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Abstract. This paper introduces a novel solver, namely cross entropy
(CE), into the MRF theory for medical image segmentation. The solver,
which is based on the theory of rare event simulation, is general and
stochastic. Unlike some popular optimization methods such as belief
propagation and graph cuts, CE makes no assumption on the form of
objective functions and thus can be applied to any type of MRF models.
Furthermore, it achieves higher performance of finding more global op-
tima because of its stochastic property. In addition, it is more efficient
than other stochastic methods like simulated annealing. We tested the
new solver in 4 series of segmentation experiments on synthetic and clin-
ical, vascular and cerebral images. The experiments show that CE can
give more accurate segmentation results.

1 Introduction

As the core concept of Bayesian image analysis, Markov random field (MRF)
theory has aroused great interest in the field of medical image processing. Re-
searchers have applied MRF to various applications such as image enhancement
[1], object detection [2], data modeling [3], tissue classification (segmentation)
[4], etc. The reasons why MRF modeling has so many successful applications in
medical image analysis are that it can easily incorporate spatial interaction and
convert a problem in image processing or computer vision into a mathematical
optimization problem by means of maximum a posteriori (MAP). The former
property allows us to consider contextual constraints in images and the latter
makes many delicate problems computationally tractable.

The most important part of the MRF modeling is the problem formulation
in which we specify the posterior probability to be maximized or the energy
function to be minimized. However, it remains a major open problem in MRF
theory to optimize the objective function. Due to the large number of pixels in
usual images, the configuration space of MRF in image analysis is huge. This
makes the brute force methods to search for the optima infeasible in practice.
Actually, it is proved that obtaining the global optimum of an arbitrary objective
function is NP-hard [5]. Therefore, it has been an active research topic to design
a ”good” solver for MRF models over the past two decades. The goodness of a
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solver lies in whether it can efficiently find a local optimum which is as optimal
as possible (e.g., the lower energy, the better).

One of the earliest efforts to optimize MRF objective functions was made
by Kirkpatrick et al. [6] who proposed the solver, simulated annealing (SA). SA
can guarantee to converge to a global minimum as long as the temperature is
decreasing slowly enough which makes SA too slow for practical use especially
for clinical data. Another pioneering work was done by Besag [7], where the
iterated conditional modes (ICM) was presented. This is a fast solver at the cost
that it finds local optima in a neighborhood where only one site label is allowed
to change. After those two methods, quite a few solvers were introduced [8], such
as mean field approximation (MFa), relaxation labeling (RL), graduated non-
convexity (GNC), etc. Recently two efficient and fairly accurate solvers, belief
propagation (BP) [9] and graph cuts (GC) [5], were proposed. These two solvers
are now often used for MRF models because they give good accuracy in an
efficient way, which means they can find ”global” optima within a rather large
neighborhood while maintaining acceptable time complexity. However, since the
perfect solver is not existing unless P = NP, there is still space to get more
accurate results. Moreover, BP and GC are not applicable to all types of objective
functions. They obtain their accuracy at the cost of function form restrictions.
For example, standard BP is only proper for pairwise MRFs and generalized BP
is either not for all functions [9]. So we cannot solve by BP such MRF models as
FRAME [10] or multi-level logistic (MLL) with more than two sites in a clique
[8]. The same situation occurs for graph cuts because GC will work only when
the energy function is regular [11]. These may considerably limit the usage of
the two popular solvers.

In this paper, we proposed a new simple stochastic solver for MRF modeling,
called cross entropy (CE). This idea is originated from the field of operations
research to simulate rare events [12]. This paper combines the idea of CE with
MRF theory for the first time and applies the whole model to medical image
segmentation. The CE solver is a general and stochastic optimization method
that can be applied to any kind of MRF formulation. Unlike BP and GC, CE
makes no assumption on the form of the objective function so it is able to solve
more complicated MRF models. The efficient CE solver is completely insensitive
to initialization and more importantly, as a stochastic method, CE tends to
find more global optimum than deterministic solvers like BP. This statement is
supported by the experiments on four sets of synthetic and clinical data, which
shows CE has higher segmentation accuracy than BP. It is believed that the
accuracy of BP is comparable to that of GC [13]. Although CE is stochastic, it
is efficient but expends more time than deterministic solvers like BP and GC.

