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Abstract. Non-rigid image registration is an ill-posed yet challenging
problem due to its supernormal high degree of freedoms and inherent re-
quirement of smoothness. Graph-cuts method is a powerful combinatorial
optimization tool which has been successfully applied into image segmen-
tation and stereo matching. Under some specific constraints, graph-cuts
method yields either a global minimum or a local minimum in a strong
sense. Thus, it is interesting to see the effects of using graph-cuts in non-
rigid image registration. In this paper, we formulate non-rigid image
registration as a discrete labeling problem. Each pixel in the source im-
age is assigned a displacement label (which is a vector) indicating which
position in the floating image it is spatially corresponding to. A smooth-
ness constraint based on first derivative is used to penalize sharp changes
in displacement labels across pixels. The whole system can be optimized
by using the graph-cuts method via alpha-expansions. We compare 2D
and 3D registration results of our method with two state-of-the-art ap-
proaches. It is found that our method is more robust to different chal-
lenging non-rigid registration cases with higher registration accuracy.

1 Introduction

Image registration is actively applied in the field of medical image analysis.
Unlike rigid registration, non-rigid registration is an ill-posed problem due to its
supernormal high degree of freedoms and inherent requirement of smoothness.
Yet, there are a wide range of applications for non-rigid image registration [1].

The task of image registration is to find a transformation T such that I
and T (J) are spatially matched, according to an image-to-image dissimilarity
measure, C(I, T (J)). I and J are referred as the source image and the floating
image respectively and T (J) refers to the resultant image after applying T to J .
Mathematically, the registration problem can be defined as finding the optimal
transformation T ∗ such that

T ∗ = arg min
T

C(I, T (J)). (1)

Unlike rigid image registration in which T is restricted to a rigid transforma-
tion, for non-rigid image registration, there is still no common consensus in the
literature regarding how the transformation T should be modeled. Some mod-
els restrict T to be of low degree of freedoms, such as affine, polyaffine [2] or
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control-points interpolated deformation [3] models. These models intrinsically
constrain T to be smooth or elastic and they are usually capable of representing
an intra-patient deformation across time since there is a real physical underlying
deformation between the images. However, in the case of inter-patient image
registration, anatomical structures can vary significantly across patients both
geometrically and topologically, a transformation of low degree of freedoms may
not have the flexibility to represent these complex changes. Therefore, in princi-
pal, any hard constraints on the domain of T should not be imposed. However,
in Eqn. 1, we are optimizing C(I, T (J)) without posing any restrictions on T
and T can map any points in J to any points in I without correlation across
neighborhood pixels. Thus, T needs regularization by adding a penalizing func-
tion S(T ) to penalize those T , which are not smooth. By modifying Eqn. 1, we
get

T ∗ = argmin
T

C(I, T (J)) + λS(T ), (2)

where λ is a positive constant that controls the level of penalty for non-smooth T .
If we consider T as a displacement vector field, integrated magnitude of different
derivatives is usually used as a criterion of smoothness in practice.

Two pioneer works of formulating non-rigid image registration, namely, Free-
Form Deformations Based Method (denoted as FFD later) and Demons Based
Method (denoted as DEMONS later), are widely used in the medical image
analysis field and can be considered state-of-the-art. Rueckert et al. [3] proposed
a method which modeled the local deformation by free-form deformation based
on B-splines. In this method, only a regular grid of control points on the image
are allowed to displace freely. The displacement of any other point is obtained
from the displacements of its neighborhood control points, via B-spline inter-
polation functions. If a sparse set of control points is used, the transformation
may not allow flexible movements of pixels to represent complicated deforma-
tion. We will show the effects in the experimental results section. Thirion [4]
proposed a diffusion-based approach to non-rigid image registration. No hard
constraints were imposed on the transformation T so that each pixel can have
its own displacement. In each iteration, the movement of any pixel in the float-
ing image is based on its local intensity gradient and its intensity difference with
the source image at the same position. It will naturally guarantee a decrease
in (sum squared differences) SSD or (sum absolute differences) SAD by each
iteration if the movement steps are sufficiently small. Since all pixels can move
freely, a Gaussian smoothing step is applied at the end of each iteration in order
to regularize the transformation. However, since the regularization is done after
each iteration but not incorporated into the cost function, large displacements
of pixels or sharp changes in the displacement field may not be penalized. More-
over, since the motions of pixels are highly depending on local intensity gradient,
this method is highly sensitive to local artifacts. The effect will be demonstrated
in the experimental results section.

