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The aim of this work is to develop a new framework for multi-object segmentation of deep brain structures
(caudate nucleus, putamen and thalamus) in medical brain images. Deep brain segmentation is difficult and
challenging because the structures of interest are of relatively small size and have significant shape
variations. The structure boundaries may be blurry or even missing, and the surrounding background is full of
irrelevant edges. To tackle these problems, we propose a template-based framework to fuse the information
of edge features, region statistics and inter-structure constraints for detecting and locating all target brain
structures such that initialization by hand is unnecessary. The multi-object template is organized in the form
of a hierarchical Markov dependence tree (MDT), and multiple objects are efficiently matched to a target
image by a top-to-down optimization strategy. The final segmentation is obtained through refinement by a B-
spline based non-rigid registration between the exemplar image and the target image. Our approach needs
only one example as training data. We have validated the proposed method on a publicly available T1-
weighted magnetic resonance image database with expert-segmented brain structures. In the experiments,
the proposed approach has obtained encouraging results with 0.80 Dice score for the caudate nuclei, 0.81
Dice score for the putamina and 0.84 Dice score for the thalami on average.
© 2009 Elsevier Inc. All rights reserved.
Introduction
Deep brain structures, such as the caudate nucleus, the putamen
and the thalamus, play a critical role in human brain functioning
(Packard and Knowlton, 2002). Almost all sensory information sent by
the neurons to the cortex goes through the thalamus structure.
Putamen is responsible for motor skills and reinforcement learning.
The caudate nucleus is known to be an important component of the
brain's learning, memory and language comprehension system.
Therefore, segmentation of deep brain structures has been an
essential technique in human brain image analysis, as deep brain
segmentation paves the way for many subsequent quantitative
analysis tasks, such as deformable neuroanatomies (Miller et al.,
1993), computational anatomy (Grenander and Miller, 1998), the
study of cerebral development and aging (Kandel et al., 2000), and
brain disease diagnosis (Iosifescu et al., 1997).

Since segmentation of brain structures has numerous practical
applications, it has been studied intensively and several methods have
been proposed in the medical image analysis community. One
common strategy used in the segmentation of brain structures is
principal component analysis (PCA), which is utilized to model the
shape variations (Yang et al., 2004; Tu et al., 2008; Tsai et al., 2004).
l rights reserved.
For example, the level set based segmentation method, proposed by
Yang et al. (2004), modeled the shapes of multiple objects by principal
components and considered the constraints of neighboring objects in
the maximum a posteriori (MAP) estimation framework. Tu et al.
(2008) proposed a hybrid method to learn high and low-level
information for brain structures, and each shape model was learned
by PCA. The method proposed by Tsai et al. (2004) utilized multiple
signed distance functions to represent the variations of multiple
shapes by means of several principal modes. However, due to its
linearity, PCA may not be able to properly model the multishape
variations of several neuro-anatomical structures simultaneously. This
is because even though the shape variation of a single structure can be
approximated by principal components, PCA can fail as a result of the
non-linear shape variation of multiple structures as a whole.

The second popular strategy used in the segmentation of brain
structures is fuzzy logic control (Barra and Boire, 2001; Ciofolo and
Barillot, 2005; Zhou and Rajapakse, 2005). This strategy can manage
the selection of various candidates of possible structures. Barra and
Boire (2001) proposed a fuzzy logic based segmentation method for
cerebral structures. This method was able to translate the descriptions
of expert experiences into a common theoretical frame. It aggregated
all the information for various structures and made the decisions to
deal with ambiguity and incertitude in order to get final results.
Another work that adopted the principles of fuzzy logic was proposed
by Ciofolo and Barillot (2005). The competitive level set based
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segmentation was integrated with the fuzzy control strategy. The
fuzzy decision system supervised the simultaneous evolution of
several active contours according to an anatomical atlas. Zhou and
Rajapakse (2005) suggested a method to create fuzzy templates from
a set of training images. Their method registered the fuzzy templates
with the test images, and made the decisions about the segmentation
by optimizing the certainty in intensity, location, relative position and
tissue type. The potential problemwith fuzzy logic is that it is difficult
to consistently provide highly accurate segmentation of various
intracranial structures because the relationship among those struc-
tures maintained by fuzzy logic is weak and imprecise. It will be
better to model the relations precisely; otherwise the segmentation
accuracy can dramatically decrease because the structures are of
small size.

Another popular technique used in the segmentation of cerebral
structures is level sets or active contours, which model the contour of
each structure (Duta and Sonka, 1998; Ciofolo and Barillot, 2005;
Cootes and Taylor, 2001; Tsai et al., 2004; Yang et al., 2004; Yang and
Duncan, 2004). The active shape model (Cootes and Taylor, 2001)
computed a statistical model based on landmark points marked in a
training set of images, and matched the model with the boundaries in
the input image to synthesize normal anatomy. Duta and Sonka
(1998) presented a 2D segmentation approach to improve the active
shape model in order to find new examples of previously learned
shapes using point distributionmodels. In the framework of level sets,
the method proposed by Yang and Duncan (2004) integrated the gray
level of each structure with shape prior information to form a joint
distribution based on a set of training images. A problem with the
active contour methods is the requirement of precise initialization of
the starting contours. Since the brain image abounds with various
edges and boundaries formed mainly by the borders between
cerebrospinal fluid, gray matter and white matter, the active contours
are unlikely to converge to the target structures unless the initializa-
tion is good enough. Another concern is that if most of the boundaries
of the structures (e.g. the thalamus) are missing, it is difficult to
converge to the target structures for the active contour method.

