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Abstract. In this paper, we propose a multi-modal image registration
method based on the a priori knowledge of the expected joint intensity
distribution estimated from aligned training images. The goal of the reg-
istration is to find the optimal transformation such that the discrepancy
between the expected and the observed joint intensity distributions is
minimised. The difference between distributions is measured using the
Kullback-Leibler distance (KLD). Experimental results in 3D-3D regis-
tration show that the KLD based registration algorithm is less dependent
on the size of the sampling region than the Maximum log-Likelihood
based registration method. We have also shown that, if manual align-
ment is unavailable, the expected joint intensity distribution can be esti-
mated based on the segmented and corresponding structures from a pair
of novel images. The proposed method has been applied to 2D-3D reg-
istration problems between digital subtraction angiograms (DSAs) and
magnetic resonance angiographic (MRA) image volumes.

1 Introduction

A key issue in the medical imaging field is multi-modal image registration. As
the use of co-registration packages spreads, the number of the aligned image
pairs in image databases (either by manual or automatic methods) increases
dramatically. These image pairs can serve as a set of training data, in which
the statistical joint intensity properties can be observed and learned in order to
acquire useful a priori knowledge for future registration tasks.

In this paper, we propose a multi-modal image registration method based
on the a priori knowledge of the expected joint intensity distribution estimated
from aligned training images. One of the key features is the use of the expected
joint intensity distribution between two pre-aligned, training images as a refer-
ence distribution. The goal is to align any two images of the same or different
acquisitions such that the expected distribution and the observed joint intensity
distribution are well matched. In other words, the registration algorithm aligns
two different images based on the expected outcomes. The difference between
distributions is measured using the Kullback-Leibler distance (KLD), which is a
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frequently used information theoretic similarity measure in the machine learn-
ing and information theory fields. The KLD value tends to zero when the two
distributions become equal. The registration procedure is an iterative process,
and is terminated when the KLD value becomes sufficiently small.

Experimental results in 3D-3D registration show that the KLD based regis-
tration algorithm is less dependent on the size of the sampling region than the
Maximum log-Likelihood based method. We have also shown that, if manual
alignment is unavailable, the expected joint intensity distribution can be esti-
mated based on the segmented and corresponding structures from a pair of novel
images. The proposed method has been applied to 2D-3D registration problems
between DSAs and MRA image volumes.

2 Description of the Registration Algorithm

2.1 The Expected and Observed Joint Intensity Distributions

Expected joint intensity distribution: there are two ways of constructing the ex-
pected joint intensity distribution. Firstly, the joint distribution can be con-
structed by manual alignment, which can be done by experienced clinicians with
the help of external or internal markers.

Let I1 and I2 be the intensity values of two training images of the same or dif-
ferent acquisitions, and X1 and X2 be their image domains respectively. Assume
that the values of image pixels are independent of each other. Since the two im-
ages have been already aligned, samples of intensity pairs Î = {i1(x), i2(x)|i1 ∈
I1, i2 ∈ I2} can be drawn from I1 and I2, where x are the pixel coordinates,
x ∈ X and X = X1 = X2. The expected joint intensity distribution P̂ (I1, I2)
can be approximated by either Parzen windowing or histogramming [1]. His-
togramming is employed in this paper because the approach is computationally
efficient, and the intensity histogram size is practical (the histogram has only 2
dimensions in this case). To achieve sub-voxel accuracy, histogram partial vol-
ume (PV) interpolation [7] can be used. A smooth histogram can be obtained
by convolving with a Gaussian density function, given by

Gψ(z) = (2n)
−n
2 |ψ|−1

2 e
−1
2 z′ψ−1z, (1)

where ψ is the co-variance of the Gaussian function and z can be a vector or
scalar value.

If manual alignment is unavailable, a second method of constructing the ex-
pected joint intensity distribution is to perform segmentations separately in the
two images, I1 and I2, such that the internal anatomical structures are labelled.
Let sk, k = 1 . . .M , be the internal structures, where M represents the number
of anatomical structures. Then, samples of intensity pairs Î = {i1(x), i2(y)|i1 ∈
I1, i2 ∈ I2, x, y ∈ sk, k = 1 . . .M} can be drawn if x and y belong to the same
structure sk, where x and y are the pixel coordinates in X1 and X2 respectively.
Similarly, the expected joint intensity distribution P̂ (I1, I2) can be approximated
by either Parzen windowing or histogramming.
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Observed joint intensity distribution: given a new image pair with a hypoth-
esized transformation T , samples of intensity pairs Io = {i1(x), i2(T (x))|i1 ∈
I1, i2 ∈ I2} can be drawn from I1 and I2, where x are the pixel coordinates,
x ∈ Ω and Ω ⊂ X1 ∪ X2. This means Ω represents a sampling domain that is
equal to or inside X1 ∪ X2. Note that the observed joint intensity distribution
PTo (I1, I2) is dependent on the values of the transformation T and changes dur-
ing the registration. The Parzen windowing or histogramming approach can also
be used to estimate the distribution PTo .

