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Abstract

Segmentation of blood vessels and extraction of their
centerlines in 3D angiography are essential to diagnosis
and prognosis of vascular diseases, and advanced image
processing and analysis. In this paper, we propose a semi-
automatic method to perform those two tasks simultane-
ously. A user supplies two end points to the algorithm
and a vessel centerline between the two given points is ex-
tracted automatically. Local vessel widths are estimated as
byproducts. Additional anchor points can be added in be-
tween to handle difficult situation. Our method is based
upon a polygonal line algorithm. This algorithm is used to
find principal curves, nonlinear generalization of principal
components, from point clouds. We discuss an application
of principal curve to vessel extraction from a theoretical
view point. A novel algorithm is then proposed for the appli-
cation. No data interpolation is needed in the algorithm and
centerlines extracted are adaptive to the vasculature com-
plexity on account of their nonparametric representation.
We have tested the method on two synthetic data sets and
two clinical data sets. Results show that it has high robust-
ness to variation in image resolution, voxel anisotropy and
noise. Moreover, centerlines obtained are in subvoxel pre-
cision and local widths estimated are accurate under limit
of image resolution.

1. Introduction
Three-dimensional (3D) angiograms very often make di-

agnosis and prognosis of vascular diseases integral. They
provide comprehensive information on a circulation of in-
terest. Segmentation of these images, therefore, has its mer-
its in a clinical environment. It offers physicians to access
patient-specific 3D vascular models for effective and effi-
cient data comprehension. Centerline (axis) of vessels is
as important as the segmentation. It is a piece of crucial

information in advanced image analysis, viz. generating
fly-throughs of virtual endoscopy [8], studying populations’
vessel attributes [3] and making real-time 3D-2D vascular
registration possible [7].

Algorithms to extract vessel centerlines can be catego-
rized into two classes: (1) automatic and (2) semiautomatic.
The former class requires basically no user intervention in
producing vessel centerlines. The later one needs at least a
single user supplied point to kick off the execution. The au-
tomatic approach usually relies on a post-processing of the
vascular segmentation. There were several methods worked
along this line [15, 22, 16, 8]. Nevertheless, if one wants
to get a satisfactory centerline extraction, a topologically
and morphologically correct segmention (with no handles
and cavities) is compulsory which indeed is very difficult
to obtain from clinical data. Automatic methods that detect
centerlines directly from grayscale volumes based upon fil-
tering method [11] and level set evaluation [14] were pro-
posed. The performance of these algorithms depends on
a set of global parameters that is not trivial to determine.
Also, there is either zero local controllability of the solution
or further post-processing is required to connect detached
centerlines and expunge any plausible vessel axis.

Semiautomatic algorithms that require a single user sup-
plied start point include mathematical morphology-based
method [21] and iterative tracking (tracer-based) methods
[1, 5, 20]. The tracer-based methods are capable of produc-
ing centerline with subvoxel accuracy. Vessel axis is traced
from the user-defined point progressively. The direction of
the next axial point is determined locally with a structural
analysis. Florin et al. [5] exploited a Monte Carlo sampler
to enable tracking of branches at furcation. In one of our
previous works [20], we posed the tracking problem on a
probabilistic framework to allow interactive user interven-
tion in the middle of execution.

Tracking a centerline with a single start point, however,
is inadequate in some applications in which the user wants
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to control the destination point of the tracking. To solve this
problem, methods that permit users to supply start and end
points were developed [4, 19, 12]. One of these methods
exploit a minimal cost path algorithm on a graph defined
by the voxel spatial dimensions [4]. Wink et al. [19] and
Li and Yezzi [12] added one extra non-spatial dimension
(scale/vessel thickness) to the graph to make tracking of the
vessel interior more accurate. Nonetheless, the centerline
extracted consists of a sequence of connected voxels, which
is a very complex representation of vessel axis and indeed
it has no subvoxel accuracy.