2 The Cross Entropy Method

The cross entropy (CE), also known as Kullback-Leibler cross entropy, has been
used in combinatorial and multi-extremal optimization, and rare event simula-
tion. Owing to its simplicity and accuracy, it has quite a few successful applica-
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tions in operations research and machine learning [14]. In this section, we will
present the CE method as a novel simple accurate solver for MRF modeling.

Consider the following general energy minimization problem of MRFs. Let
F be the configuration space of MRF, F , and f is one configuration of F . The
energy minimization of MRFs is formulated by

f∗ = argmin
f∈F

E(f), (1)

where E(·) is the energy function to be minimized and f∗ is the wanted F con-
figuration. CE method associates an estimation problem with the optimization
problem (Eq. 1). We first define an indicator function I{event}, which is equal to
1 when the event is true otherwise 0. Then, suppose p(·; v) is a family of discrete
probability density functions (pdf) on F and v is its parameter. Let us estimate
the following probability

Pv(E(F ) ≤ e) =
∑

x

I{E(f)≤e}p(f ; v), (2)

where Pv is the probability measure and F is a vector of configurations that
has pdf p(·; v). If e = minf∈F E(f) and p(·; v) is a uniform density on F , Eq.
1 and Eq. 2 are connected. Note that Pv(E(F ) ≤ e) is typically 1/|F|, which
is very small. This is similar to the situation of rare event simulation. Thus,
we can borrow the idea of CE from rare event simulation to construct a multi-
level optimization approach for MRF energy, where we generate a sequence of
levels e1,e2,. . . ,eT and parameter vectors v1,v2,. . . ,vT such that eT is close to
the optimal e∗ and vT is the density that assigns high probability mass to the
configuration which corresponds to a low energy.

Suppose m is the size of the label space of the MRF model and there are n
sites altogether. The CE solver for MRF labeling can be described as follows.

CE Algorithm for MRF energy minimization
1. Set level t = 1 and the initial parameter vector v0 = {v0,1, . . . , v0,n}. Each

vt,i = {v1
t,i, . . . , v

m
t,i} is a vector with m elements for site i.

2. Generate a collection of samples F1, . . . , FN (F = {f1, . . . , fn} is one MRF
configuration) from the density p(·; v) and compute the energy Ei(Fi) for every
i ∈ {1, . . . , N}.

3. Sort all the Ei(Fi) in a non-increasing order to {E1, . . . , EN}. Then pick
et = E�(1−ρ)N�.

4. Use the samples F1, . . . , FN to update vt by

vj
t,i =

∑N
k=1 I{Ek(Fk)≤et}I{Fki=j}∑N

k=1 I{Ek(Fk)≤et}
, (3)

for i = 1, . . . , n and j = 1, . . . , m.
5. If et remains unchanged for several iterations, go to step 6; else, set t = t+1

and go to step 2.
6. The final EN (FN ) of T -th iteration is the estimated minimal MRF energy.

The corresponding configuration is embodied by the parameter vector vT , where
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each element vj
T,i assigns most probability mass to a preferable label among m

labels for site i. �

Function p(·; v) can be any kind of pdf but the simple m-point Bernoulli
distribution is usually enough. This means each label j is randomly chosen for
site i according to the probability of vj

t,i. Two parameters need to be pre-defined,
ρ and N . Usually, ρ is a small value between 1% and 10%. When the site number
n is large, we tend to choose a large value of ρ. Regarding the sample size N , we
set N = cn, where c is a constant and often between 1 and 10. Notice that there
are other alternative stopping criteria, such as when the parameter vt converges
to a binary (0 or 1) vector.

3 Experimental Results

In this section, we use CE and BP as MRF solvers to solve the same model for
medical image segmentation and compare the results. We perform experiments
on four sets of data of synthetic and clinical, vascular and cerebral images. Before
that, we need to formulate the MRF energy function first.

3.1 MRF Formulation

We adopt the MAP-MRF framework for maximizing the posterior probabil-
ity P (X |Y ) ∝ P (X)P (Y |X), where X and Y are the labeling MRF and the
observed data, respectively. We use multi-level logistics (MLL) and Gaussian
distribution as the MRF prior and likelihood energy, which is one of the most
often used models for medical image segmentation [8, 15, 16]. The MRF prior
energy is expressed by

U(X) =
∑

i∈S

∑

j∈Ni

I{xi �=xj}, (4)

where Ni is the neighborhood of site i (we use the 4-neighborhood system) and
S is the set of all sites. The likelihood energy is defined as

U(Y |X) =
∑

i∈S

m−1∑

j=0

δ(xi − j) · (yi − µj)2

2σ2 , (5)

where if x = 0, δ(x) = 1, else δ(x) = 0, and µj represents the mean intensity
of region j. In the comparisons below, all the parameters, e.g., µ, σ, are set the
same for both solvers.