2.2 Kullback-Leibler Distance (KLD)

Given the expected P̂ and observed PTo joint intensity distributions, the Kull-
back-Leibler distance between the two distributions is given by

D(PTo ||P̂ ) =
∑

i1,i2

PTo (i1, i2) log
PTo (i1, i2)
P̂ (i1, i2)

. (2)

According to [3,5], D(PTo ||P̂ ) has two important properties.

1. D(PTo ||P̂ ) ≥ 0; and
2. D(PTo ||P̂ ) = 0 iff PTo = P̂ .

These properties show that, when the two images I1 and I2 are not perfectly
registered, the values of KLD, D, will be non-zero and positive because the
observed and expected joint intensity distributions are not equal, PTo �= P̂ . On
the other hand, if the images are well registered, then the value of KLD is equal
to zero, i.e. D = 0.

2.3 Optimisation of the Transformation T

The goal of the registration is to find the optimal transformation T̂ by minimising
the difference between the observed Po and expected P̂ , which is formulated as

T̂ = arg min
T
D(PTo ||P̂ ). (3)

The proposed method is conceptually different from the mutual information
based registration method, which encourages the functional dependence between
the two image random variables, I1 and I2. The KLD based registration method
guides the transformation T based on the difference between the expected P̂
and observed PTo joint intensity distributions, or, in other words, based on the
expected outcomes learned from the training data.

In this paper, the value of KLD is minimised by Powell’s method with a
multi-resolution strategy [9] because it does not require calculations of gradient
and, hence, is simpler in terms of implementation. Powell’s method iteratively
searches for the minimum value of KLD along each parameter axis T (1D line
minimisation) while other parameters are kept constant. The search step ∂T is
relatively large in a coarse resolution and decreases as the resolution gets higher,
∂T is set to 2, 1 and 0.5mm in this paper (in Section 3.2). The iteration process
stops when the change of KLD is sufficiently small (set 0.001 in this paper).
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a. T1 image b. T2 image

Fig. 1. (a) T1 and (b) T2 images.

3 Experimental Results

3.1 T1 – T2 (3D-3D) Registration

The T1 and T2 datasets are obtained from the BrainWeb Simulated Brain
Database (277 × 241 × 181 voxels and 1 × 1 × 1mm3) [2], in which all the corre-
sponding images have already been perfectly aligned and can be used as a testing
platform for studying the performance of different objective functions. Maximum
log-Likelihood (ML) [6] and Mutual Information (MI) [10] were compared with
the KLD, their definitions are given by

ML =
∑

x

log P̂ (i1(x), i2(T (x))), and (4)

MI =
∑

i1,i2

PTo (i1, i2) log
PTo (i1, i2)

PTo (i1)PTo (i2)
(5)

respectively, where PTo (i1) and PTo (i2) are the marginal distributions, x are the
pixel coordinates, x ∈ Ω and Ω ⊂ X1 ∪X2. One of the pairs of 2D T1 and T2
image slices is shown in Figs. 1a and 1b respectively, with their intensity values
and image domains represented by I1 and I2, and X1 and X2 respectively. Since
these images in the datasets are aligned, the expected joint intensity distribution
P̂ (I1, I2) can be estimated based on the method described in Section 2.1 (only
slices from positions 30 to 160 were used in order to avoid the inherent image
artifacts in the dataset).