The closest work related to this paper is the work by
Frangi et al. [6]. They modeled a vessel centerline with
a parameteric curve (B-spline) and searched the solution by
minimizing an energy functional defined along the curve.
The number of spline control points (knots) has to be pre-
defined. This makes their algorithm incapable of extracting
centerline of complex vasculature if this number is small, or
if there are too many knots redundant complexity is even-
tuated. During the evaluation of the objective function,
numerous interpolations of an image volume are required.
These operations are computationally expensive and may
prone to interpolation artifacts. In addition, if the user wants
to constrain the solution to pass through certain locations,
insertion of anchor points is not trivial in their algorithm.
This is because spline knots are not on the curve itself; thus
implementation of anchors has to be coupled with the com-
plexity of B-spline.

We propose a novel approach to attack the centerline ex-
traction problem with a non-parameteric curve and a polyg-
onal line algorithm that finds principal curve through an im-
age volume. A vesselness measure is used to characterize
vessel centerlines as in [6]. Besides, we utilize its corre-
sponding scale-space data to estimate the local vessel width;
and hence, vascular segmentation is obtained as a byproduct
in our method.

All the aforementioned flaws in [6] are eliminated on
this novel framework. Thanks to the polygonal line repre-
sentation, arbitrary number of vertices can be added to the
curve to make the centerline adaptive to vasculature com-
plexity. Users have full controllability in our method; ad-
ditional anchor points can be inserted, if needed, to handle
difficult situation, such as diseased portions and kissing ves-
sels. We treat voxel information as data points in a 3D space
(point cloud) and find a curve that passes through the “mid-
dle” of points whose locations show higher chance of exis-
tence of tubular structures. Because of this, no interpolation
is needed. Our method comprehends more information—
data points around the non-parameteric curve within its lo-
cal width—in determining a centerline, contrary to sole de-
pendency on the interpolated data along the spline as in
[6]. Furthermore, in experiments with 3D synthetic image
volumes, a magnetic resonance angiography (MRA) and a

computerized tomography angiogram (CTA), we demon-
strate that our centerline has subvoxel accuracy and high ro-
bustness to variation in image resolution, voxel anisotropy
and image noise.

2. Principal Curves to Extract Centerline and
Estimate Local Width

In this section, the theoretical background of principal
curves in extracting tubular structure centerline in grayscale
image volumes is discussed (Section 2.1). We then briefly
present the algorithm in Section 2.2. Details of three core
steps are given in Sections 2.3 and 2.4. Finally, a method to
derive useful information for estimating local vessel width
is presented (Section 2.5).

2.1. Background

Principal curves are a generalization of linear principal
components [9]. Consider a d-dimensional random variable
X = (X1, . . . , Xd) with finite second moments. The first
linear principal component is a straight line passing through
X (a set of realization of X) which minimizes the average
squared Euclidean distance to points x ∈ X. This line gives
the best linear summary of the data. Hastie and Stuetzle [9]
relaxed this linear requirement of principal components by
defining the notion of principal curves. Later Kégl et al.
[10] refined it by incorporating a length constraint.

According to their definition, a smooth curve f (t) =
(f1 (t) , . . . , fd (t)) is a principal curve in Rd parameterized
by a real argument t if

1. f does not intersect itself, i.e., a 6= b ⇒ f (a) 6= f (b),

2. f has a given length L inside any bounded region in
Rd, and

3. f is self-consistent, i.e., f (t) = E
(
X|f−1 (X) = t

)
,

where f−1 (x) is known as the projection index of point x
on the curve f ,

f−1 (x) = sup
t

{
t : ‖x− f (t) ‖ = inf

τ
‖x− f (τ) ‖

}
, (1)

the operator ‖ · ‖ denotes l2-norm in Rd. This projection in-
dex is the parametric variable t whose location on the prin-
cipal curve f has the shortest orthogonal distance (denoted
by inf ‖·‖) to the point x. If there exists more than one such
parametric variable, the maximum one is chosen to be the
projection index (denoted by sup {·}).