In this paper, we formulate a new non-rigid image registration framework as
a discrete labeling problem. Each pixel in the source image has a displacement
label (which is a vector) indicating its corresponding position in the floating
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image, according to a similarity measure. A smoothness constraint based on
first derivative is used to penalize sharp changes in displacement labels across
pixels. The whole system can be optimized by using the graph-cuts method
via alpha-expansions [5]. Through graph-cuts, the optimization process is not
easily trapped in local minima and the solution is guaranteed to be within a
known factor of the exact minimum. This makes the registration robustness and
accuracy of our approach significantly better than other methods. To the best of
our knowledge, our work is the first time where 3D labels are used in graph-cuts
method, though using 2D labels in graph-cuts has been successfully applied in
motion detection [5,6].

2 Theory and Methodology

2.1 Formulation of the Energy Function

Let I and J respectively be the source image and the floating image of dimension
d and X be the continuous spatial domain of both images. For any spatial point
x = (x1, x2, ..., xd) ∈ X, I(x) and J(x) are the intensity values (or feature
vectors in general) at x of both images. In our formulation, a transformation
T is represented by a displacement vector field D that displaces every point x
in J away from its original position by the vector D(x) ∈ R

d to the new point
x + D(x). By modifying Eqn. 2, we can get

D∗ = argmin
D

C(I(X), J(X + D)) + λS(D). (3)

We use integrated absolute difference as the dissimilarity function C, and mag-
nitide of first derivative terms as the smoothness function S. It yields

D∗ = arg min
D

∫
X

‖I(x) − J(x + D(x))‖ dX + λ

d∑
i=1

∫
X

‖D(xi)‖ dX, (4)

where D(xi) is the first derivative of D along direction xi and the differential
element dX = dx1dx2...dxd. Since everything is in the continuous domain, D can
have infinite degree of freedoms theoretically. Here, we introduce the first dis-
cretization step, by discretizing X into pixels. This is a natural discretizing step
as images are usually acquired in a discretized form. By replacing all integrals
by summations and derivatives by finite differences, Eqn. 4 becomes

D∗ = argmin
D

∑
x∈X

‖I(x) − J(x + D(x))‖ + λ
∑

(x,y)∈N
‖D(x) − D(y)‖, (5)

where (x,y) ∈ N iff x and y are adjacent pixels. Note that at this stage,
D(x) ∈ R

d is still not discretized. Therefore, x + D(x) in Eqn. 5 can be any
non-integer valued vector, and J(x + D(x)) needs to be computed using an
interpolation function. Also, when x + D(x) is outside the image domain, a pre-
assigned background intensity value can be used.
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In principle, Eqn. 5 can be optimized by any iterative optimization tools
instead of using the graph-cuts method. However, in practice, the degree of
freedoms of D can be as high as a billion. First, it may cost huge amount of time
for the optimization process. Second, since D has value in each pixel position,
it is a requirement that the step size of updating D is sufficiently small in each
iteration in order to ensure a smooth field. Not only adding an extra time cost,
this makes the optimization process highly sensitive to local minima. Yet, Eqn.
5 is still not solvable by the graph-cuts method without modifications. It will be
addressed shortly in the next subsection.

2.2 Optimization Via Graph-cuts

Unlike other general purpose techniques such as simulated annealing, which can
be extremely slow in practice to find good optima of an energy function, the
graph-cuts method yields either a global minimum or a strong local minimum
in polynomial time, under some specific conditions. In general, the graph-cuts
method is used to solve labeling problems by minimizing energy function Ef in
the following form [5,7],

Ef =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N
Vp,q(fp, fq). (6)

In Eqn. 6, P is the set of pixels, N ⊂ P ×P is a neighborhood system defined on
P , f : P → L is a labeling function where L is a set of labels, fi ∈ L is the label
of pixel i in f . The term Dp(fp) measures the penalty of assigning label fp to
pixel p and the term Vp,q(fp, fq) measures the penalty of assigning labels fp, fq

to the neighborhood pixels p, q respectively. The two summations are usually
referred as the data term and the smoothness term.