3.2 Synthetic Data

We first test the model on two sets of synthetic data, one simulates blood vessels
following the style in [4] and the other is obtained from BrainWeb, a widely-used
simulated brain database [17].
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It is a binary segmentation problem to extract blood vessels. We synthe-
size alternate bars and circles to simulate the vessels and add various levels of
Gaussian noise to produce corrupted images with different signal-to-noise ratios
(SNR) (Fig. 1). The results of minimal energy values found by two solvers and
segmentation errors are listed in Tab. 1. Regarding brain images, we segment
the BrainWeb T1-weighted data into four classes {white matter, gray matter,
cerespinal fluid, others} and perform several experiments with different levels
of noise. Results are shown in Tab. 2. In both experiments, CE algorithm is re-
peated for 5 times to give means and standard deviations because it is stochastic.
We do not repeat BP because it is deterministic. It can be found that the CE
solver can reach lower energy than BP and the segmentation accuracy is also
higher than BP for both synthetic images thanks to the ability of CE to find
more global minima.

Fig. 1. Synthetic images for binary segmentation. The left two images are truth pat-
terns and the right two images are corrupted images.

Table 1. Results of the MRF model for binary segmentation on synthetic images

BP CE

image SNR minimum error minimum error
bar 2 2215505 18.65% 1656942±7707 9.01%±1.53%

(width=3) 3 1848604 7.54% 1577403±17069 3.52%±0.69%
4 1598662 2.25% 1523299±17271 1.44%±0.96%
5 1526652 0.59% 1501826±2126 0.22%±0.28%

bar 2 2101877 19.29% 1319552±4612 1.20%±0.37%
(width=6) 3 1659417 8.30% 1242550±1923 0.59%±0.20%

4 1408863 3.13% 1232195±2309 0.03%±0.06%
5 1250346 0.68% 1216728±2223 0.07%±0.12%

circle 2 2241872 17.58% 1721610±6633 11.45%±1.04%
(width=3) 3 2000580 8.59% 1691143±3865 6.72%±0.54%

4 1817165 4.49% 1672465±2259 3.37%±0.40%
5 1774078 2.34% 1675028±926 1.91%±0.20%

circle 2 2178246 18.65% 1348983±3880 4.45%±1.11%
(width=6) 3 1715610 8.30% 1295023±1162 1.98%±0.25%

4 1516673 4.39% 1278273±3337 1.86%±0.08%
5 1380865 1.86% 1269815±634 1.37%±0.08%
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Table 2. Results of the MRF model for multi-class segmentation on BrainWeb data

BP CE

noise level minimum error minimum error
3% 348740 4.25% 211878.3 ± 2737.2 2.77% ± 0.08%
5% 488391 6.00% 257021.0 ± 1505.7 4.14% ± 0.06 %
7% 487083 6.58% 229624.5 ± 1184.7 3.57% ± 0.02%
9% 691409 11.65% 525039.5 ± 768.6 9.08% ± 0.01%

3.3 Clinical Data: Vascular and Cerebral Datasets

We then apply the model to clinical vascular and cerebral datasets, and compare
the performance of the two solvers.

The first dataset used is phase contrast magnetic resonance angiographic
(PCMRA) images (size of 308 × 355) obtained from the University Hospital
of Zurich, Switzerland. We test on 8 sets of data and the overall mean energy
obtained by the CE solver is 174338.81 ± 765.84, which is smaller than the
energy 177475.56 ± 769.93 obtained by BP. Fig. 2 shows one example of the
experiments. Although we do not have the ground truth to compare the two
solvers quantitatively, we still can find by visual inspection that the CE acquires
a little better segmentation than BP which is consistent to the smaller energy
values. BP may be trapped in those local minima caused by the noise which
can be seen in the middle subfigure in Fig. 2 and CE can alleviate the problem
although not completely solve it.