It is the self-consistency property of principal curves that
attracts our attention. This property is similar to the equidis-
tance property of medial axis of boundaries and shapes.
Self-consistency means that every point on the principal
curve coincides the “middle”/expected location of all the
data points that are closest to itself.



Along a similar research line [2, 10, 13], we apply prin-
cipal curves to extract tubular structures in grayscale im-
age volumes, particularly their centerline. Nonetheless, it is
very different from those previous works that we are work-
ing on non-binary data. Every input volume voxel center
is regarded as a data point. The self-consistency is defined
locally w.r.t. the width of a principal curve and by the voxel
intensities. The locality criterion is to neglect the influence
from irrelevant structures that are relatively far away from
vessel of interest (e.g., adjacent objects of no interest and
branches at furcation) in the image volume. The principal
curve to determine the centerline of a tubular structure is
therefore expressed as

f (t) = E
(
X|f−1 (X) = t

)

=

∑
x∈X,f−1(x)=t xP (x)∑
x∈X,f−1(x)=t P (x)

, (2)

and the projection index is given by

f−1 (x) = sup
t

{
t : ‖x− f (t) ‖ =

min
(
r (t) , inf

τ
‖x− f (τ) ‖

)}
, (3)

where r (t) is the associated local width of a tubular struc-
ture delineated by the principal curve f at t, data point x
denotes a voxel center, and P (x) gives the existence prob-
ability of a tubular structure centerline at x after normaliza-
tion with the denominator.

2.2. The Overall Algorithm

The overall algorithm to extract tubular structure center-
line is summarized in a flow diagram, as shown in Figure
1. It is based on an efficient algorithm proposed by Kégl
et al. [10] to find principal curves, namely polygonal line
algorithm. The output is a set of polygonal lines with k
segments under a length constraint that minimizes the aver-
age squared distance over input data points (image voxels
in our case). Hence, the output complexity is O (k), which
is typically much less than the number of image voxels. A
typical image volume usually consists of millions of voxels.
Nonetheless, less than a hundred points is normally suffi-
cient to model the centerline of a tubular structure which is
supposed to be smooth. This makes the polygonal line al-
gorithm an appropriate method to extract vessel centerlines,
contrary to the other two algorithms [9, 18] that give out-
puts with high complexity (number of curve points equals
the number of image voxels).

The algorithm begins with a user-defined curve. This
curve depicts a segment of tubular structure of interest. It
consists of at least two end vertices. The user picks the
vertices on planar reformatted images of an image volume.
The two end vertices have to be selected at the centerline of

Initialization

Projection Step

Local Width Re-estimation

Expectation Step

Avg. Segment Length
< Length Threshold?

Insert New Vertex

No

End

Yes

Start

Figure 1. Flow diagram of the polygonal line algorithm to extract tubular
structure centerline.

the structure of interest. Those two vertices are fixed (not
optimized) to avoid undesired shortening/lengthening of the
estimated centerline. This permits the user to gain a certain
control over the algorithmic output. If accurate locations of
the two end vertices is difficult to identify from the refor-
matted images, plausible position can be computed, as sug-
gested in [11], via finding the zero crossing of two functions
defined by image gradients and eigenvectors of Hessian ma-
trices (which denote the basis of a vessel cross-section) in a
local neighborhood. Additional vertices may be required if
the structure of interest deviates from a straight line signif-
icantly. Precise locating of additional vertices is, however,
not necessary (unless they are anchors, locations where the
centerline must pass through). Local widths of the initial
curve components (vertices and segments) are set to an ar-
bitrary value slightly greater than the physical size of an
image voxel.

