that the PDF becomes uniformly distributed when the SNR is
extremely low, and tends to a Gaussian distribution when the SNR is sufficiently
high. To study the goodness-of-fit of a Gaussian approximation at various levels, the
PDF was fitted by a Gaussian distribution, where mean and variance were estimated
by ( )∑ φφ=µ 11f  and ( ) ( )1

2
1

2 f φµ−φ=σ ∑  respectively. The absolute difference errors
between the PDF and the fitted Gaussian distribution are plotted in Figure 3 at various
SNR levels. It is observed that when the SNR is larger than 3, a Gaussian gives a
fairly good approximation with absolute difference error less than 8% of the PDF. In
this paper, we assume that the SNR is larger than or equal to 3 and the PDF is
approximated by a Gaussian. In our experience, this assumption is valid in clinical
practice. For a SNR less than 3, a Gaussian approximation is not sufficient, and
special attention must be paid to deal with the long and uniform tails at both sides of
the PDF, which forms part of our current work [18].
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For each velocity component, a phase shift φ∆  is produced by the angular
difference of the two signal phases [16], i.e. ( ) ( )1212 SargSarg −=φ−φ=φ∆ , as shown
in Figure 1. The two complex-valued signals, 2S and 1S , are acquired along a specific
scanning direction by applying two opposite bipolar gradients. The resulting net phase
shift φ∆  is directly proportional to the flow rate at this voxels.

As mentioned earlier, the PDFs of 1φ  and 2φ  are assumed Gaussian. Since
the difference between two Gaussians is also a Gaussian, the PDF of φ∆ , φ∆f ,

follows a zero-mean Gaussian distribution with variance 22σ . Figure 4 and Figure 5
show respectively a computer simulated phase image with low SNR and its histogram
fitted by a Gaussian distribution.

A MRA speed image is reconstructed on a voxel-by-voxel basis by taking
the modulus of the three corresponding phase shift values, xφ∆ , yφ∆ and zφ∆ , i.e.

2
z

2
y

2
xi φ∆+φ∆+φ∆∝ , where i  is the image intensity. Since the phase shifts are flow

sensitized along the three directional components, x , y  and z , and directly
proportional to the flow rate, the reconstructed image is called speed image. The
distribution described by the modulus of three independent zero-mean Gaussians is a
Maxwell distribution [1]. Hence, for the background noise, the noise PDF is given by
a Maxwell distribution ( ) ( )2

M
23

M
2

M 2iexp2i2)i(f σ−⋅πσ⋅= , where σ=σ 2M  and
0i ≥ . Figure 7 and Figure 8 show respectively a computer simulated speed image

with low SNR and its histogram fitted by a Maxwell distribution using the
relationship 2IpeakM =σ , where peakI  is the intensity value at which the histogram
achieves its maximum, i.e. ( ) 0diidfM =  at peakIi = . It is observed that the Maxwell
distribution fits well in the low intensity region, but not in the intensity region
indicated by the arrow in Figure 8. The reason is that both tails of the histogram are
not perfectly fitted by a Gaussian distribution (indicated by the arrows in Figure 5).
The absolute difference between them is shown in Figure 6 (with a smaller scale on
the vertical axis than Figure 5), and reveals one positive residual distribution located
at each side. We assume that these residual distributions are non-zero mean Gaussian.
Therefore, for each encoding direction, the PDF φ∆f  consists of a zero-mean
Gaussian (located at the centre) and two non-zero mean Gaussian distributions
(located at each side). After the modulus operation, as mentioned earlier, a Maxwell
distribution is formed by the modulus of the three zero-mean Gaussian distributions,
whereas, the modulus of the residual non-zero mean Gaussian distributions gives a
Gaussian distribution [1]. Hence, the noise PDF consists of a linear mixture of a
Maxwell and a Gaussian distribution with mean Gµ  and variance 2

Gσ .
As shown in Figure 9, using the EM algorithm [3], a Maxwell and Gaussian

mixture noise model achieves a better fit to the given histogram of a PC-MRA speed
image with low SNR. To model the vascular signal with high SNR, we apply the
results of our previous work [6] and assume that the signal is uniformly distributed.
Thus, we conclude that the overall PDF )i(f  of a speed image can be modelled as a
Maxwell-Gaussian and uniform finite mixture distribution, which is given by
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GGMM )i(fw)i(fw)i(fw)i(f ++= , where Mw , Gw  and Uw  are weights (or

prior probabilities) assigned to the Maxwell, Gaussian and uniform distributions
respectively and 1www UGM =++ .