In order to study the performance of the objective functions, X2 was shifted
horizontally and rotated, whereas the position and orientation of X1 were fixed.
Given a transformation T , if any pixel x2 in X2 fell between the voxel positions
of X1, then its corresponding intensity value i1 was computed by linearly inter-
polating the values of its four neighbouring pixels in X1 to achieve the sub-voxel
accuracy. The observed joint intensity distribution PTo was then estimated ac-
cording to Section 2.1. In this paper, the number of bins was set to 32 and the
co-variance matrix ψ in Eq. 1 was a diagonal matrix DIAG(σ2, σ2) and σ2 = 1.
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a. KLD b. ML c. MI

Fig. 2. T1-T2 registration performance analysis. T2 image was shifted horizontally.
The offset values range from −40mm to 40mm.

a. KLD b. ML c. MI

Fig. 3. T1-T2 registration performance analysis. T2 image was rotated. The offset
values range from −40o to 40o.

We set Ω = X2 for ease of implementation in this paper. If x2 fell outside
the domain of image X1, then an arbitrary intensity value in the background of
X1 was assigned to i1. As plotted in Figs. 2 and 3, the performances of the three
different measures (KLD, ML and MI) are comparable when the T2 image (X2)
was shifted horizontally between −40mm and 40mm, and was rotated between
−40o and 40o.

However, it is also common to discard a sample (i1(x), i2(T (x))) if it fell
outside the overlapping region, i.e. x �∈ X1 ∩ X2. As shown in Fig. 4, when Ω
was set to X1 ∩ X2, the performance of ML was adversely affected when only
samples drawn from the overlapping region were included in the calculation.
As compared with ML, the figure shows that KLD and MI are less dependent
on the size of the sampling region Ω. The major reason is that, from Eq. 4,
the value of ML depends only on the observed samples x. Therefore, when the
area of the overlapping region is small, fewer samples are obtained and thus
the value of ML increases. In contrast, given the same set of observed samples,
the value of KLD consists of the contributions of the observed samples and,
most importantly, the penalties of the unobserved samples from the expected
joint intensity distribution P̂ . Therefore, the entire distribution P̂ is utilised in
the KLD measure. Finally, the value of MI depends mostly on the randomness
of the observed samples. The decease in overlapping area increases the sample
randomness and, hence, the value of MI decreases.

In terms of computational efficiency, comparing Eq. 2 with Eq. 4, it is ob-
served that, since KLD does not require the calculation of the marginal distri-
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a. KLD b. ML c. MI

Fig. 4. T1-T2 registration performance analysis. T2 image was shifted horizontally.
However, only samples, which fell in the overlapping region of the two images, were
included in the calculations.

butions, PTo (i1) and PTo (i2), it can be more computationally efficient than MI.
From Eq. 4, the efficiency of ML is directly proportional to the number of sam-
ples drawn. On the other hand, the efficiency of KLD is directly proportional to
the product of the number of bins B1 and B2 partitioning I1 and I2 respectively.
As such, the efficiencies of ML and KLD are related to different parameters, and
their comparison is parameter dependent.

3.2 DSA - MRA (2D-3D) Registration

The proposed method was applied to 2D-3D registration problems and tested
in two clinical datasets, which were acquired at the Department of Radiol-
ogy, Brigham and Women’s Hospital, Boston, USA. Each dataset consists of
a pre-interventional 3D magnetic resonance angiographic (MRA) image volume
(256 × 256 × 60 voxels and 0.78 × 0.78 × 1.3mm3), and a 2D digital subtraction
angiogram (DSA) during the interventional treatments. Figs. 5a and 5d show
the two cropped DSAs. The DSAs were distortion corrected using a distortion
correction object with a uniform grid pattern [4].

A maximum intensity projection (MIP) of each MRA volume was generated
using the projective geometry and ray casting method [8,11], in which there
were six rigid body transformation parameters (three translational and three
rotational). The initial transformations were obtained from the machine readings
of the C-arm X-ray systems, as shown in Figs. 5d and 5h.

For each dataset, the expected joint intensity distribution was estimated
based on the segmented and corresponding structures from the novel DSA and
the initial non-registered MIP. These structures consist of vessel and background
regions, in which each region was defined by a manually selected intensity range
for the two datasets (more advanced methods can be applied but they are not
the focus of this paper). The expected distribution P̂ was estimated by randomly
drawing samples of the same structures from the DSA and MIP, as described
in the Section 2.1. Then, the observed distribution PTo was generated during
the registration and used to guide the rigid body transformation using the KLD
measure, as defined in the Eqs. 2 and 3. The optimal transformation was searched
using Powell’s method with a multi-resolution strategy, as described in Section
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a. b. c. d.

e. f. g. h.