Following the initialization is the projection step and re-
estimation of local width (Section 2.3). In the expectation
step, movable vertices (anchors are excluded as they are
fixed) are optimized sequentially with an objective func-
tion (Section 2.4). This objective function encourages the



curve to pass through the “middle” of a tubular structure.
A suboptimal solution is obtained with a gradient descent
method. Stopping criteria of the optimizer can be defined
by the maximum number of iterations, a tolerance on the
gradient magnitude or changes in optimization parameters
(i.e., coordinates of polygonal line vertex). Once the op-
timizer terminates, a new vertex is inserted to the longest
segment. This is to make the vertex sampling as even as
possbile. Then the algorithm goes to the next iteration. It
keeps iterating until the average curve segment length is be-
low a length threshold defined as a scalar multiple of the
voxel physical size. This is a straightforward stopping cri-
terion of the polygonal line algorithm for tubular structure
centerline extraction.

2.3. Projection Step and Local Width Estimation

In theory, the goal in the projection step is to determine
the projection index f−1 (x) of every data point x given
the current principal curve f . However, knowing the ex-
act index is not necessary, as we are not going to update the
principal curve on the parametric space. One elegant aspect
of the polygonal line algorithm is that the representation of
principal curve is very simple. It consists of only k + 1 ver-
tices v1, . . . ,vk+1 and k line segments s1, . . . , sk. There-
fore, it is sufficient to determine which component (either a
vertex or a segment) does a data point project onto.

We define 2k + 1 disjoint sets V1, . . . ,Vk+1,S1, . . . , Sk

to hold the data points that projected onto vertices and seg-
ments of f , respectively,

Vi =
{
x ∈ X : x /∈

⋃

j<i

Vj , δv (x,vi) ≤ W (vi)
2

,

δv (x,vi) = min
(

inf
m

δv (x,vm) , inf
p

δs (x, sp)
)}

, (4)

where δv (x,vi) = ‖x − vi‖, δs (x, si) returns the short-
est Euclidean distance from point x to the segment si and
W (vi) is the local width associated with the vertex vi,

Si =
{
x ∈ X : x /∈

⋃

∀m

Vm,x /∈
⋃

p<i

Sp,

δs (x, si) ≤ W (si)
2

, δs (x, si) = inf
j

δs (x, sj)
}

, (5)

where W (si) is the local width associated with the segment
si.

In other words, in the projection step, every data point is
placed into either a projection set of vertex v or segment s
if it is laid within the territory defined by the component’s
local width W (·) (analogous to the diameter of the tube
to be extracted). All the points in a particular projection
set share the same property that they are the closest to the
component but nothing else.

Suppose for each data point x we have two scalar values,
ε (x) and ω (x), associated with it. ε (x) represents likeli-
ness of the existence of tubular structure and ω (x) denotes
the scale at which the likeliness is computed. Local width
of the principal curve can be derived from these two quanti-
ties. ε (·) gives the confidence level of the scale-space data
ω (·) which is proportional to the width of a nearby tubular
structure. Hence, local width of the ith principal curve seg-
ment W (si) can be calculated as the expected scale-space
data of points in the projection set Si. Mathematically, it is
given by

W (si) = κ

∑
x∈Si

ω (x)Pi (x)∑
x∈Si

Pi (x)
, (6)

where κ is a constant that transfers the expected scale-space
data to the width of the detected tubular structure (see Sec-
tion 2.5), the denominator is for normalization and

Pi (x) = exp

(
− (1− ε (x) / maxy∈Si

ε (y))2

2 (1− C)2

)
, (7)

denotes an existence probability of a tubular structure at
data point x. C is a cutoff value of the normalized like-
liness in the exponent numerator, which controls the sen-
sitivity of Pi (·) towards ε (·). The cutoff value can be ei-
ther found empirically or calibrated with synthetic data with
known tubular width. Regarding the local width associated
with vertices of the principal curve, we set W (v) to the
maximum local width of its adjacent segment(s). A method
to compute ε (·) and ω (·) from grayscale image volumes is
described in Section 2.5.

