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Abstract. This work aims to design a detection and segmentation method
using a graphical model in the context of multi-object brain image seg-
mentation. We resort to dynamic programming as the optimization strat-
egy to find the global minimum energy for the relation graph. Compared
to other graphical models like tree structures, the proposed approach
offers flexibility in accommodating more interactions among objects and
thus can inhibit error propagation. Also, the new method is able to de-
tect and segment a larger number of objects by searching for the global
optimum energy in an efficient way. Experimental results show that the
proposed approach achieves a comparable accuracy to other state-of-the-
art methods.

1 Introduction

The goal of anatomical segmentation of human brains is to divide a brain image
into anatomical subregions, such as, tissues and structures. Structure segmen-
tation is more difficult than tissue extraction because a structure is usually a
further segmentation of a tissue. However, structure segmentation plays a signif-
icant role in the study of human brain functioning and brain disease diagnosis
[1–3]. Various methodologies have been proposed to tackle the difficult prob-
lem of brain structure segmentation [4–8]. Among others, tree-based methods
[9–11] are emerging as an interesting way to manage the inter-relations between
structures/objects. The weakness of a tree structure lies in the relatively sim-
ple interactions among nodes or objects. As a connected graph, a tree has the
fewest edges, which equals the number of objects minus one. If more compli-
cated interaction is desirable, then a tree structure is not satisfactory because
no loop is allowed in a tree. On the other hand, the spatial relation among the
brain structures is complex. In some cases, three or more structures are gathered
together so it is hard to establish a hierarchical relationship like a tree among
these structures.

In this paper, we present a novel dynamic programming-based graphical
model to deal with brain structure segmentation. Dynamic programming (DP)
is able to downsize the relation graph to a simple enough graph. As such, the

Probabilistic Models For Medical Image Analysis 2009

81



relation graph can be complicated with many edges as long as DP is applicable.
This overcomes the shortcoming of a tree graph with very limited number of
edges. Furthermore, the DP-based method excels if the number of objects grows
significantly. In this scenario, the tree-based methods tend to propagate errors
along a single tree path due to the limited interactions. Note that there is only
one path between any two nodes in a tree. Another important advantage of the
dynamic programming-based method is the ability to find the global optimum
in an efficient way. During the downsizing of the graph, DP keeps the records
of the best candidates of the eliminated nodes and incorporates the associated
energy in the subgraph. When the subgraph is optimized, the original graph is
also optimized. The computational complexity of DP is exponentially lowered
compared to an exhaustive search.

2 Methodology

2.1 Multi-Object Template Construction

Without prior information of shape and position, the task of extracting a pool
of brain structures is very difficult since the structures often do not have clear
boundaries in the brain. The template or atlas of multiple structures in the brain
is served as the prior information for the detection and segmentation. It contains
two-fold information. First, what are the shapes of the target structures? Second,
what are the relations of position among these structures?

A legitimate template can be constructed from the ground truths of a set of
segmentations. Multiple descriptions of the shapes and relative positions of the
structures can be combined by a certain strategy. In this paper, we adopt a quick
and simple strategy to construct the template so we use the ground truth of one
segmentation. The ground truth delimitates the shape of each structure and
determines position relations among the structures. We assume that different
subjects have similar profiles in the two aspects (shape and position).

We create a graph to further define the relations among the structures. The
vertices in the graph represent objects/structures. If two objects interact, there is
an edge connecting the corresponding vertices. The weight of a vertex is pertain-
ing to the similarity between the object and the superimposed image. The weight
of an edge reflects the relative position between two interactive objects. The aim
is to minimize the total weights associated with the whole graph. We create a
graph that is suitable for dynamic programming to apply. The requirement is
that the graph can be reduced into a smaller graph with fewer vertices. When
the original graph is optimized, the smaller graph also reaches an optimum. We
call such a graph a DP-graph. The vertices in a DP-graph can be eliminated one
by one on a certain order until a manageable size of vertices is remained. After
one vertex is eliminated, all the weights associated to it are incorporated to the
smaller graph through a bookkeeping of the best candidates.