The third common methodology is registration-based subcortical
structure segmentation (Miller et al., 1993; Iosifescu et al., 1997; Pohl
et al., 2006, 2007a,b; Fischl et al., 2002; Gouttard et al., 2007; Khan et
al., 2008; Heckemann et al., 2006; Svarer et al., 2005; Powell et al.,
2008; Gousias et al., 2008). In these methods, a training gray level
image or an atlas is registered to a target image. The labels associated
with the training image or the atlas are thus propagated to the target
image and the segmentation is accomplished with the help of image
registration. For example, Pohl et al. (2007a) proposed a hierarchical
method for brain parcellation, including the segmentation of temporal
gyrus, amygdala and hippocampus. Their hierarchy was used to
represent relations between tissues and structures and the object in
the treewas a further subdivision of its parent object. The solutionwas
obtained by the expectation maximization algorithm combined with
spatial prior information from a registered probability atlas to identify
the invisible boundary of some structures. In the work of Powell et al.
(2008), the authors made use of the artificial neural networks and the
support vector machines to classify 25-element feature vectors
created from multi-modal brain MR images. One element in the
feature vector was obtained from the registration of a template to an
image and this element represented the probability that the
corresponding voxel belonged to one of the brain structures. Another
work based on image registration was proposed to combine the
existing software FreeSurfer and large deformation diffeomorphic
metric mapping (Khan et al., 2008). They used the labeling results
obtained from the probabilistic FreeSurfer as the initialization for the
succeeding fine-tuning by the diffeomorphic registration. Intensity
normalization was required in the preprocessing. Regions of interest
were extracted to enhance the efficiency of the computationally
expensive diffeomorphic registration.
Registration-based methods can be highly accurate because
sophisticated non-rigid registration techniques can be applied in a
meticulous way and the process makes use of context information
around each brain structure as much as possible. The main workload
of the atlas registration-based methods lies in the construction of an
informative brain atlas from a population of subjects. The construction
can be arduous because it is data-intensive. It is challenging to fuse
large amount of information from the population. Besides, the precise
non-rigid registration between the atlas/training image and the
various subjects is still an active research topic. The proposed method
in the current work can be regarded as a registration-based approach
as well. The novelty of the proposed method is that we introduce the
idea of detection into structure segmentation. The benefit has two
folds. First, we can focus on the specific structures of interest instead
of registering the whole brain or a considerable number of structures
at the same time (Powell et al., 2008; Pohl et al., 2007a). The
registration of the whole brain or a pool of structures offers the
context of the target structures but it also brings additional
computational costs. Moreover, it tends to deform two close structures
in a similar way. Second, the detection techniques make the
initialization of the positions of the target structures unnecessary.
The initialization can be completed either by hand (Ciofolo and
Barillot, 2005; Yang et al., 2004) or by stand-alone softwares (Khan
et al., 2008). In the proposed method, the initialization is performed
by the structure detection process. Experimental comparison of the
proposed work with closely related works (Powell et al., 2008; Khan
et al., 2008) can be found in the Discussion section.

One common requirement of the above-mentioned methods
(Sonka et al., 1996; Duta and Sonka, 1998; Ciofolo and Barillot,
2005; Pohl et al., 2006, 2007b; Tsai et al., 2004; Yang et al., 2004; Tu
et al., 2008; Yang and Duncan, 2004; Gouttard et al., 2007; Cootes
and Taylor, 2001; Zhou and Rajapakse, 2005; Powell et al., 2008;
Khan et al., 2008) is the need for sufficient training. The training
process requires a considerable number of segmented images with
the known ground truths. In clinical applications, it is labor intensive
for a radiologist to extract a large number of small 3D brain
structures manually. If a sufficient number of the ground truths is not
readily available, the segmentation performance will be adversely
affected. Even though the ground truths of some public databases
exist, the differences between the databases make it unsuitable for
one database to serve as a training set for other databases except in a
few works (Gousias et al., 2008). In addition, the training process can
be time-consuming and may take a long time to complete (Powell
et al., 2008).

In this paper, we propose a new template-based framework for the
segmentation of deep brain structures. Our segmentation framework
integrates detection strategies with shape matching. The framework
manages multi-object relations with a hierarchical tree structure and
evaluates candidates by some specific energy functions using edge/
region information and inter-object relationship. Only one example of
ground truth is required as the shape template. Each object or
structure in the template is allowed to deform individually according
to a series of transforms and a top-down optimization strategy. In our
framework, the complicated interaction among multiple structures is
simplified by using Markov dependence tree (MDT). MDT requires
that children objects only depend on parent objects. The rationale
behind the hierarchical structure is that not all objects are the same in
terms of detection difficulty. We assign the easiest object to detect as
the tree root and arrange the other objects hierarchically according to
their detection difficulty.

This paper is organized as follows. The Methodology section
presents the details of our proposed framework including multi-
object template construction, MDT energy optimization strategy, root
object detection and segmentation, combined single-part and pair-
wise-part measures, and the implementation details. Experiments
and validation are given in the Experiments and validation section.
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The Discussion section discusses the proposed framework and the
Summary section concludes the paper.

Methodology

In this section, we present our framework for multi-object
segmentation. The framework is based on a hierarchical detection
model and takes into consideration both the high-level shape
constraints and the low-level voxel-based properties.

Overview

The rationale of the proposedmethodology is grounded on the fact
that a complex object can be divided into several parts (or
components), and various appearances of the object can be modeled
by manipulating each part. We can regard multiple objects with
different shapes as one large complex object. In medical applications,
multiple anatomic object recognition, detection or segmentation can
be achieved by using this strategy.

In our proposed framework, we organize multiple objects using a
Markov dependence tree, in which each object except the root is
dependent on its parent object. We first need to detect a root object,
which acts as the footstone of the tree structure. The other objects are
then matched with the target object in the input image volume and
the matching result for each object is evaluated with an energy
function. Part-to-part interaction is also considered in the energy
function and the relative position of interactive parts can be altered. In
our hierarchical framework, part-to-part interaction is employed
between parent and child objects. Every object is allowed to under-
take a rigid transform followed by an affine transform during the
matching until a coarse segmentation of multiple objects is obtained.
The final segmentation is acquired after we fine-tune the coarse
segmentation by using non-rigid B-spline registration between the
exemplar image (i.e., the training image) and the target image on a
structure-by-structure basis. The flowchart of our framework is drawn
in Fig. 1.

Multi-object template construction

A training example is composed of a gray level image and its
segmentation (ground truth). As the prior knowledge, a high-level
multi-object template is constructed based on the segmentation of the
training example. Two elements of the template have to be specified:
Fig. 1. The flowchart of the proposed framework. The template is a binary image formed
by the multi-object segmentation of the training image. The ventricles are regarded as
root object. The hierarchical detection and segmentation are based on the single-part
and the pairwise-part measures with sequential rigid and affine transforms. The
training image is gray-leveled.
one is the approximate shape of each object and the other is the
dependency among the objects. A tree structure, which we call
Markov dependence tree (MDT), is adopted to describe the relation-
ship among the multiple objects of interest. The basic rule is that the
pose1 of every object depends on its parent's pose except for the root
object, which has no parent. The pose of a parent object is
independent of the poses of its child objects. This hierarchical
structure greatly simplifies the interactions among those objects. For
a set of N objects, we need to consider about N(N−1)/2 relations if
all possible pairwise relations are considered. In contrast, we only
need to consider N−1 relations if we adopt the relation graph of a
tree structure.