Fig. 5. 2D-3D registration results: (a,e) digital subtraction angiograms (DSA) (vessels
are black in colour), (b,f) final image alignments, maximum intensity projections (MIP)
of the magnetic resonance angiographic (MRA) image volumes (vessels are white in
color and their intensity is directly proportional to the flow speed), (c,g) segmented
MIPs are overlaid on their corresponding DSAs and (d,h) initial image alignments.

2.3. Figs. 5b and 5f show the MIPs of the registered MRA volumes and the
results are promising. Segmented vessel regions of the MIPs are overlaid on the
corresponding DSAs, as shown in Figs. 5c and 5g. Note that the remaining
discrepancy between the DSA and MIP may be caused by (a) some vessels that
are visible in one image and are not visible in another image due to different vessel
delineation properties in different acquisitions and different regions of interest
selected, (b) signal loss in the MRA images (e.g. turbulent or eddy flow), or (c)
the geometric distortion due to the MR gradient field nonlinearity.

4 Summary and Conclusions

In this paper, we have proposed a multi-modal image registration method based
on the a priori knowledge of the expected joint intensity distribution estimated
from the aligned training images. The difference between the expected and ob-
served joint intensity distributions is measured by the Kullback-Leibler distance
(KLD), which has non-zero and positive value when there is any discrepancy be-
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tween the two distributions. The KLD-based registration algorithm guides the
transformations by minimising the KLD value until the two datasets are aligned.

The results based on T1-T2 (3D-3D) registration experiments show that, as
compared with the Maximum log-Likelihood (ML) based registration method,
the KLD-based registration algorithm is less dependent on the size of sampling
region. In DSA-MRA (2D-3D) registration experiments, we have shown that
the expected joint intensity distribution can also be estimated based on the
segmented and corresponding structures (vessel and background regions) from
the novel DSA and the initial non-registered MIP. The DSA-MRA registration
results are promising and demonstrate the applicability of our method in 2D-
3D registration. Future work will include a further validation of the proposed
algorithm by applying it to a large number of datasets.

Acknowledgements

We would like to thank K. Rhode and D. Hawkes at Guy’s Hospital, London,
U.K. for sharing the DSA image distortion correction software. W. M. Wells III
would like to acknowledge support from the NSF ERC grant (JHU Agreement
#8810-274) and the NIH (grant #1P41RR13218).

References

1. C.M. Bishop. Neural Networks for Pattern Recognition. Oxford U. Press, 1995.
2. D.L. Collins, A.P. Zijdenbos, and et al. Design and Construction of a Realistic

Digital Brain Phantom. IEEE Trans. Med. Img., 17(3):463–468, 1998.
3. T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley &

Sons, Inc., 1991.
4. P. Haaker, E. Klotz, and et al. Real-time distortion correction of digital X-ray

II/TV-systems: an application example for digital flashing tomosynthesis (DFTS).
International Journal of Cardiac Imaging, 6(1):39–45, 1990-91.

5. S. Kullback. Information Theory and Statistics. Dover Publications, Inc., 1968.
6. M.E. Leventon and W.E.L. Grimson. Multi-Modal Volume Registration Using

Joint Intensity Distributions. In MICCAI, pages 1057–1066, 1998.
7. F. Maes, A. Collignon, and et al. Multimodality Image Registration by Maximiza-

tion of Mutual Information. IEEE Trans. Med. Img., 16(2):187–198, 1997.
8. G.P. Penney, J. Weese, and et al. A Comparison of Similarity Measures for Use in

2D-3D Medical Image Registration. IEEE Trans. Med. Img., 17(4):586–595, 1998.
9. W.H. Press, S.A. Teukolsky, and et al. Numerical Recipes in C, 2nd Edition.

Cambridge University Press, 1992.
10. W.M. Wells, P. Viola, and et al. Multi-Modal Volume Registration by Maximiza-

tion of Mutual Information. Medical Image Analysis, 1(1):35–51, 1996.
11. L. Zöllei. 2D-3D Rigid-Body Registration of X-Ray Fluoroscopy and CT Images.

MIT Masters Dissertation, 2001.


	1 Introduction
	2 Description of the Registration Algorithm
	2.1 The Expected and Observed Joint Intensity Distributions
	2.2 Kullback-Leibler Distance (KLD)
	2.3 Optimisation of the Transformation $T$

	3 Experimental Results
	3.1 T1 -- T2 (3D-3D) Registration
	3.2 DSA - MRA (2D-3D) Registration

	4 Summary and Conclusions
	References