Theoretically, dynamic programming can be applied to many kinds of graphs.
In the current context, we apply it to a triangulated graph which strikes a
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good balance between complexity and efficiency [12]. We target to detect and
segment 12 structures in the brain and the constructed graph has 15 vertices.
Three structures (lateral ventricle, the third ventricle and the fourth ventricle)
are segmented in advance and serve as the base objects. The other objects are
left/right thalamus, caudate, putamen, pallidum, hippocampus and amygdala.
The interactions among them are shown in Fig. 1. We build these edges according
to the spatial proximity of the objects.

Fig. 1. The relation graph for 15 brain structures. LV: lateral ventricle, 3V: the third
ventricle, 4V: the fourth ventricle, L/RTh: left/right thalamus, L/RCa: left/right cau-
date, L/RPu: left/right putamen, L/RPa: left/right pallidum, L/RHi: left/right hip-
pocampus, L/RAm: left/right amygdala.

2.2 Matching Measures

We formulate the matching process between a template and an image as an
optimization process of a specific energy. Each objects in the template can be
superimposed on the image in several candidate positions. As such, the multi-
object template has many configurations based on the combination of different
positions of each object. We design an energy to measure both the similarity
between each object and the underlying image region and the proper distances
among the objects. The energy is composed of two components. One is the
single-object measure and the other is the measure for two interactive objects.
The two measures supplement each other. The unary measure is used to draw
one object to the position where a brain structure exists probably. The binary
measure regulates the inter-position between two interactive objects. The total
energy is expressed by,

ET (P ) = α
∑

i

Eu(pi|I) +
∑

i

∑
j∈Ni

Eb(pi, pj), (1)

where ET (P ) denotes the objective total energy of the model, Eu is a unary
measurement for a single object, pi is the position of part i represented by
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spatial coordinates, Eb measures a compatibility between two objects, P is the
set of possible positions of all objects, I is the input image, and Ni is the set of
objects linking to object i.

The unary measure assumes that (1) the intensity level inside one object is
approximately homogeneous and its variation should be small; (2) The voxels
around the boundary of the object usually undergo an abrupt change of intensity
and the gradient magnitude therein should be large. The two assumptions are
valid considering that the brain structures are usually made of the same tissue
type, e.g. white matter or grey matter, and they are often surrounded by a
different tissue although the boundary may be lowly contrasted. The premises
lead to the following formulation for the unary measures:

Eu(pi|I) =
1
ai

∫∫∫
Ai

(I(x, y, z)− I(Ai))2dxdydz − βi

bi

∫∫∫
Bi

|∇I(x, y, x)|dxdydz,

(2)
where I(Ai) is the mean intensity in the image region Ai that is overlapped with
object i and ai is the volume of the region Ai. Bi is the boundary of object i,
bi is the area of the boundary Bi and I(x, y, z) is the intensity of the voxel at
coordinate (x, y, z).

The binary measure adjusts the relative position of two objects that are
connected by one edge in the graph. It is content free and does not depend on
the image data. When two objects are too close or too faraway compared to
the beginning status, the measure imposes a large penalty. If two objects have a
significant overlapping, the unreal configuration is also punished by the measure.
The binary measure is defined as,

Eb(pi, pj) = ||(Cpi
− Cpj

)− (Ĉpi
− Ĉpj

)||+ L · I{aij/aj > τ}, (3)

where Cpi
is the coordinate vector of the center of mass of object i at position pi

and Ĉpi is the initial center of mass of object i. ||v|| denotes the norm of vector v.
I{event} is an indicator function, i.e., if the event is true, I = 1; otherwise I = 0.
aj is the volume of object j, aij is the volume of the overlapping region between
objects i and j, and τ is a tolerance factor with respect to the overlapping extent.
L is a very large positive penalty.