The energy of the Markov dependence tree (MDT) model can be
formalized as,

E Pð Þ =
X
i

Mi pið Þ +
X
i

X
j=parent of i

Ti;j pi jpj
� �

; ð1Þ

where E(P) denotes the objective energy of the tree model, Mi(pi) is a
single-part measurement, pi is the pose of part i, Ti,j measures a child-
to-parent compatibility between parts i and j, and P is the set of poses
of all parts.

We construct the multi-object template from one example of
segmentation results of the target multiple objects. Only the ground
truth of a single data set is needed in order to form the prior shape
model and estimate related parameters. Instead of requiring a number
of training images to either generate the atlas of the whole brain or
estimate the related parameters of the shape model, the proposed
method chooses a simple way to construct the prior shape model.

For the segmentation of deep brain structures, we construct a
three-level hierarchical template, as shown in Fig. 2. The ventricles are
the tree root, the caudate nuclei are at the second level, and the
putamina and the thalami are at the third level. The ventricles, whose
boundaries are relatively sharp, are the most prominent object among
the structures. The caudate nuclei cling to the ventricles and have
sharper boundaries and more homogeneous intensity than the
putamina and the thalami so we assign the caudate nuclei as the
child objects to the ventricles and place the putamina and the thalami
at the third level of the model. It is a reasonable model from the point
of view of detection. We put objects relatively easier to detect on the
higher levels (closer to the root) in the tree. As such, the detection of
“hard” objects depends on the detection of “easy” objects but not vice
versa.

MDT optimization

Once the multi-object template is ready, we can start to map the
template to the input image. The mapping results are evaluated
based on the MDT energy, as stated in Eq. (1). It is difficult to find
the exact minimum of the MDT energy since the searching space is
huge if all the parts are allowed to deform simultaneously. In
addition, the energy profile is not convex or concave and has a lot of
local minima.

Hence, we adopt an optimization strategy suitable for the tree
structure. The strategy is based on a top-to-down style from the root
object to the leaf objects. We start to optimize one object only after its
parent object is optimized and fixed. The optimization is evaluated by
both two energy terms that are related to the object, i.e., single-part
termMi and pairwise-part term Ti,j. When the optimization is finished,
the current object is fixed and then we go on to optimize its child
objects.

The hierarchical optimization strategy fits with the spirit of using
tree structure. We assign the relatively easy-to-detect objects at the
1 A part pose is the set of points inside the part. In this work, it is represented by a
binary image with the same size as the input image.



Fig. 2. A three-level Markov dependence tree representing the relations between deep
brain structures.

Fig. 3. The flowchart of detection and segmentation of the root object. Tissue
segmentation is performed by finite mixture model optimized by the expectation
maximization algorithm. The voxels with the lowest intensity are extracted from the
rough ventricle segmentation and then they are used as seeds for the region growing
with constraint of neighborhood connection.
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high level (close to root) in the MDT. Since the caudate nucleus is
easier to detect than the putamen or the thalamus and harder to
detect than the ventricle, the pose of the caudate nucleus depends on
that of the ventricle instead of those of the putamen and the thalamus.
This dependency is reflected in the tree as the form of unilateral
dependence of children on their parent. Therefore, during the
optimization, once a parent object is matched according to image
content and its parent, it is fixed and will not be affected by the results
of the matching of its children. This strategy is reasonable as well as
computationally efficient.

We make use of the Powell's method as the optimizer to minimize
the energy terms that are related to each object. Powell's method is an
efficient direction-set-based method that does not need to evaluate
the gradient of object function. More details about the Powell's
method can be found in (Press et al., 1992).

Detection and segmentation of root object

The root object is the cornerstone of the whole multi-object
template. Therefore, we select an object that is relatively easier to
segment as the root object. In the segmentation of deep brain
structures, the ventricles are selected as the root object since they
have relatively sharp boundaries. The brain ventricles are full of
cerebrospinal fluid and have different intensity from the surrounding
white matter and gray matter.

However, the detection and segmentation of the ventricles are not
easy tasks and there are not many directly related research works in
the literature. In the proposed framework, we adopt an automatic
method without specifying initial seeds. First, we perform tissue
segmentation to classify voxels in the brain image volume into white
matter (WM), gray matter (GM), cerebrospinal fluid (CSF) and others.
The voxel-based segmentation is implemented through a Gaussian
mixture model, which is optimized by the expectation maximization
algorithm. We mainly focus on the segmentation results of CSF, which
permeates the ventricles. Then we register the ventricle shape in the
template to the CSF binary segmentation map according to the single-
part measurement Mi in the MDT evaluation function (Eq. (1)). After
this, we know the rough position of the ventricles in the original
image. To obtain more accurate boundary of the ventricles, the
proposed method further extracts automatically some seeds with the
lowest intensity among the rough ventricle segmentation. The reason
is that CSF has the lowest intensity compared withWM and GM in the
deep brain region in T1-weighted MR images. At the final stage, we
perform a neighborhood connected region growing algorithm (Ibanez
and Schroeder, 2005) based on the selected seeds to extract the
ventricles. The flowchart of the segmentation of the root object is
shown in Fig. 3.

Single-part measures

In this subsection, we focus on the first term of the objective MDT
energy (Eq. (1)), which depicts the measurement of the registration
of a single part in the target image. The single-part measures are
data-driven while the pairwise-part measures (the second term) are
data-independent. Note that the single-part and the pairwise-part
measures are simultaneously in effect in the energy optimization.

In the proposed method, we make use of the gradient informa-
tion, intensity variance and edge distance to register a single part to
the image. The energy Mi for the single-part measurement is
formulated as,

Mi pið Þ = αe1 pi j Ið Þ + βe2 pi j Ið Þ + γe3 pi j IEð Þ; ð2Þ

where pi is the pose of part i, I is the input image intensity and IE
refers to the edge map of the image volume. α, β and γ are the
correspondingweights, which do not need to sum up to one. The three
terms, e1, e2 and e3, are discussed below.

The first term e1 considers the gradient of the part region
boundary. If the mean gradient magnitude (normalized by the
boundary area) is large, it is believed that the region has a clear
boundary and deserves a low energy. The term is formulated as,

e1 pi j Ið Þ = − 1
bi

Z Z Z
Bi

jjI x; y; xð Þ jdxdydz; ð3Þ

where Bi is the boundary of part i, bi is the area of the boundary Bi and
I(x, y, z) is the intensity of the voxel at coordinate (x, y, z).

The second term e2 in Eq. (2) focuses on the gray level variations
within the part region. It prefers a region with smaller intensity
variance and is expressed by,

e2 pi j Ið Þ = 1
ai

Z Z Z
Ai

I x; y; zð Þ− I Aið Þ� �2dxdydz; ð4Þ

where Ī(Ai) is the mean intensity in the image region Ai that is
overlapped with part i and ai is the volume of the region Ai.