Figure 1: Signal phase
shift φ∆ .

Figure 2: PDFs of 1φ . Figure 3: Absolute difference
errors at different SNR levels.

Figure 4: Phase image φ∆
(SNR=3).

Figure 5: Histogram (Solid) and
Gaussian model (Dotted).

Figure 6: Difference between
histogram and Gaussian model.

Figure 7: Speed image
 (SNR=3).

Figure 8: Histogram and Maxwell
noise model.

Figure 9: Histogram and
Maxwell-Gaussian noise model

3. Segmentation Algorithm
The proposed mixture model has six parameters: Mw , Gw , Uw , 2

Mσ , Gµ  and 2
Gσ ,

which need to be estimated. The modified EM algorithm can be used to estimate the
parameters by maximizing the log-likelihood of the mixture distribution in each
iteration [3]. Let N be the total number of voxels and )i(h  be the observed histogram
distribution. The update equations can be derived and are listed in Table 1.

In our implementation, the initial estimates were found empirically, and
convergence was generally reached after about 5 iterations. A typical result is shown
in Figure 21. For comparison, a Maxwell and uniform mixture model has been fitted
using the EM algorithm [3] in Figure 20, which reveals that the Maxwell model
provides a poorer fit than the Maxwell-Gaussian mixture model for background noise.
It is also worth noting that, together with the imperfection of the Maxwell noise
model, ghosting artifacts and partial volume effect also contribute to the poorer fit of
the Maxwell noise model in the clinical data.
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Table 1: Update equations and posterior probabilities at kth iteration for each distribution.

3.1. Segmentation Based on Speed Information
Given an estimated mixture model, a PC-MRA speed image can be segmented
statistically on the basis of the MAP (Maximum-A-Posteriori) criterion. Using MAP,
assuming the weights (or prior probabilities) remain constant, a voxel { }b v,xs ∈ ,
where v and b denote vessel and background respectively, is classified as a vessel
voxel when the vessel probability )i(fw UU  is greater than the background noise
probability )i(fw)i(fw GGMM + . Therefore, a threshold can be found by seeking the
intersection of the background and vessel probability distributions. As indicated by
the arrows in Figure 20 and Figure 21, the threshold found by using Maxwell-
Gaussian noise model tends to more correct and is usually higher than that found by
using Maxwell noise model. Figure 22 and Figure 23 show a speed image (data
provided by the Department of Clinical Neurosciences, King�s College London) and a
binary-segmented image produced using Maxwell-Gaussian noise model and MAP
classification method. The aneurysm is indicated by an arrow in the figure. It is noted
that the resulting segmentation is adversely affected by the significant signal loss
inside an aneurysm located at the middle. The same happens in Figure 25 and Figure
26. We will discuss how to overcome this problem in the next subsection.

3.2. Integration of Speed and Phase Information
Note that the flow pattern in the aneurysm appears to show (a) a vortex centred at the
singular point, at which the velocity becomes null, and (b) a locally linear (coherent)
motion around the neighbourhood of the singular point, which can also be regarded as
a deformed circular flow. This is consistent with the results of clinical flow studies [8]
and simulations of computational fluid dynamics [5]. The local linear motion exists
not only inside the aneurysm, but also in most of the vasculature having laminar flow
pattern. We now present a method for the quantification of these local linear motions.

Let { }N1 v,,vV …=  be a velocity map, where N  is the total number of
voxels and the three orthogonal velocity components of a voxel sx  are assigned as the

phase shifts in the corresponding phase image, i.e. for ( )z
s

y
s

x
ss v,v,vv = , x

x
sv φ∆= ,
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y
y
sv φ∆=  and z

z
sv φ∆= . We define a phase feature P as the cosine of the angle

between two velocities, sv  and tv , of the neighbouring voxels, sx  and tx , where
[ ]N,,1t,s …∈ . The phase feature P is given by a dot product of the two normalized

velocities, ( ) tststs v vvvv,vP ⋅= , where [ ]1 ,1P −∈ . To quantify the local linear
motion around a voxels sx , we measure its local phase coherence (LPC) by applying
a 3 x 3 voxel mask to the velocity map V at the voxel within slice. LPC is evaluated
by considering the locally coherent motion of its 8 neighbouring voxels, which are
numbered in Figure 10, and is defined as a circular addition of the phase features
around sx , i.e.