2.4. Objective Function in Expectation Step

The objective function in the expectation step consists
of three cost functions. The first one implements the self-
consistency criterion and the other two cost functions are
for regularization. The implementation of Equation 2 can be
achieved by minimizing the expected normalized Euclidean
distance from projected data points to every vertex vi and
its adjacent segments. This encourages the polygonal lines
to pass through the “middle” of regions where tubular struc-
ture existence probability is high. The cost function is given
as

Edata (vi) =( ∑

j∈N (vi)

∑

x∈Sj

δs (x, sj)
W (sj) /2

Pj (x)

/ ∑

j∈N (vi)

∑

x∈Sj

Pj (x)

︸ ︷︷ ︸
Adjacent segment(s)

)

+

( ∑

x∈Vi

δv (x,vi)
W (vi) /2

P ′i (x)

/ ∑

x∈Vi

P ′i (x)

︸ ︷︷ ︸
Vertex (neglected)

)
, (8)



where N (vi) denotes a set of segment indices whose seg-
ment is adjacent to the vertex vi, Pj (x) is the function
given in Equation 7 for measuring the existence probability
of tubular structure and P ′i (x) is a similar function but with
the segment projection set S replaced by a vertex projection
set V. The function δ· (·) returns the shortest Euclidean dis-
tance from a data point to a principal curve component (de-
fined in Section 2.3). It is normalized by the local half width
of the component W (·)

2 . Since δ· (·) ≤ W (·)
2 (cf. it is one of

the conditions in the set definitions given in Equations 4 and
5), and their weights Pj (·) and P ′i (·) are normalized by the
denominator, value of Edata (·) is in the interval [0, 1].

In practice, the contribution from vertex in Edata (vi)
tends to drive the vertex vi towards the outer curvature re-
gion (area opposite to the curvature center). This is because
the projection region of vertex is squeezed into a plane in
the inner curvature area, and thus very likely there is no data
point projected onto the vertex. This asymmetric distribu-
tion of data points in Vi induces bias towards the outer cur-
vature region as the expected distances to those data points
are minimized. To get rid of this bias, we neglect the second
addend in Equation 8.

The second cost function accounts for the relative strain
induced by vertex dislocation due to optimization. Strain is
a measure on the degree of deformation. It is expressed as
the difference in placement of parts in a system. Numeri-
cally, the relative strain is given as

Estrain (vi) =

∑
j∈N (vi)

l (sj)−
∑

j∈N (vi)
l
(
s0
j

)
∑

j∈N (vi)
l
(
s0
j

) , (9)

where l (·) gives the length of the argument segment, sj and
s0
j denote the adjacent segments after and before the vertex

optimization, respectively. Estrain (·) returns value in R. It
calculates the relative change in segment length due to the
optimization, e.g. 0 denotes no change, 1 dentoes 100%
lengthening and −0.2 means 20% shortening.

The last cost function penalizes unevenness of vertices in
the polygonal lines. Even sampling of vertices in the prin-
cipal curve is essential to estimating a smooth tubular struc-
ture centerline. Too few/many vertices in a region would re-
sult in a straight lengthy curve/redundancy. This cost func-
tion measures the length ratio of adjacent segments at vertex
vi. It is expressed as

Eevenness (vi) = 1− min {l (sj) : j ∈ N (vi)}
max {l (sj) : j ∈ N (vi)} , (10)

giving a value in range [0, 1]; 0 denotes equal length in ad-
jacent segments indicating even vertex spacing in a local
neighborhood, if a segment is much longer than the other
one Eevenness (·) → 1.

In summary, the objective function exploited in the ex-

pectation step is given as,

E (vi) = Edata (vi)+

λ
k

k0

(
Estrain (vi) + Eevenness (vi)

)
, (11)

where λ ∈ R+ is a variable to control the influence of the
regularization terms. k and k0 are the numbers of vertices in
the current and initial curves, respectively. The multiplica-
tion of their ratio is to increase the importance of regulariza-
tion as the number of vertices increases to avoid overfitting.