The third term in Eq. (2) encourages the partial Hausdorff distance
between the boundary of part pi and the image edge map to be as
small as possible.

e3 pi j IEð Þ = PHD Bi; IEð Þ; ð5Þ

where Bi is the boundary of the pose of part i. PHD, the partial
Hausdorff distance (Huttenlocher et al., 1993), refers to the kth largest
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distance of all the points in one point set to the other set, and is
defined as,

PHD Bi; IEð Þ = kth max
aaBi

min
baIE

D a; bð Þ; ð6Þ

where D(·,·) denotes the Euclidean distance of two points.

Pairwise-part measures

When one part is registered to the input image volume using the
single-part measures, at the same time we also adjust its pose by
means of the pairwise-part measures. The reference part for the
current part is its parent in the Markov dependence tree. This
matching is data-independent because it will only consider the
relationship between the parent and the child parts rather than the
image content. Through the pairwise-part measures, we can eliminate
some false detections of part poses via the high-level interactions and
constraints from the close objects. Note that the matching will only
change the pose of the child part while the parent pose is fixed. Triple-
part or more interactions can be considered but the relation graphwill
not be tree-structured and thus the computational burden will
increase considerably. The matching of two interactive parts is
evaluated by the following energy function Ti,j,

Ti;j pi jpj
� �

= δe4 pi jpj
� �

+ fe5 pi jpj
� �

+ ηe6 pi jpj
� �

; ð7Þ

where pi and pj are the poses of parts i and j, respectively. δ, ζ and η
are corresponding weights of each term, which do not need to sum up
to one.

The first term e4 checks the distance between the centers of mass
of two parts i and j, and tries to keep the parts in a short distance. It is
defined as,

e4 pi jpj
� �

= D Cpi
;Cpj

� �
; ð8Þ

where D(·,·) denotes the Euclidean distance of two points. Cpi is the
center of mass of part i, which is calculated by,

Cpi
=

1
ai

Z Z Z
Ai

xdxdydz;
Z Z Z

Ai

ydxdydz;
Z Z Z

Ai

zdxdydz

!
;

0
BB@ ð9Þ

where ai is the volume of the image region Ai that is overlapped with
part i, assuming uniform density is 1. (x, y, z) are the coordinates of the
voxel in region Ai.

The second term e5 is pertinent to the scale difference of the two
interactive parts. It assures that the two parts have similar levels of
scaling.

e5 pi jpj
� �

= ‖si − sj‖; ð10Þ

where si and sj are the vectors of scaling (which has three elements in
3D) of the parts i and j, respectively. Operator ||·|| refers to the
magnitude of a vector.

The third term of Ti,j deals with the overlapping problem. It
penalizes the situation that the overlapping of two parts exceeds a
certain extent.

e6 pi jpj
� �

= I aij = aj N τ
n o

; ð11Þ

where I{event} is an indicator function, i.e., if the event is true, I=1;
otherwise I=0. aj is the volume of part j, aij is the volume of the
overlapping region between parts i and j, and τ is a tolerance factor
with respect to the overlapping extent.

During the matching process of all the objects in the Markov
dependence tree, we adopt two transforms sequentially for every
object. First, we perform a simple 3D similarity transform and its
degree of freedom is 7. The transform equation of similarity transform
can be expressed by,

V V= TtTrSV ; ð12Þ

where V=(x y z 1)T and V′=(x′ y′ z′ 1)T are the coordinate vectors
of a voxel before transform and after transform, respectively. Tt and
Tr are the standard translation and rotation transform matrices,
respectively. S is the standard isotropic scaling transform matrix.

Next we adopt affine transform to deform each object based on the
initialization obtained from the results of similarity transform. The
matching process with affine transform is conceptually the same as
that with similarity transform because they refer to the same
evaluation energy function (Eq. (1)) and go through the same
matching process. The degree of freedom of affine transform is 12
for 3D objects. The transform equation can be expressed by,

V V= TtTrTshTscV ; ð13Þ

where Tt, Tr, Tsh, Tsc are the translation, rotation, shearing, anisotropic
scaling transform matrices, respectively.

Refinement by non-rigid registration

After we obtain the coarse segmentation as a result of template-
to-image matching with low-dimensional transforms, a non-rigid
registration with a high-dimensional transform is performed to
achieve more freedom of deformation in order to refine the
segmentation. We adopt B-spline as the deformation field and
Mutual Information as the similarity metric for the registration
between the training image and the target image. The non-rigid
registration method is basically the same as free-form deformation
(FFD) (Rueckert et al., 1999) but other non-rigid registration can
also be used in place of FFD. B-spline based registration was found
to have better performance than affine or fluid registrations when
applied to smaller cerebral structures (Crum et al., 2004).

We perform the non-rigid registration on a structure-by-structure
basis instead of matching all the structures together. This allows us to
fine-tune the shape of each structure and keep the computational
costs low. The initialization of the registration is acquired from the
coarse segmentation from the previous step. In the previous step, we
obtain the resultant transform matrices (similarity and affine) so that
we can deform the corresponding structure in a region of interest
(ROI) of the training image accordingly. This deformed ROI image is
served as the moving image for the non-rigid registration. The ROI
with the same size and position in the target image is served as the
fixed image. After the non-rigid registration is done, we deform the
coarse segmentation according to the deformation field resulting from
the registration and thus obtain the final segmentation of each
structure.

Estimation of weights

In the energy function of MDT (Eq. (1)), there are six parameters
(α, β, γ, δ, ζ, η) that can be adjusted. From the angle of energy
minimization, one of the parameters can be fixed and the other five
are free parameters. We propose an automatic method to estimate the
free parameters based on the prior multi-object template. Note that
the template is obtained from a training gray level image and its
ground truth is known. We can calculate the six terms (e1 to e6) in the
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objective energy function based on the training image and the
corresponding true poses of each structure. After the values of the six
terms are calculated, we can estimate the weights of each term by
means of their ratios as follows,

α : β = e2 pti j I
� �

: je1 pti j I
� �

j ;

α : γ = e3 pti j IE
� �

: je1 pti j I
� �

j ;

α : δ = e4 pti jptj
� �

: je1 pti j I
� �

j ;

α : f = e5 pti jptj
� �

: je1 pti j I
� �

j ;

α : η = 1 : je1 pti j I
� �

j ;

ð14Þ

where pi
t and pj

t are the true poses of parts i and j in the training image
I, respectively. IE is the edge map of I. We further set α=1, and then
the six parameters can be determined. Since the importance of each
term is roughly the same,we try and equalize theweights of each term
according to the values obtained from the true poses. For example,
based on the ground truth, the value of mean gradient of one part (e1)
may be much larger than the value of intensity variance of that part
(e2). If the weights of e1 and e2, α and β, are unadjusted (i.e., both are
set to 1), then e1 will dominate e2 in the optimization process.
However, using the above estimation strategy, it can be seen that all
six terms have similar effect in the minimization process. There are
some other minor parameters to be estimated. For instance, the lower
and upper thresholds of the neighbor connected region growing can
also be set according to the example data since we know the range of
intensity of the ventricles in the ground truth.