The second dataset used is acquired from the Internet Brain Segmentation
Repository (IBSR) [18] which we can get some segmented data as ground truth.
There are three labels {white matter, gray matter, others} and the image is
141× 149 large. We again test the model on 8 datasets and calculate the energy
and accuracy obtained by the two solvers, which is shown in Tab. 3. We repeat
the CE algorithm for 5 times and calculate the means and standard deviations
considering its stochastic property.

Results on both synthetic and clinical data show that the CE solver is able
to find lower energy (which means more global) than BP. The improvement is
usually from 5% to 45% and accuracy can be increased by 1 to 7 percentage
points. It is worth pointing out that lower energy does not always give better
segmentation results unless the formulation is good enough, but this is not the

Fig. 2. The left is a region of interest of an original PCMRA image (contrast enhanced).
The middle and right are the segmented images solved by BP and CE, respectively.
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Table 3. Results of the MRF model for multi-class segmentation on IBSR brain data

BP CE

dataset minimum error minimum error
1 19361 3.32% 15103 ± 39 2.29% ± 0.08%
2 28049 4.85% 24665 ± 24 3.70% ± 0.14%
3 34641 7.72% 30657 ± 28 6.87% ± 0.24%
4 31483 4.98% 25458 ± 12 2.94% ± 0.02%
5 22104 3.08% 18008 ± 15 1.80% ± 0.08%
6 35652 8.27% 31274 ± 59 5.50% ± 0.16%
7 37561 8.07% 31646 ± 39 6.23% ± 0.24%
8 29782 4.72% 25317 ± 24 2.86% ± 0.16%

goal of solvers, which should find energy as low as possible. The running time
of CE algorithm for one of the clinical vascular images is around 300 minutes
(BP needs about 15 minutes) and for one of the clinical brain images around
60 minutes (BP needs about 9 minutes) on a computer with 1.3GHz CPU and
500 MB memory. Decreasing the parameter ρ will reduce the required number of
iterations and thus the computation time of CE at the cost of likely increasing
the energy value found in the end.

4 Discussion and Conclusion

In general, the CE algorithm is very simple and easy to implement. It is an
iterative procedure and in each iteration, a sequence of samples is generated
according to a certain probability distribution. The method chooses one thresh-
old of objective function value and just focuses on those samples whose per-
formance (e.g., lower energy) is better than this threshold. Then CE updates
the distribution parameters according to these good samples. This completes
one iteration. We can see that CE is stochastic and no deterministic decision
is made, which gives CE the ability to find more global optima than determin-
istic methods. Compared with other stochastic solvers like simulated annealing
(SA), CE is obviously more efficient because it concentrates on a few high-
performance samples among a large collection of random samples and quickly
converges to states which have good performance. Moreover, the CE algorithm
only evaluates the energy values and requires no specific energy form. Thus
it can be applied to any type of objective functions. This makes CE a more
general solver than BP and GC. Another advantage of CE lies in its insensi-
tivity to initialization because CE’s initialization is unchanged for any inputs,
i.e., the parameter vector v0 is always set to uniform distribution and every
element is 1/m.

The study on the computational complexity of CE algorithm is still an open
problem partly because CE can apply to all kinds of different applications and the
necessary total number of iterations is different. For some applications like max-
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cut and partition problems [14], the theoretical complexity of CE is O(n3 ln n)
and its empirical complexity is O(n ln n). The CE solver is not as efficient as
BP or GC. But, since the architecture of CE algorithm is inherently parallel
and its steps are all simple, it has large potential to speed up. Regarding space
complexity, CE can occupy a lot of space if we store all the samples. However,
the problem can be solved by keeping a small portion of them since CE just uses
the high-performance part.

In this paper, we have introduced a new MRF solver, namely cross entropy
(CE), applied it to medical image segmentation and shown some advisable prop-
erties of it compared to an existing popular MRF solver, belief propagation (BP).
CE algorithm is a general solver that can be applied to any type of MRF models
and it is stochastic and iterative, which endows it with the capability to find more
global optima than BP. This makes CE useful in medical image segmentation
or any other tasks which can be formulated as energy minimization problems.
However, CE requires more computation time and space than deterministic op-
timization methods. Since it has parallel architecture and is very simple in itself,
CE has potential to be accelerated by parallel processing or algorithm optimiza-
tion. This will be the major work to be done in the future.
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