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Abstract—In this paper, we propose a new framework for tackling face recognition problem. The face recognition problem is

formulated as groupwise deformable image registration and feature matching problem. The main contributions of the proposed method

lie in the following aspects: (1) Each pixel in a facial image is represented by an anatomical signature obtained from its corresponding

most salient scale local region determined by the survival exponential entropy (SEE) information theoretic measure. (2) Based on the

anatomical signature calculated from each pixel, a novel Markov random field based groupwise registration framework is proposed to

formulate the face recognition problem as a feature guided deformable image registration problem. The similarity between different

facial images are measured on the nonlinear Riemannian manifold based on the deformable transformations. (3) The proposed method

does not suffer from the generalizability problem which exists commonly in learning based algorithms. The proposed method has been

extensively evaluated on four publicly available databases: FERET, CAS-PEAL-R1, FRGC ver 2.0, and the LFW. It is also compared

with several state-of-the-art face recognition approaches, and experimental results demonstrate that the proposed method consistently

achieves the highest recognition rates among all the methods under comparison.

Index Terms—Face recognition, deformable image registration, groupwise registration, Markov random field, correspondences, anatomical

signature
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1 INTRODUCTION

AUTOMATIC face recognition (AFR) plays an important
role in computer vision. Its application includes, but

not limited to financial security, human-computer interac-
tion, and law enforcement. AFR remains an active yet chal-
lenging research topic mainly due to three issues. First,
facial expressions of the same person can cause large and
deformable motions across different facial images [1], [2].
Second, the image appearances can be significantly altered
due to illumination changes [3], [4]. Third, facial images
taken under different poses also bring additional difficulty
in achieving high recognition rates [5], [6].

Many novel methods have been proposed in the litera-
ture for AFR, and they can be broadly classified into two
main categories: holistic methods [7], [8], [9], [10] and
local feature matching methods [11], [12], [13], [14].
Holistic methods use the whole facial regions as input
and derive a salient subspace to analyze the similarity
between different facial images. Therefore, the core prob-
lem of holistic methods is about how to define the princi-
ples and optimization criteria to construct the subspace
such that the facial images can be projected to the sub-
space and their similarity can be measured. For instance,
Turk and Pentland [7] used the principle component

analysis (PCA), which is also known as ”eigenface” to
project the facial images to the subspace with minimum
least square reconstruction error. Belhumeur et al. [8] pro-
posed the use of linear discriminant analysis (LDA) to
project facial images to the subspace which simulta-
neously maximizes the inter-class distances while mini-
mizing the intra-class variations. Bartlett et al. [15]
proposed the independent component analysis (ICA) to
construct the subspace such that higher order pixel-wise
relationship can be captured. In order to analyze facial
images in the nonlinear high dimensional feature space,
kernel based methods were also proposed [16], [17]. In
[18], Yan et al. proposed a general graph embedding
framework, where different dimensionality reduction and
subspace learning methods such as PCA [7], LDA [8],
LPP [19], ISOMAP [20], and LLE [21] can all be reformu-
lated within this framework. Recently, Wright et al. [22]
proposed a sparse representation framework for face rec-
ognition in the original facial space, and Naseem et al.
[23] proposed a linear regression approach for face
recognition.

Local feature matching methods extract image appear-
ance features from different local regions of facial images,
and the extracted features are combined and served as the
input to a classifier. It is shown that local feature matching
methods generally are more robust to local illumination
changes and expression variations [13], [14], [24]. Two rep-
resentative features used in local feature matching methods
are Gabor wavelet [25] and local binary patterns (LBP) [11].
Gabor wavelet can be viewed as bandpass filters which ana-
lyze facial images in different frequency bands, with differ-
ent orientations and scales. LBP is a powerful yet efficient
local image descriptor which is originally proposed for tex-
ture classification [26] and has been widely extended to
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other classification problems by different researchers [11],
[27]. In recent years, many local feature matching methods
were developed based on Gabor wavelet and LBP. For
instance, Zhang et al. [12] extracts LBP features from the
Gabor filtered responses for face recognition. In [13] and
[14], magnitudes and phases of the Gabor filtered responses
are integrated with microscopic local pattern features to
conduct face recognition. A comprehensive study about the
comparison between holistic methods and local feature
matching methods for face recognition can be found in [24].