The parameters α and β determine the weights between terms in the energy.
If we allow loose interaction among objects, we can set α to a large value. β helps
to reduce the difference in magnitude between the gradient and the variance. It
can be set according to the ground truth of the training image as follows,

βi = (
1
at

i

∫∫∫
At

i

(I(x, y, z)− I(At
i))

2dxdydz)/(
1
bti

∫∫∫
Bt

i

|∇I(x, y, x)|dxdydz), (4)

where xt represents the same quantity x(x = bi, Ai, ai, Bi) as aforementioned
except with the known position of object i superimposed on the training image.
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2.3 Optimization by Dynamic Programming

Once the energy is defined, we can then move the template around the input
image to find the optimal position for each object. In the process we regard
that positions with smaller energy are better than those with larger energy. The
optimization is challenging since the search space is huge. Suppose there are n
objects in a triangulated graph and for each object there are k possible positions
to choose. If we enforce exhaustive search for a global minimum, we need to
calculate the energy kn times. However, if we apply dynamic programming to
the optimization, the energy is calculated only (n − 2)k3 times with increased
spatial requirement.

Dynamic programming (DP) is a strategy that solves a problem by downsiz-
ing. A problem suitable for DP can usually be formulated in a recursive way. DP
simplifies the problem by solving a less complicated sub-problem first. When the
original problem is optimized, the sub-problem is also optimized on a smaller
support. Dynamic programming does the bookkeeping and records the optimal
extension from the sub-problem to the original problem. The downsizing contin-
ues until a sub-problem with a manageable scale is obtained and can be solved
easily. Afterwards, the solution of the smallest sub-problem is used to track back
to the solution of the original problem.

Dynamic programming can be applied to problems in various domains. In the
present context, a graph is eligible if there is always a cell (a connected subgraph
with 3 or more vertices) that has only one shared edge (we call it an anchor edge)
with the rest part of the graph before each downsizing. All the edges except the
anchor edge are exclusive to the cell. We call such a cell a dangling cell. The
simplest dangling cell is a triangle. It is not necessary that the graph has only
one kind of cell. The DP strategy is to collapse the dangling cell to the anchor
edge. The best configurations in the dangling cell for every possible configuration
of the two vertices of the anchor edge are memorized. Collapse the cells one by
one and the original graph is downsized to a much smaller scale. In each collapse,
the vertices in the dangling cell are eliminated except for the two vertices of the
anchor edge.

Take the current setting shown in Fig. 1 as an example. The cells are all
triangles. There are more than one dangling cells in the present iteration, e.g,
LAm-LHi-LTh, LPa-LPu-LTh, LV-LCa-LPu, and their anchor edges are LTh-
LHi, LPu-LTh and LV-LPu, respectively. We can choose any of them to start
collapsing. The sequence of vertices to be eliminated is called the elimination
order. We adopt for the graph an elimination order of (LAm, LHi, LPa, LCa,
LPu, LTh, RAm, RHi, RPa, RCa, RPu, RTh). After the 12 vertices are elimi-
nated, the graph is downsized to a single triangle which can be simply optimized
by brute force. The bookkeeping makes it possible to transit from a large graph
to a smaller one without loss of information. The bookkeeping is the process
of memorizing the best position for an eliminated vertex given the positions
of the vertices of the anchor edge in the same dangling cell. Note that all the
k2 position combinations of the vertices of the anchor edge need to be kept for
later use. For example, during the elimination of vertex LAm, DP memorizes the
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best position for each position combination of LHi and LTh. The corresponding
weights for each configuration are also registered, i.e. the sum of three weights
on vertex LAm, on edge LAm-LHi and edge LAm-LTh. Then, replace the old
weight on the anchor edge LHi-LTh with the above sum after deleting LAm and
its edges. Thus a smaller subgraph is generated. The iteration continues until
three vertices 4V, 3V and LV are left. We assume the true configuration of the
smallest subgraph is easily obtained. The backtracking from the last triangle to
the other ones is achievable thanks to the bookkeeping during downsizing. We
now know the best choices of the positions of some initial vertices, e.g. 4V, 3V
and LV. In the reverse order of elimination, we can find the best position of the
other vertices. For instance, the optimal position of RTh can be retrieved since
it is recorded in the bookkeeping of 3V and LV. 3V, LV and RTh are once in
the same dangling cell during the elimination and recall that the best position
of RTh is kept for every possible position combination of 3V and LV during the
bookkeeping process. The backtracking is then repeated for RPu, RCa and so
on. In the end, the optimal positions for all the eliminated vertices are found.