Comparing with the form of function solvable by the graph-cuts method in
Eqn. 6, it is not difficult to observe that our current energy function in Eqn. 5 is
already in that form if we consider a 4-connected neighborhood system N , i.e.,
(x,y) ∈ N iff x,y are adjacent pixels.

To convert our optimization to a labeling problem, D(x) ∈ R
d should be

limited into a finite set. Here, we perform the second discretization step. Also
acting as a restriction of how far a pixel can be displaced, a discretized window
W = {0, ±s, ±2s, ...,±ws}d of dimension d is chosen such that D(x) ∈ W . Note
that W is the discretization of the continuous dimension-d region [−ws, ws]d

with sampling period s along all directions. Also, if s < 1, displacements with
sub-pixel units can be considered. Now, by using W as the set of labels that
every D(x) can be assigned, the optimization in Eqn. 5 can readily be solved by
using graph-cuts via a sequence of alpha-expansion (α-expansion) [5] moves.

Given the current labeling f for the set of pixels P and a new label α, an
α-expansion move means: For any pixel p ∈ P , it is considered either keeping
its current label fp or changing its label to α in the next labeling f ′. Obviously,
an α-expansion move is a two-label problem, with label 0 meaning f ′

p = fp and
label 1 meaning f ′

p = α. Kolmogorov & Zabih [7] showed that the graph-cuts
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method can find the exact minimum of a two-label problem if every Vp,q term
in Eqn. 6 satisfies the following inequality.

Vp,q(0, 0) + Vp,q(1, 1) ≤ Vp,q(0, 1) + Vp,q(1, 0). (7)

We now show that any expansion move of our formulation satisfies Eqn. 7.
Given a current labeling f and two adjacent pixels x,y with fx = β and fy = γ,
where β, γ ∈ W , an expansion move of new label α ∈ W is considered.

– Vx,y(0, 0) = ‖β − γ‖ is the cost when both x,y choose their old labels β, γ.
– Vx,y(1, 1) = ‖α − α‖ = 0 is the cost when both x,y choose new label α.
– Vx,y(0, 1) = ‖β −α‖ is the cost when x retains β but y chooses new label α.
– Vx,y(1, 0) = ‖α − γ‖ is the cost when x chooses new label α but y retains γ.

Since α, β, γ ∈ W ⊂ R
d and ‖ · ‖ is the L2-norm operator, by the triangle

inequality, we have ‖β − γ‖ ≤ ‖β − α‖ + ‖α − γ‖ for any vectors α, β, γ. Thus,
the inequality in Eqn. 7 is satisfied for any adjacent pixels x,y and each of
our α-expansion move is globally optimal. Boykov et al. [5] have further proved
that, in such a case, the α-expansion algorithm can finally converge to a local
minimum, which is within a guaranteed factor of the exact minimum.

3 Experimental Results

In all experiments, it is assumed that all pairs of images are affinely pre-registered
and the intensities of the images are normalized to be within 0 and 255. For FFD
and DEMONS, we used the implementations obtained from ITK [8]. In FFD,
we used a 15×15 control point grid. In our method, we used λ = 0.05×255 and
W = {0, ±1, ±2, ..., ±15}2 ({0, ±1, ±2, ....,±12}3 for 3D) so that displacement
label of a pixel was chosen from a 31×31 window (25×25×25 for 3D) centered at
that pixel. For the graph-cuts algorithm, we used the source codes provided by
Kolmogorov & Zabih [7]. All MR and segmented data used in our experiments
were obtained from BrainWeb [9]. Some slices are shown in Fig. 1.

Registration Robustness. The left of Fig. 1 shows an axial slice from an
MR dataset which was used as the source image and four different artificial
deformations (Case A-D) were applied to generate four floating images shown
in the left column of Fig. 2. These artificial deformations can resemble different
intra-subject and inter-subject mapping behaviors. The registration outputs of
DEMONS, FFD and our method are shown in the last three columns in Fig. 2.
From the registration output, it is obvious that FFD failed in Cases B and D
and DEMONS failed in Cases C and D. All other cases were successful.