2.5. Vesselness Measure and Scale-space Data

The tubular structure existence likeliness ε (·) and the
scale-space data ω (·) exploited in Section 2.3 are computed
with the multiscale line filter proposed by Sato et al. [17].
This method performs multiscale analysis on image volume
with the Hessian matrix to enhance bright tubular structures.
Filter responses are calculated based upon the eigenvalues
of Hessian matrix. Scale is referred to the σ parameter of
the second derivatives of Gaussian used in the Hessian ma-
trix computation. Multiple responses at discrete scales are
computed and aggregated with a maximum operator. We
use the aggregated responses as ε (·) in this work. Higher
response means higher likeliness of an existence of tubular
structure. The scale that has been chosen by the maximum
operator is kept in ω (·) as a scale-space datum. It provides
us with information on the local width of an enhanced tubu-
lar structure. Sato et al. [17] found experimentally that, for
a tube with bar-shaped cross-sectional profile, if σ equals
half of the tube width, maximum vesselness measure is ob-
served along the centerline in the scale-space. This suggests
that σ is an estimate of the half tube width and thus we have
κ = 2 in Equation 6.

3. Experimental Results
We have designed two synthetic data sets to demonstrate

the robustness of the proposed method to noise, changes in
image resolution and voxel anisotropy. They are both in
matrix size 200 × 60 × 60 with voxel size 1 × 1 × 1 arbi-
trary unit (a.u.), one of the sets is an image of a straight tube
with varying width (2× its radius) and the other set imaged
a curved tube in a fixed width. The straight tube runs along
the X-axis in the middle of the image volume. It starts with
a local width 16 a.u., changes progressively to 8 a.u. be-
tween the 40th−80th a.u. from the start point, and increases
to 12 a.u. between the 120th−160th a.u. from its origin. Fig-
ures 2(a)–(b) show the image volume and the tube. Voxels
inside the tube have intensity equals 255, for those outside,
they are set to 0. This synthetic data set is to evaluate our
method in estimating the local width of a tubular structure.
The curved tube given in Figure 2(d) runs along the X-axis,



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. (a)-(d) Synthetic data sets and the generating models (both cen-
terlines and tube surfaces). Slices from noiseless straight tube data set
(a) and its model (b). Slices from noiseless curved tube data set (c) and
its model (d). (e)-(h) Their noisy counterparts, extracted centerlines and
tubes built upon estimated local widths. Slices from the 5 dB (downsam-
pled by a factor of 2) straight tube (e) and the 10 dB (downsampled by a
factor of 4) curved tube (g). Centerlines and tube models estimated from
noisy straight (f) and curved (h) tubes. Surfaces are color-coded with the
half local width (in a.u.).

starts rotating around the axis anti-clockwisely for 360◦ at
the 25th a.u. from its origin and goes back to the X-axis at
the 175th a.u. from the start point. Its local width is kept
at 16 a.u., voxel intensity 255 denotes interior part and 0
represents the exterior. We evaluate the locations of the ex-
tracted tube centerline with this data set at various image
resolutions and noise conditions.

The experiments are conducted at the following condi-
tions: isotropic downsampling by factors of 1, 2 and 4
for the straight tube and 1, 4 and 8 for the curved tube;
anisotropic downsampling in the Z-direction by factors of
4 and 8 for the straight and curved tube, respectively; and
adding zero-mean Gaussian noise at signal-to-noise (SNR)
10 and 5 dB. These are to assess the effects of changes in
image resolution, voxel anisotropy and noise level on the al-
gorithmic performance, respectively. Downsampling is per-
formed with a linear interpolation method. SNR is defined
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Figure 3. Local width estimated along the centerline extracted vs. the
truth at different downsampling conditions (a) and noise levels (b). DS de-
notes downsampling by the factor followed, DS-Z denotes downsampling
in Z-direction.

as 20 log10 (A/σg), where A = 255 is the maximum in-
tensity of the image and σg is the standard deviation of the
additive Gaussian noise. SNR = 10 dB ⇒ σg = 80.6
and SNR = 5 dB ⇒ σg = 143.4. Image slices from a
5 dB straight tube and a 10 dB curved tube are given in
Figures 2(e) and 2(g), respectively. Once noise is added, in-
tensities are renormalized back to their original range (i.e.,
0 − 255). Local width estimations are evaluated visually
with line plots (local width vs. running distance from the
start point) against the truth local width. Accuracy of the
estimated centerline locations is quantified with the shortest
Euclidean distance to the truth.