The pseudocode of the dynamic programming for the graph is shown in Al-
gorithm 1. The notations are as follows. N is the number of objects in the
graph. s is the number of possible poses for each object. Edge(p, q, i) is the op-
timal energy accumulated on edge i when the two objects a and b linked by
edge i have poses of p and q. Adj(i, j) is the index (the 3rd dimension in array
Edge) of the edge between objects i and j, if i and j are adjacent. Adj(i, j) = 0
otherwise. ElimOrder(i) is the ith object to eliminate. Tri(i, 1), Tri(i, 2) and
Tri(i, 3) are the three objects indices in triangle i. Tri(i, 1) is the first to elim-
inate. Triangle(p, q, i) is the optimal pose of the object Tri2Obj(i) which is
the first-to-eliminate object in triangle i and the two other objects a and b in
triangle i have poses of p and q. Obj2Tri(i) is the index (the 3rd dim in array
Triangle) of the triangle which the first-to-eliminate object is i.

It is worth pointing out that though the current setting of triangular collaps-
ing is similar to some existing methods [13, 14], the dynamic programming-based
framework can be applied to more complicated situations since the dangling cell
can be far more complex than a triangle.

After the dynamic programming is finished, we fine-tune the coarse segmen-
tation by means of the non-rigid B-spline registration between the input image
and the moved trained image [10]. The moved training image has been deformed
according to the displaced template obtained from the DP process. The similarity
metric for the B-spline registration is mutual information. The final segmenta-
tion is thus obtained by propagating the registered template label to the input
image.

3 Experiment

In the experiments, we applied the proposed method to the public database,
IBSR [15], which contains 18 sets of T1-weighted brain MR images with expert-
segmented internal structures. The bias-corrected images are of 256× 256× 128
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Algorithm 1 : Dynamic programming for a triangulated graph
Require: ElimOrder, Edge, Tri, Triangle, Obj2Tri
Ensure: pos, optimal

for each edge v do

for s1 = 1, · · · , s do

for s2 = 1, · · · , s do

Edge(s1, s2, v) = the binary measure for one object in position s1 and the
other object in position s2 (the two objects are linked by edge v);

end for

end for

end for

for i = 1, · · · , n− 3 do

c = ElimOrder(i), a = Tri(Obj2Tri(c), 3), b = Tri(Obj2Tri(c), 2);
for p = 1, · · · , s do

for q = 1, · · · , s do

minEnergy = a large number;
for r = 1, · · · , s do

e = accumulated energy on the edge linking a and c + accumulated energy
on the edge linking b and c + unary energy for object c in position r;
if e < minEnergy then

minEnergy = e;
Triangle(p, q, Obj2Tri(c)) = r;

end if

end for

Increase Edge(p, q, Adj(a, b)) by minEnergy;
end for

end for

end for

optimal = minp,q(Edge(p, q, 1));
for i = n− 3, · · · , 1 do

c = ElimOrder(i);
t = Obj2Tri(c);
pos(c) = Triangle(pos(Tri(t, 2), pos(Tri(t, 3), t);

end for

Return pos and optimal;

Probabilistic Models For Medical Image Analysis 2009

87



voxels with various voxel sizes. Some of the target structures in the data sets are
of low contrast and hard to detect even for human visual inspection.