The failures of FFD in Cases B and D were situations where a transformation
with low degree of freedoms cannot model a complicated or high-frequency de-
formation. FFD only allows control points to freely displace but restricts other
pixels’ displacements to be an interpolation of the displacements of neighborhood
control points. As predicted, both DEMONS and our method are capable of
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Source Image WM GM CSF

Fig. 1. Some original and segmented slices from BrainWeb used in our experiments

Floating Images Our Method DEMONS FFD

Case
A

Case
B

Case
C

Case
D

Fig. 2. (Color Images) Registration results of four different artificial deformation cases

restoring the images in such cases since no hard constraints are posed in the
deformation models. The failures of DEMONS in Cases C and D were caused
by local minima in the optimization process. The deformations in Cases C and
D were considered large as some points are displaced more than 10 pixel-units.
In Case C|D, before registration, some portions of the skull (circled red|blue in
Fig. 2) in the floating image had its whole thickness being overlapping with the
interior|background of the brain in the source image. Since DEMONS uses lo-
cal intensity gradient to drive the movement of pixels, these initial overlapping
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Our Method DEMONS FFD

Case
A

Case
B

Case Failed

Fig. 3. (Color Images) Recovered deformation fields in Case A and Case B. Red color
represents large displacements while blue color represents small displacements.

caused some pixels move towards the wrong directions and finally got trapped
in local minima. Although our transformation model also has high degree of
freedoms, our method still survive in this situation. It is because the graph-cuts
method considers the labels of all pixels in a global manner in an α-expansion
move. Once the energy barrier is overcome, a group of pixels will together pursuit
a large displacement in an α-expansion step, without moving gradually through
a series of small displacements.

Smoothness of the Recovered Deformation Fields. To compare the
smoothness of the recovered deformation fields from different registration meth-
ods, we plot the fields for Cases A and B in Fig. 3. Case A corresponds to
a squeeze-in deformation. As predicted, the fields recovered by FFD is the
smoothest since FFD internally constrains the field to be a B-Spline interpo-
lated transform. Comparing DEMONS and our method in both Cases A and
B, it can be clearly seen that the field recovered by our method is much smoother
than that recovered by DEMONS. It is because the smoothness constraint is
kept globally in the cost function during the whole optimization process in our
method.

Registration Accuracy. To evaluate for registration accuracy, we performed
10 (4 full and 6 downsampled) sets of 3D inter-patient registration by using FFD,
DEMONS and our method. Fig. 4 shows the images and results of one of the
sets using our method. Table 1 lists the distributions of pre/post-registration
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Source Image Floating Image Registration Output

Pre-Difference Post-Difference

Fig. 4. 3D Registration results across two MR volumes. For each sub-figure, the middle
slice across each axis of the volume is shown.

Table 1. Pre- and post-registration absolute intensity difference and tissue overlap
measures of FFD, DEMONS and our method. Each number gives the mean value
over all 3D registration tests.

Tissue Class Pre-Registration FFD DEMONS Our Method
Absolute Intensity Difference (Mean ± SD)

Whole Image 9.66 ± 22.15 7.31 ± 17.17 4.84 ± 12.01 2.65 ± 6.30
Tissue Overlap Measure

WM 0.4479 0.5041 0.6123 0.6754
GM 0.4575 0.5175 0.6282 0.7109
CSF 0.2395 0.3605 0.4721 0.5844

absolute intensity difference and the pre/post-registration overlap measures of
three tissue classes, grey matter (GM), white matter (WM) and cerebrospinal
fluid (CSF). We adopted the overlap measure #(A∩B)

#(A∪B) , used by Crum et al. [10],
where A and B denote the regions of the two images that belong to a specific
tissue class. From the table, it is found that our method can consistently achieve
higher registration accuracy than FFD and DEMONS.
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4 Conclusion

We have proposed a new formulation to non-rigid image registration problem.
First, we adopt a flexible deformation model, which allows every pixel to displace
freely. This is essential for our method to recover any complicated deformation
fields. Next, we present an energy function associated with the parameters of
the deformation model, which are the displacement vector field D. This function
considers the dissimilarity measure of the images together with the smooth-
ness requirement of the deformation field. Despite the supernormal high degree
of freedoms in D as well as its smoothness requirement, we have successfully
proved that our energy function can be globally optimized by using the graph-
cuts method. The graph-cuts method also provides a solution with some degree
of guarantee. Experimental results have demonstrated that our proposed method
shows robustness to different challenging registration cases, e.g. large deforma-
tion, ripple distortion. It can be explained by the flexibility of our deformation
model, as well as the power of the graph-cuts method to perform optimization in
a global manner. Moreover, our method can achieve high registration accuracy.
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