( ) ( ) ( ) ( )183221s v,vPv,vPv,vPxLPC +++= & , (1)
where [ ]8 ,8)x(LPC s −∈ . In other words, LPC is a circular addition of dot products of
the 8 adjacent normalized velocity pairs. Figure 12 shows a LPC map for the speed
image of Figure 22, in which the image intensity value is directly proportional to the
strength of LPC. It is observed that the voxels inside the aneurysm and vessels exhibit
high LPC and form a piece-wise homogeneous region, whereas the non-vessel voxels
have relatively low and random LPC.

Figure 10: The 8 neighbouring
velocities of voxel sx .

Figure 11: The 8 two-site cliques.
3x3 mask center is labelled as x

Figure 12: Local phase
coherence (LPC) map.

Figure 13: Histogram of the
local phase coherence

(LPC) map.

Figure 14: Regions of interest
(Black boxes). B � Background,
V � Vessel and T � Brian Tissue

Figure 15: Individual
histograms of ROIs.

Figure 16: Histogram of LPC map (Dotted) and fitting of two-
Gaussian model (Solid).

Figure 17: Coherent voxels.
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We now present an automatic threshold determination method for
classification of coherent and non-coherent voxels. A histogram of the LPC map is
plotted in Figure 13. It shows that the histogram is right shifted and skewed. In fact,
the LPC histogram is constituted by three classes: background with low LPC, brain
tissue with slightly high LPC, and vessel with extremely high LPC, which are shown
in Figure 14 and Figure 15. Background (B) and brain tissue (T) histograms overlap
heavily because of the non-stationary, but slightly coherent, motion of the non-vessel
brain tissue. In contrast, the vessel (V) histogram is separated clearly from the
background (B) histogram. The point of separation � the desired threshold � is
indicated by an arrow in Figure 15. We model the background region and non-
background regions with two separate Gaussian distributions. It is worth noting that
the theoretical modelling of the LPC histogram is extremely difficult because of the
high correlation factor among the velocity random variables, and normalization and
dot product operations of the correlated variables in Equation 1. A Gaussian
distribution is employed to model the non-background region including both T and V
histograms. This is because the V histogram overlaps heavily with the T histogram,
and occupies only a small portion (1% - 4%) of the LPC histogram. Moreover, as will
be discussed below, estimation for the B histogram is far more important than that for
the T and V histograms.

We use the EM algorithm [3] to fit the LPC histogram by a mixture of the
two Gaussian distributions, as shown in Figure 16. Note that the two estimated
Gaussians merge together and form a smooth curve because the means of the two
Gaussians are close to each other (in this case, 1.6 for background and 3.7 for non-
background) and variances are relatively large and roughly the same (in this case, 2.9
for background and 2.2 for non-background). We define the mean and variance of the
background distribution as Bµ  and 2

Bσ  respectively, and use BB 3 σ⋅+µ  as a
background threshold, which is a variant of the background thresholding approach
[4]. A voxel with LPC above the background threshold is labelled as a coherent
voxel. Otherwise, it is labelled as a non-coherent voxel. As shown in Figure 17, the
coherent voxels form a number of vessel �clusters�, though there are some randomly
distributed voxels due to random coherent noise, small coherent motion of the non-
vessel tissue during scanning and ghosting artifacts. These �outliers� can be avoided in
the segmentation process by checking their intensity values in the speed image and
their interactions with the neighbouring voxels.