Implementation issues

The proposed framework can be readily implemented by various
Insight ToolKit (ITK) algorithms, which are available in open source
codes.2 For example, we implemented the main framework of the
proposedmethod bymeans of a model-based registration in ITK, i.e., a
model-to-image registration. We used binary images from the
training ground truth to represent the model, which depicts the
shape of each structure. ITK offers various transforms to deform
model/template and we chose 3D similarity transform and affine
transform. The B-spline based registration was implemented by the
combination of B-spline deformable transform, LBFGSB optimizer and
Mutual Information metric in ITK. ITK also provides some simple
algorithms that can be used in our framework, such as neighborhood
connected region growing for the ventricle segmentation and Canny
edge detector for the edge map construction. More details about the
above-mentioned algorithms can be found in the ITK Software Guide
(Ibanez and Schroeder, 2005).

Experiments and validation

In the experiments, we have applied the proposed methodology to
the segmentation of deep brain structures. We focus on the
segmentation of six gray matter brain structures, i.e., the left and
right caudate nuclei, the putamina, and the thalami. These six deep
brain structures are often studied in brain anatomy (Cootes and Taylor,
2001; Pohl et al., 2006, 2007b; Sonka et al.,1996; Tsai et al., 2004; Yang
et al., 2004; Tu et al., 2008; Zhou and Rajapakse, 2005; Iosifescu et al.,
1997; Fischl et al., 2002; Yang and Duncan, 2004). However, they are
difficult to segment automatically due to their small sizes and blurry
boundaries. For a normal person, the largest structure among these six
structures is the thalamus and has the volume around 6000–
8000 mm3 (viz. 6–8 ml), as compared with the normal adult human
2 Insight ToolKit, available online at: www.itk.org.
brain volume, which is over 1200 ml. The image volumes (number of
voxels multiplied by voxel size) in the experiments are 8815–
12,583 ml. Due to their small sizes, it is challenging to detect and
locate the deep brain structures in a 3D image.

The testing data set was obtained from the Internet Brain
Segmentation Repository (IBSR),3 which includes 18 high-resolution
brain T1-weighted MR scans with expert segmentations of the
internal structures. The MR brain data sets and their manual
segmentations were provided by the Center for Morphometric
Analysis at Massachusetts General Hospital and are available publicly.
The resolution of each scan is 256×256×128 voxels. The voxel size is
0.9375×0.9375×1.5 mm3 for 8 scans, 1.0×1.0×1.5 mm3 for 6 scans
and 0.8371×0.8371×1.5 mm3 for 4 scans. The T1-weighted volu-
metric images have been positionally normalized into the Talairach
orientation (rotation only) and have been processed by the CMA bias
field correction routines. More information about the data sets can be
found in the IBSR website.

We took the ground truth of one data set in the database as the
shape template and treated the other 17 sets as the target (testing)
image volumes. Note that even in the same database, the data sets
bear some extents of dissimilarity in terms of voxel size, intensity
profiles and intracranial structure morphology since the data were
obtained from different subjects.

We implemented the proposed framework with the help of
Insight Toolkit (ITK) 3.0.1. using C++ on the platform of Microsoft
Visual C++ .NET 2003. The computational time on each data set is 1
to 2 hours on a 2.13 GHz CPU with 1 GB memory.

The main parameters of the proposed method can be set according
to the methods proposed in the Estimation of weights subsection. The
variance and threshold of the Canny edge detector were fixed at 1.0
and 2.0, respectively. The parameter K for partial Hausdorff distance
was set to 0.1⁎ ||Bi||. We used a third order B-spline with grid size of
5×5×5. τ was set to 5%. Note that all the model parameters are set
once for all experiments and the results of different input data are
based on the same set of parameters.

We have compared our results with the expert segmentations
available from the IBSR database, which are considered the “gold
standard”. The extent of the overlapping between the experimental
results and the ground truth was measured by a widely used index,
Dice similarity coefficient (DSC) (Dice, 1945). It is defined as,

DSC =
2‖A \ B‖
‖A‖ + ‖B‖

; ð15Þ

where A and B are two point sets to be compared. ||·|| denotes the
number of points in the point set. DSC reflects the extent of the
overlapping between two point sets.When it equals 1, the two sets are
perfectly overlapped. The smaller the measure is, the less overlapping
the two sets have. The range of DSC is [0, 1].

Since we adopt B-spline registration at the last stage (i.e.,
refinement) of the proposed method, we are interested in the results
of direct application of B-spline registration on the same data sets. In
direct B-spline registration, due to the local deformation of B-spline,
we register the gray level training image with the testing image first
by the global (rigid and affine) transforms. We then apply the same B-
spline registration as described in the proposed method (see the
Refinement by non-rigid registration subsection). The comparison
results are plotted in Fig. 4. Apart from the direct B-spline results and
the final results of the proposed method, we also show the
intermediate results before refinement in the proposed method.
From this comparison, it is observed that the results of the proposed
method are significantly better than those of the direct B-spline
registration especially for smaller structures like the caudate nucleus
3 Internet Brain Segmentation Repository, available online at: www.cma.mgh.
harvard.edu/ibsr/.

http://www.itk.org
http://www.cma.mgh.harvard.edu/ibsr/
http://www.cma.mgh.harvard.edu/ibsr/


Fig. 4. The accuracy comparison of segmentation results in terms of Dice similarity
coefficient (DSC). The average results obtained from the direct B-spline registration,
intermediate and final segmentations of the proposed method are represented by
green, blue, and red bars, respectively. The standard deviations are shown in error bars
on top. The test data is 17 sets in IBSR.

1033J. Wu, A.C.S. Chung / NeuroImage 46 (2009) 1027–1036
and the putamen. This is because direct B-spline method registers two
whole brain scans locally and may not deform effectively a small local
structure without distinct features when significant deformation
occurs across different subjects. On the contrary, the proposedmethod
targets directly the small structures and focuses on the refinement
within the region of interest. As compared with the intermediate
results, the final results also improve the segmentation accuracy
thanks to the B-spline registration with a good initialization. The B-
spline registration allows more freedom of the shape deformation
than the rigid or affine registration in the previous stages. Therefore, it
can match two structures more precisely.