Before executing the algorithm, we set the parameters of the method once
and they were fixed in all the tests. α was set to 4 since the average degree of
the vertices in the graph is around 4. We believe the overlapping of more than
10% of the object region is unacceptable so τ was set to 0.1. The grid size of the
third-order B-spline was 5× 5× 5. The search space for object positions was set
to be within the range of 5 × 5 × 3 voxels from the initial positions and hence
k = 75 poses were explored for each object/structure. The magnitude of the
whole search space for 12 objects was 7512. The segmentations of 4V, 3V and
LV were acquired from the training. Alternatively, we can adopt an automatic
method to segment the ventricles as in [10]. We adopted the commonly-used
Dice metric to quantify the difference between the segmentation results and the
ground truths. The Dice score is defined as Dice = (2||A⋂B||)/(||A|| + ||B||),
where A and B are two shapes to be compared. Dice equal to 1 means a perfect
match between two shapes and Dice equal to zero means no overlapping. The
larger the Dice score is, the more overlapping the two shapes have.

We randomly chose a subject in the data sets as the only template. Then
the proposed method was tested on the other 17 data sets. The Dice scores
for the segmentation results before and after the application of the proposed
approach are shown in Fig. 2. Here the initial segmentations are the regions
superimposed by the template before we apply the proposed method. It is ob-
served that the proposed method improves the segmentation of all structures by
more than 10 percentage points on average. When the initial segmentations have
a large variance, the DP-based method can decrease the variance and obtains
more consistent results. The experiments were run in MatLab codes on a 2.13
GH CPU with 1 GB memory. The average running time is around 74 minutes
per data set. We also show one example of the original image, ground truth and
the segmentation result in Fig. 3.

Fig. 2. The average Dice scores and their standard deviations for the initial segmen-
tation (left green bars) and the final segmentation (right yellow bars). Th: thalamus,
Pu: putamen, Ca: caudate, Pa: pallidum, Hi: hippocampus, Am: amygdala. Results of
the same type of left and right structures are combined.
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Fig. 3. One slice of a data set and corresponding segmentations. From left to right are
original image, ground truth, segmentation result, 3D visualization of the ground truth
and 3D visualization of the segmentation result.

4 Discussion and Summary

The same as other graphical models [10], the proposed method has some advan-
tages over other methodologies, such as level sets, fuzzy logic and registration-
based segmentation. For example, the graphical methods are usually more ef-
ficient than registration-based segmentation because the former processes the
structures directly while the latter makes use of the whole brain information.
Level set methods require the initialization to be close to the target. Otherwise,
the level sets will converge to irrelevant structures in the brain. The proposed
method circumvents the initialization problem by finding the global optimum
through dynamic programming.

Quantitative comparison of the proposed method with the related methods
is not conclusive because the methods were tested on different databases, tar-
geted different sets of structures, or evaluated by different similarity metrics.
The proposed method performed slightly better than a related method that was
also tested on IBSR [16]. Their Dice scores for caudate, hippocampus, amyg-
dala, putamen and pallidum were 0.76, 0.67, 0.63, 0.78 and 0.71. Ours are 0.76,
0.70, 0.64, 0.83 and 0.65. Generally speaking, in the related methods [5–7], the
Dice scores for caudate, putamen and thalamus ranged from 0.75 to 0.90. The
scores for pallidum, hippocampus and amygdala ranged from 0.60 to 0.75. The
proposed method achieved comparable accuracies.

One limitation about the current method is that although the dynamic pro-
gramming is capable of finding the global minimal energy, the energy formu-
lation itself is not perfect. It is not ensured that the global minimal energy
coincides with the true structure positions. It is an even more complicated case
considering that the template possesses moderately different shapes from the
true shapes. Theoretically, during the position search, we can allow sophisti-
cated shape search simultaneously but this will make the computational burden
formidable. It remains a profound future topic how to design a nearly-perfect
energy to accommodate various shape changes while enabling efficient optimiza-
tions. All in all, the current work upgrades previous methods [10, 11] based on
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simple graphs (e.g. trees) to a more advanced method. This DP-based method
allows more interaction in the relation graph and thus remains stable and robust
to error propagation in spite of more objects.
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