Experimental results are presented in Figure 3 and Ta-
ble 1. Figure 3(a) shows the local width estimated at dif-
ferent downsampling conditions. Seven discrete scales are
exploited in the computation of the vesselness measure cov-
ering 3− 9 a.u., they are linearly sampled. The cutoff vari-



able C in Equation 7 and the weight λ of the regularization
terms in Equation 11 are determined empirically with the
noiseless straight and curved tube digital phantom, respec-
tively. It is found that C = 0.975 and λ = 0.2 generally
produce good width and centerline estimation. The stop-
ping criterion of the algorithm, average length of the polyg-
onal line segments, is set to 2 voxels of the lowest resolution
(i.e., 2×8 = 16 a.u.). At the original resolution, width esti-
mation is accurate, although there are small discrepancies in
the transition regions (40th−80th and 120th−160th a.u. from
the start point). Those discrepancies probably are due to the
discrete sampling in the scale-space. Errors are observable
at the narrow portion of the tube when the image volume is
downsampled by a factor of 2 isotropically and anisotropi-
cally along the Z-direction by 4. Such errors are prone to the
resolution limit; if there is 1 voxel error in the estimation,
the local widths approximated are 10 and 12 a.u. (truth is 8
a.u.) for those two downsampling conditions, respectively.
Errors are more significant in the volume downsampled by
a factor of 4. But still they are less than or equal to the worst
case (12 a.u.) owing to the resolution constraint.

For the noise sensitivity experiments, we apply the algo-
rithm to an image volume with resolution equals 1/2 of the
original. Results are presented in Figure 3(b). The error due
to the limitation of image resolution is alleviated in a noisy
condition (local widths estimated are more accurate, less
than 10 a.u., in general at the narrowed region in noisy data
than the noiseless counterpart, indeed a noiseless image is
very rare in a clinical environment). Large error with the
noiseless data may owe to intensity bias induced by image
averaging. This bias makes the narrowed region apparently
wider. Random noise and intensity rescaling may curtail
such biased effect eventuating in a closer width estimation.
Even in a severe noise condition (SNR = 5 dB), we found
that the estimation is satisfactory; the approximation errors
are within the error level due to the resolution limit. Figure
2(f) shows the centerline estimated and a tube model con-
structed with the approximated local width (surface is color-
coded with the half local width) of the synthetic straight
tube data set at noise level 5 dB.

Percentile statistics of the shortest Euclidean distance (in
a.u.) to the truth centerline locations of the curved tube are
tabulated in Table 1. The results are obtained with the stop-
ping criterion of the algorithm set to 2 voxels of the image
resolution. Image resolutions are listed in the second col-
umn of Table 1. 50%, 75% and 100% percentiles of the
data are given. The 100% percentile figures correspond to
the maximum shortest Euclidean distance to the truth. In
the brackets, distances are expressed as a fraction of a sin-
gle voxel, a value < 1 (in bold face) means the distance is
shorter than the physical size of a voxel. The results show
subvoxel accuracy in all situations, even in the 100% per-
centile. Exceptions are observed at the original resolution.

Table 1. Percentile statistics of the shortest Euclidean distance (in a.u.) to
the truth centerline locations of the curved tube. DS denotes downsampling
by the factor followed, DS-Z denotes downsampling in Z-direction, ∞ dB
means noiseless data set. Figures in brackets are ratios of the distances
to the voxel size, a value < 1 is highlighted in bold face emphasizing
subvoxel precision.

Voxel Percentiles of the shortest Euclidean
size distance to the truth locations (a.u.)