We found that the mean DSC and the standard deviation for the
ventricles were 0.87 and 0.04, respectively. Segmentation of the
ventricles is important whenwe study the volume of the ventricles in
brain diseases (Chou et al., 2008). Since the current work focuses on
deep brain structural segmentation of normal brains, we do not focus
on the segmentation results of the ventricles in this paper. We
randomly chose nine data sets in the IBSR database to serve as the
template one by one and performed the same segmentation
experiment on the remaining 17 sets nine times. We can subdivide
Table 1
Each row lists the structure-wise DSC results (mean±standard deviation, the best and wors
template.

Testing RCN LCN LP

Mean±SD Best Worst Mean±SD Best Worst Mean±SD Best Wors

1 0.77±0.05 0.82 0.70 0.79±0.02 0.81 0.73 0.82±0.01 0.84 0.79
2 0.82±0.03 0.86 0.77 0.81±0.02 0.84 0.78 0.81±0.02 0.83 0.78
3 0.80±0.06 0.87 0.69 0.79±0.04 0.89 0.73 0.81±0.02 0.85 0.77
4 0.81±0.03 0.87 0.77 0.80±0.02 0.83 0.77 0.81±0.03 0.86 0.78
5 0.83±0.05 0.92 0.75 0.81±0.03 0.85 0.77 0.83±0.04 0.90 0.79
6 0.80±0.04 0.85 0.73 0.79±0.03 0.87 0.76 0.81±0.02 0.84 0.78
7 0.80±0.04 0.86 0.73 0.79±0.04 0.83 0.72 0.82±0.03 0.86 0.78
8 0.79±0.03 0.82 0.75 0.78±0.02 0.81 0.74 0.81±0.02 0.84 0.79
9 0.80±0.03 0.84 0.75 0.81±0.03 0.84 0.77 0.80±0.01 0.83 0.79
10 0.79±0.04 0.84 0.73 0.80±0.02 0.84 0.78 0.79±0.04 0.85 0.72
11 0.79±0.04 0.85 0.73 0.80±0.03 0.86 0.77 0.82±0.03 0.85 0.77
12 0.78±0.04 0.83 0.72 0.80±0.02 0.84 0.78 0.81±0.02 0.84 0.78
13 0.78±0.04 0.85 0.73 0.80±0.04 0.86 0.73 0.82±0.03 0.87 0.78
14 0.83±0.04 0.88 0.75 0.80±0.04 0.87 0.75 0.82±0.03 0.86 0.78
15 0.80±0.03 0.84 0.74 0.80±0.03 0.83 0.72 0.81±0.02 0.85 0.77
16 0.80±0.04 0.90 0.76 0.79±0.03 0.86 0.76 0.81±0.03 0.87 0.78
17 0.79±0.03 0.83 0.75 0.79±0.03 0.85 0.75 0.81±0.02 0.85 0.79
18 0.82±0.03 0.88 0.78 0.80±0.02 0.84 0.77 0.82±0.01 0.85 0.80
Average 0.80±0.04 0.87 0.72 0.80±0.02 0.84 0.76 0.81±0.02 0.86 0.77

LCN(RCN) = left(right) caudate nucleus. LP(RP) = left(right) putamen. LT(RT) = left(righ
the result pool by fixing the testing subject or the template. The
subdivided results are listed in Tables 1 and 2. Table 1 lists the
structure-wise DSC results (means, standard deviations, best cases
and worst cases) for the individual testing subjects based on all
templates. It is noted that, for each testing subject, it was not used as
the template in its corresponding experiments. Table 2 lists the
structure-wise DSC results (means, standard deviations, best cases
and worst cases) for the individual templates. For each template, it
was applied on the remaining 17 testing subjects. Judging from the
results listed in the tables, we find that the proposed method is
tolerant of different templates and produces accurate segmentations
consistently. For a given testing subject, the results based on different
templates are similar and within a reasonable variance (standard
deviation is not larger than 0.05 for the DSC values). For a given
template, the segmentation results of different testing data sets are
also similar (standard deviation is not larger than 0.05). From the
results listed in Tables 1 and 2, we find that all six types of structures
segmented by the proposed method have good overlaps (mean
DSCN0.80) with the expert segmentations. When DSC is larger than
0.7, the segmentation result has a good overlap with ground truth for
objects of small sizes. We can perform a simple calculation to justify
this. Suppose we have a small cubic object with the size of 10×10×10
voxels. If the segmentation is also a 1000-voxel cube but is shifted by 1
voxel along each of the three dimensions, the DSC for this
segmentation is 0.729. In this case, the segmentation is close to the
ground truth but the DSC is near 0.73. Similarly, the volume of the
deep brain structures is small and a small misalignment with ground
truth will cause the DSC to drop dramatically. In the literature, the
segmentation of even larger objects (e.g. brain tissues) with DSC over
0.7 is regarded as good (Cuadra et al., 2005).

In addition to the quantitative evaluation, we present a visual
inspection of the experimental results. In Fig. 5, we show the results of
direct B-spline segmentations, intermediate and final segmentations
of the proposed method. Two data sets are chosen. One (left) is above
average and the other (right) is below average in terms of the
resulting accuracy of the proposed method. Although the intensity
profile, shape appearance of the structures and location of the brain
are different among these images, the three methods are able to
perform reasonable segmentations. As a whole, in terms of 3D
morphology, the three results are similar because they all originate
from the same binary template (prior shape), and both the direct and
refining B-spline use Mutual Information as similarity measure. The
t cases) of one fixed testing subject based on all other templates, except for itself as the