A Markov random field framework is used to model the LPC piece-wise
homogeneity inside the vasculature. A second-order neighbouring system [7] is used,
in which we define 8 two-site cliques, { }8,,1c …= , for each voxel sx , as shown in
Figure 11. This neighbouring system describes the immediate interactions of a voxel
with its 8 adjacent in slice voxels. These interactions among the voxels are measured
by a clique energy function, which encourages LPC homogeneity and discourages the
�outlier� voxels far away from the vasculature. As such, the clique energy function is
defined as

In this paper, we set vβ  and bβ  as 2 and 1 respectively. As such, bβ  denotes the
number of non-coherent or non-vessel neighbouring voxels. In contrast, vβ  denotes

( ) =  x,xE isc
coherent. are x & x and ,v xx if     , isisv ==β

therwise.o     ,bβ
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twice the number of coherent, vessel voxels in order to favour the coherent, vessel
neighbouring voxels. In Section 3.1, the prior probability is assumed constant
throughout the segmentation process. Now, the total energy function ( )sxU  and prior

probability ( )sxP  of voxel sx  are defined as ( ) ( )∑ ∑= ∈= 8
1c ci iscs x,xExU , and

( ) ( ){ }s
1

s xUexpZxP ⋅= −  respectively, where ( ){ }[ ]∑ ∈= b,vx ss
xUexpZ  is a normalization

constant. It should be noted that the Markov prior probability is directly proportional
to the number of adjacent, and coherent, vessel voxels. Intuitively, the larger the
number of adjacent and coherent, vessel voxels around the voxel sx , the higher the
vessel probability ( )vxP s = .

Let { }N1 x,...,xX = , be the true-segmented image, where [ ]b v,xs ∈ . Let also
{ }N1 i,...iI =  be the observed speed image, where [ ]maxs I...0i ∈ . The Iterated

Conditional Modes (ICM) [2] algorithm can be employed to maximize the probability
of estimating the true-segmented binary image given the observed image, i.e. ( )I|XP .
Using the parameters estimated by the modified EM algorithm in the previous section,
the vessel likelihood ( )vx|iP ss =  and background likelihood ( )bx|iP ss =  are
defined as ( )sU if  and ( ) ( )[ ] ( )GMsGGsMM wwifwifw ++  respectively. The true
segmentation X is initialized by the segmentation results based on speed information,
as shown in Figure 23. The ICM algorithm estimates a voxel class by using MAP
method, 

[ ]
( )ss

b,vx
s i|xPmaxargx

s∈
= , to maximize the posterior probability

( ) ( ) ( )sssss x|iPxPi|xP ⋅∝  at each voxel iteratively until convergence is reached. The
convergent rate is usually around 5 iterations.

4. Results
Intracranial scans (PC-MRA) of two patients were performed using a 1.5T GE MR
scanner at the Department of Clinical Neurosciences, King�s College London. The
volume size was 256x256x28 voxels and voxel size 0.8mm x 0.8mm x 1mm. The
Maxwell noise model was compared with the proposed Maxwell-Gaussian noise
model by computing the absolute difference error for all slices in the two scans.
Results are shown in Figure 18 and Figure 19. This shows that Maxwell-Gaussian
model is better than the Maxwell model for describing the background noise
distribution in PC-MRA speed images by an average of 9%.

The segmentation algorithm was applied to all slices. Typical segmentation
results are shown in Figure 24 and Figure 27. Comparing this with the results of
Figure 23 and Figure 26, it is noted that there is a substantial improvement in
segmentation, especially in the region of the aneurysm. But still, there are some false
negative voxels near the singular point (near the middle of the aneurysm). This is
because the level of intensity is very low, and the flow pattern is seriously corrupted
by noise. A higher level of understanding of flow topology is required to tackle this
problem, which is a subject of our current work.

5. Conclusion
We have derived a Maxwell-Gaussian mixture model for the background noise
distribution of PC-MRA images generated by a phase-difference PC-MRA image
post-processing algorithm. It has been shown that the Maxwell-Gaussian mixture
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model fits better than a Maxwell distribution for modelling background noise, which
has been used in prior work [1]. Using this mixture model, we have proposed a
statistical approach to aggregating speed and phase information available in PC-
MRA, and demonstrated that inclusion of phase information as a priori knowledge in
the MRF model can improve the quality of segmentation, especially in the region
within an aneurysm. Future work will include detection of the flow singular point,
which may indicate the presence of an aneurysm, perhaps by using knowledge of flow
topology [10] and through more detailed studies of application to a large number of
aneurysms.
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Figure 18: Patient 1 Figure 19: Patient 2

Figure 20: Speed image histogram (Solid) and
Maxwell Model (Dotted).

Figure 21: Speed image histogram (Solid)
and Maxwell-Gaussian Model (Dotted).
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