(a.u.) 50% 75% 100%

DS 1 1 1.28 (1.28) 1.80 (1.80) 3.25 (3.25)
DS 4 4 1.16 (0.29) 1.93 (0.48) 3.02 (0.75)
DS 8 8 2.84 (0.36) 3.47 (0.43) 4.75 (0.59)

DS-Z 8 8 1.43 (0.18) 2.23 (0.28) 3.63 (0.45)

∞ dB 4 1.16 (0.29) 1.93 (0.48) 3.02 (0.75)
10 dB 4 1.15 (0.29) 1.86 (0.47) 3.16 (0.79)
5 dB 4 1.24 (0.31) 2.16 (0.54) 3.54 (0.88)

(a) (b)

Figure 4. Slices from two clinical data sets, time-of-flight MRA of a cere-
bral circulation (a) and CT of a left pelvis showing the iliac arteries (b),
overlaid with the major vessels extracted. Tube surfaces are color-coded
with the half local width (in mm).

We found that it is due to the shifting of the maximum ves-
selness measure towards the center of curvature. Indeed it
is evidenced that our algorithm successfully tracks the loca-
tion where the vesselness measure is locally maximum.

All these experimental results suggest that the proposed
method is capable of determining tube centerlines in image
volumes with subvoxel accuracy. They also show that the
centerlines extracted have high robustness to noise, changes
in image resolution and voxel anisotropy. Furthermore, our
algorithm can produce accurate estimation of tubular struc-
ture local width (subjected to the resolution limit).

To demonstrate the application to clinical data, we have
tested our algorithm on two publicly available1 data sets,
they are a time-of-flight MRA of a cerebral circulation in
isotropic voxels and a CT of a left pelvis imaged iliac arter-
ies in anisotropic voxels. Figure 4 shows the major vessels
extracted. In our experience, 3 − 5 supplementary vertices
(in addition to two fixed end vertices) chosen nearby the de-
sired centerline is sufficient to give a good initialization to

1Available at http://www.gris.uni-tuebingen.de/edu/
areas/scivis/volren/datasets/new.html.



extract a long vessel segment.

4. Conclusion
A novel approach to extracting centerline of vessels in

a 3D angiography is proposed. Local vessel widths are ap-
proximated simultaneously while the centerline is extracted.
The method is based upon an algorithm known as polygo-
nal line algorithm. It is developed to find principal curve
in a cloud of d-dimensional data points. By definition, a
principal curve is a smooth curve that passes through the
“middle” of all the data points that are closest to itself. It is
a nonlinear generalization of principal component. On this
framework, centerline is modeled as a set of vertices and a
series of line segments that join the adjacent vertices. Local
width information is stored in each component (vertex or
segment) of the curve. As such vascular segmentation can
be obtained as a byproduct.

We have discussed, from a theoretical view point, on
how principal curve can be defined for extraction of tubular
structures, and proposed a novel algorithm for this appli-
cation. Our algorithm takes an iterative approach. It con-
sists of a projection step, re-estimation of local width of the
polygonal lines, and an expectation step. No data interpo-
lation is needed in this method. Centerlines extracted are
adaptive to the vasculature complexity; arbitrary number of
vertices can be added to the curve in order to model a long
vascular segment. Additional anchor points (that the cen-
terline must pass through) can also be inserted to handle
difficult centerline extraction situation. We have evaluated
the method on two synthetic data sets. Experimental results
show that centerlines extracted are in subvoxel accuracy and
local widths estimated are within the error level due to the
limit of image resolution. Furthermore, it is demonstrated
that our new method has high robustness to noise, variation
in image resolution and voxel anisotropy. We have also ap-
plied the proposed method to two publicly available clinical
data sets, from which vessels with branches and of various
width are extracted accordingly.

A more rigorous validation with relatively realistic syn-
thetic data or physical phantom data is of interest for future
research. In addition, it is worth studying the extraction
of small-radius vessel segments in a noisy environment and
comparing the performance of the proposed method with
some close works.
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