RP LT RT

t Mean±SD Best Worst Mean±SD Best Worst Mean±SD Best Worst

0.83±0.04 0.89 0.78 0.84±0.0 2 0.87 0.81 0.84±0.03 0.89 0.78
0.83±0.03 0.87 0.79 0.85±0.01 0.87 0.84 0.84±0.03 0.90 0.81
0.83±0.01 0.85 0.81 0.86±0.02 0.89 0.84 0.83±0.03 0.87 0.77
0.81±0.03 0.84 0.77 0.86±0.02 0.88 0.82 0.85±0.04 0.91 0.79
0.81±0.04 0.88 0.75 0.86±0.02 0.88 0.83 0.87±0.03 0.91 0.82
0.83±0.03 0.89 0.79 0.86±0.02 0.89 0.84 0.85±0.02 0.88 0.82
0.80±0.03 0.85 0.74 0.86±0.02 0.90 0.83 0.84±0.03 0.88 0.78
0.84±0.02 0.86 0.81 0.85±0.03 0.91 0.80 0.84±0.02 0.86 0.81
0.80±0.04 0.88 0.77 0.85±0.02 0.87 0.82 0.83±0.04 0.89 0.75
0.82±0.03 0.87 0.79 0.86±0.01 0.87 0.84 0.84±0.04 0.92 0.78
0.83±0.02 0.87 0.79 0.86±0.02 0.88 0.83 0.84±0.02 0.86 0.81
0.82±0.02 0.85 0.79 0.84±0.02 0.87 0.82 0.85±0.02 0.88 0.83
0.84±0.04 0.90 0.79 0.85±0.03 0.88 0.82 0.85±0.02 0.88 0.82
0.83±0.03 0.86 0.79 0.86±0.03 0.92 0.81 0.84±0.03 0.89 0.78
0.83±0.03 0.88 0.78 0.87±0.02 0.89 0.83 0.85±0.02 0.88 0.82
0.80±0.03 0.86 0.75 0.85±0.02 0.88 0.83 0.83±0.03 0.90 0.81
0.82±0.03 0.86 0.75 0.85±0.02 0.88 0.82 0.86±0.03 0.91 0.82
0.81±0.03 0.85 0.76 0.85±0.02 0.88 0.83 0.84±0.02 0.87 0.81
0.82±0.03 0.88 0.77 0.85±0.02 0.89 0.82 0.84±0.03 0.89 0.79

t) thalamus.



Table 2
Each row lists the structure-wise DSC results (mean±standard deviation, the best and worst cases) of the remaining 17 testing subjects based on one fixed template.

Template RCN LCN LP RP LT RT

Mean±SD Best Worst Mean±SD Best Worst Mean±SD Best Worst Mean±SD Best Worst Mean±SD Best Worst Mean±SD Best Worst

1 0.80±0.04 0.85 0.73 0.80±0.04 0.85 0.72 0.81±0.02 0.85 0.79 0.82±0.02 0.88 0.79 0.86±0.02 0.89 0.83 0.85±0.02 0.88 0.81
2 0.81±0.03 0.87 0.74 0.81±0.05 0.89 0.72 0.82±0.05 0.90 0.72 0.83±0.04 0.89 0.74 0.87±0.03 0.92 0.82 0.84±0.04 0.91 0.75
3 0.79±0.03 0.84 0.73 0.79±0.02 0.83 0.76 0.82±0.02 0.86 0.77 0.83±0.02 0.89 0.79 0.85±0.02 0.88 0.82 0.83±0.02 0.86 0.78
4 0.79±0.04 0.85 0.70 0.79±0.01 0.82 0.77 0.82±0.02 0.85 0.78 0.81±0.04 0.88 0.75 0.85±0.02 0.88 0.82 0.84±0.02 0.89 0.77
5 0.80±0.05 0.90 0.72 0.79±0.02 0.82 0.77 0.81±0.02 0.84 0.77 0.82±0.03 0.90 0.78 0.86±0.02 0.88 0.80 0.84±0.02 0.88 0.80
6 0.80±0.04 0.86 0.74 0.79±0.02 0.82 0.76 0.82±0.02 0.85 0.79 0.81±0.03 0.86 0.75 0.84±0.02 0.87 0.81 0.84±0.03 0.89 0.78
7 0.80±0.05 0.92 0.69 0.79±0.02 0.82 0.75 0.80±0.02 0.83 0.77 0.82±0.03 0.88 0.77 0.86±0.02 0.89 0.83 0.86±0.03 0.91 0.81
8 0.81±0.05 0.88 0.72 0.81±0.03 0.86 0.77 0.81±0.02 0.86 0.78 0.81±0.03 0.87 0.75 0.85±0.02 0.88 0.83 0.84±0.02 0.87 0.78
9 0.80±0.03 0.85 0.74 0.81±0.01 0.84 0.79 0.81±0.02 0.85 0.78 0.83±0.03 0.89 0.77 0.85±0.02 0.89 0.83 0.86±0.03 0.92 0.79
Average 0.80±0.04 0.86 0.74 0.80±0.03 0.85 0.75 0.81±0.02 0.85 0.78 0.82±0.03 0.87 0.78 0.85±0.02 0.88 0.83 0.84±0.03 0.89 0.80

LCN(RCN) = left(right) caudate nucleus. LP(RP) = left(right) putamen. LT(RT) = left(right) thalamus.
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intermediate results have the smoothest boundaries. The final results
are the closest to the ground truth because they are not over-
smoothed as compared with the intermediate ones and they preserve
better relative poses than the direct B-spline method. From 2D
inspection, we can see that the direct B-spline method cannot
simultaneously locate all the structures precisely.

Discussion

The proposed framework enjoys several significant advantages
over some existing multi-object segmentation methods.

1. The training burden is lessened. Unlike the existing methods
(Sonka et al., 1996; Duta and Sonka, 1998; Ciofolo and Barillot,
2005; Pohl et al., 2006, 2007b; Tsai et al., 2004; Yang et al.,
2004; Tu et al., 2008; Yang and Duncan, 2004; Gouttard et al.,
2007; Cootes and Taylor, 2001; Zhou and Rajapakse, 2005;
Powell et al., 2008; Khan et al., 2008) which require a number of
ground truths in order to perform sufficient training before
running the segmentation, our proposed method requires less
training workload by using the detection strategy in the MDT-
based model. The shape template, as prior knowledge in the
proposed framework, stems from one example and hence the
training set is a singleton. This advantage can abate the manual
work in clinical applications. If there is no ground truth
available for a certain population, the proposed method is
quick and convenient to apply because only one manual
segmentation is needed.

2. Initialization is unnecessary. In our proposed method, there is
no need to initialize the objects at some specific locations
because our algorithm automatically detects the root object by
matching the root in the MDT with the result of brain tissue
segmentation. The proposed method can detect the target
structures within the brain images without the need of
initialization. In contrast, the level set based methods (Duta
and Sonka, 1998; Ciofolo and Barillot, 2005; Cootes and Taylor,
2001; Tsai et al., 2004; Yang et al., 2004; Yang and Duncan,
2004) require the initial curves to be placed inside or very close
to the target structures. Registration-basedmethods (Pohl et al.,
2006, 2007b; Fischl et al., 2002; Iosifescu et al., 1997; Khan et al.,
2008; Heckemann et al., 2006; Gouttard et al., 2007; Gousias et
al., 2008) can obviate the problem of contour initialization but
unfortunately, it is difficult to build an informative and effective
atlas for brain structures and warp the atlas to input brain
images using non-rigid registration.

3. It is applicable to missing boundaries. In addition to the edge/
region information, the proposed framework further considers
the interactions between objects. Under the constraint of MDT,
the thalami are assigned to leaf objects and after their parent
objects are located, they can be segmented successfully. The
performance of the active contour methods (Tsai et al., 2004;
Yang et al., 2004; Yang and Duncan, 2004) may be adversely
affected when these methods are employed to segment the
thalamus, whose boundary is difficult to locate even by human
eyes.

4. It enjoys greater flexibility. We can change the current terms in
the evaluation energy, the transform matrices or the B-spline
non-rigid registration to other alternatives. For example, we can
replace the current shape descriptor (dense binary images)
with other complicated deformable models, such as simplex
mesh (Delingette, 1999), elastic models (Pitiot et al., 2002) and
spherical wavelets (Nain et al., 2007).

It is very difficult to compare the proposed method with other
related works experimentally for several reasons. The source codes of
the related works are usually not available to public. Moreover, it is
hard to implement the related methods independently. Even though
the related methods are perfectly replicated, there are still some
critical problems such as how to perform the relevant intensive
training, estimate and tune a series of parameters, or construct a
complicated brain atlas. These problems are challenging and hencewe
only compare the proposed method with other related works
conceptually if the quantitative results on the same database are not
reported in those works.

The work of Ciofolo and Barillot (2005) reported quantitative
results of the segmentation of the deep brain structures on the IBSR
database. It reported the DSC results for the caudate nucleus, the
putamen and the thalamus as 0.65, 0.70 and 0.77, respectively with 8-
minute computational time on average. Obviously the proposed
method outperformed their work as the proposed method has a more
flexible architecture to model the interrelation among neuro-
anatomical structures to deal with the small and subtle objects in
deep brains than the fuzzy control in Ciofolo and Barillot (2005).

In a recent paper (Powell et al., 2008), the authors reported highly
accurate segmentation results of deep brain structures (caudate: 0.91,
putamen: 0.92, thalamus: 0.93) on a database which is not available
publicly. However, their method required a sufficient and time-
consuming training process before the artificial neural network or
support vector machine could be employed. The training took one day
to complete. Moreover, the high accuracy obtained by their method
was achieved by the utilization of multiple channels in MRI (i.e., T1
and T2), which could make easy the segmentation of deep brain
structures. In the proposed method, we only rely on the information
obtained from the T1-weighted MR images. Another difference
between the work of Powell et al. (2008) and ours is that the former
segmentation is based on the result of tissue segmentation. We do not
perform tissue segmentation prior to structure segmentation to avoid
the effect of imperfectness in the tissue segmentation.

In another paper on segmentation of subcortical structures (Khan
et al., 2008), the reported results for healthy right caudate nucleus,
putamen and thalamus (a different database from IBSR) were 0.81,
0.83 and 0.86, respectively. The accuracies were similar to ours but



Fig. 5. Two sets of data (the first row), their ground truth (the second row), results obtained from the direct B-spline registration (the third row), intermediate results (the fourth
row) and final results (the fifth row) using the proposed method. For each ground truth or result, we show a 2D slice, 3D surface reconstruction and 2D close-ups.
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their computational cost (10 to 15 h for FreeSurfer, and over one hour
for LDDMM using multi-processors) was significantly higher than
ours (1 to 2 h). Moreover, as the initialization, FreeSurfer required a
training set of 41 manually labeled brains to construct the atlas. The
proposed method, on the other hand, requires only one training brain.

Some of the related methodswere tested on some of the structures
studied here. For example, the work of Gousias et al. (2008) reported
the accuracies for left caudate nucleus from 0.87 to 0.90 based on a
different database from ours. The method in Gouttard et al. (2007)
obtained the accuracies for caudate and putamen at 0.76 and 0.78
based on IBSR data sets. Heckemann et al. reported the accuracies for
right caudate nucleus and right thalamus at 0.84 and 0.86 based on a
private database. Other related works on multi-object segmentation
(Litvin andKarl, 2005; Tsai et al., 2004; Yang et al., 2004) did not report
the quantitative results of the segmentation of deep brain structures.
One advantage of the proposedmethod over those methods is that we
circumvent the intractable blurry boundaries of brain structures, such
as the thalami, byemphasizing the relative position to other deep brain
structures. On the contrary, the level set based methods used in Litvin
and Karl (2005), Tsai et al. (2004), and Yang et al. (2004) may not be
able to perform the segmentation of the thalami when facing objects
with weak edges and gradients. Even the use of the idea of “active
contours without edges” (Chan and Vese, 2001) cannot significantly
improve the methods (Yang et al., 2004; Yang and Duncan, 2004) to
find the missing boundaries of the thalami, which are located in the
complicated environment in brains. Some voxels outside the thalami
are darker than the thalami, e.g. CSF and background. Other voxels
outside the thalami are brighter, e.g. white matter. The average
intensity of the outside region is close to the average intensity of the
inside region, which may not evolve the contours correctly.
The proposedmethod can be particularly useful in the case that the
ground truths of a specific data set are not available. The data set may
be obtained from a population with special characteristics related to
aging or a specific kind of pathology. The ground truths from the other
populations can be inappropriate to serve as the training examples for
this data set due to the absence of the distinctive features. For the
proposed method, only a single ground truth for one datum in this
data set is needed to obtain from the expert. The proposed method
offers an alternative to the conventional methods requiring many
training examples.

The limitation of the proposed method lies in the template
originating from a single manual segmentation. It is possible that
the singularity in the manual segmentation can propagate to the
automated segmentation. In this sense, the template trained from
multiple manual segmentations is advantageous since the anomaly
from a single subject can be smoothed out. When a larger training set
is available, it may be beneficial to perform an atlas selection to make
use of all training information (Rohlfing et al., 2004). Alternatively, we
can fuse the segmentation results of the test imagewhich are obtained
from the registrations with each training image (Heckemann et al.,
2006). Further improvement on the consistency and accuracy of the
current method can be achieved by the decision fusion or atlas
selection strategy.

Summary

This paper has proposed a novel framework for segmentation of
multiple brain structures in a complex background. The framework is
integrated with detection techniques and the relationship among
multiple structures (objects) is organized by using a Markov
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dependence tree. We have validated the proposed method on the
medical segmentation of deep brain structures and showed its
accuracy and efficiency. As compared with other related works, the
proposed method has the following advantages: automatic initializa-
tion, training from a single example, segmentation of objects with
missing boundary, and flexible multi-object segmentation framework.
The current framework is general and can be naturally applied to other
multi-object detection and segmentation applications in the future.
Future work may include the incorporation of more brain structures,
upgrade to more interactions in the graphical model and tests across
different databases.
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