In recent years, there are new methods proposed to
model the facial expression process as diffeomorphic trans-
formations [28], [29], [30] to aim the recognition task. For
instance, Guo et al. [29] proposed a generative method to
model the dynamic facial expression with the diffeomorphic
growth model. Moreover, image registration is also served
as a possible solution for pose-invariant face recognition
problems [31], [32]. In this paper, we propose a new way to
tackle face recognition problem, which is formulated as
groupwise deformable image registration and feature
matching. The basic principle of the proposed method is to
first construct the common group mean facial image space
on the Riemannian manifold, and the similarity among dif-
ferent facial images is compared by warping facial images
to the common group mean space. The main contributions
of the proposed method are summarized as follows. First,
instead of using pixel intensity alone, anatomical features
are extracted from each pixel position of the facial images
from its corresponding most salient scale local regions. A
new salient region detector is proposed based on the sur-
vival exponential entropy (SEE) theoretical measure. Sec-
ond, based on the anatomical signature calculated from
each pixel position, a feature guided Markov random field
(MRF) groupwise registration framework is proposed to
construct the group mean facial image space on the Rieman-
nian manifold in hierarchical manner. Finally, the proposed
method is an unsupervised learning method. A preliminary
version of this work appeared in [33].

The proposed method has been extensively evaluated on
four publicly available databases: FERET, CAS-PEAL-R1,
FRGC ver 2.0, and LFW. It is also compared with several
state-of-the-art face recognition approaches, and experimen-
tal results demonstrate that the proposed method consis-
tently achieves the highest recognition rates among other
methods under comparison.

The rest of the paper is organized as follows: Section 2
describes the background with respect to groupwise
deformable image registration and shows how to formulate
the face recognition problem as a groupwise image registra-
tion problem. Section 3 introduces the feature guided MRF
groupwise registration framework for face recognition. Sec-
tion 4 gives the experimental results and related analysis.
Section 5 concludes the whole paper.

2 GROUPWISE IMAGE REGISTRATION AND ITS

USAGE FOR FACE RECOGNITION

In this section, the background knowledge about groupwise
deformable image registration is described and the motiva-
tion of formulating the face recognition problem as group-
wise image registration problem is presented.

2.1 Groupwise Image Registration

In computer vision, the role of image registration is to trans-
form images taken from different times, sensors, view-
points, or different coordinate systems into a common
coordinate system or space, such that comparisons can be
made across different images in a common image space.

Given n input images I1; . . . ; In, the conventional pairwise
registration strategy first selects an image from I1; . . . ; In,
namely the fixed image Ifix, to serve as template. Then, the
goal is to transform each image Ii ði ¼ 1; . . . ; nÞ, namely the
moving image Imov, to the space of fixed image Ifix [34], [35].
The pairwise registration process can be viewed as an itera-
tive optimization problem, as shown in Fig. 1. First of all,
image features are extracted from input images. Of course,
the most simple feature is the original facial images alone.
Then, the optimal transformation fopt is estimated based on a
pre-defined parametric transformation model (in this paper,
it is deformable transformation). fopt is estimated by optimiz-
ing the value of a similarity measure function E, which
reflects the registration quality at the current iteration. To
optimize E, an optimization scheme (i.e., optimizer) is
needed. Also, interpolation of the moving image is required
in the case that some pixels of the transformed moving image
do not fall exactly on the image grid of the fixed image. The
registration process thus can be expressed by

fopt ¼ arg min
f
Eðc� Ifix;fðc� fðImovÞÞÞ; (1)

where c denotes the feature extraction kernel,� denotes the
convolution operation.

However, it is recently observed that [36], [37] explicitly
selecting one of the images as the fixed image will lead to
bias in registering all the other images to it. The main reason
is that the geodesic distance between the fixed image and
some of the moving images on the Riemannian manifold
represented by deformable transformations may be very
large and difficult to register. Therefore, groupwise registra-
tion strategies have become widely used [36], [37], [38], [39].
Groupwise registration does not explicitly select an image
as the template. Instead, it simultaneously estimates the
template Î (i.e., the group mean) and the transformation fi
to warp each image Ii ði ¼ 1; . . . ; nÞ to Î by minimizing

JðÎ;fiÞ ¼
Xn

i¼1

ð’ðÎ;fiðIiÞÞ2 þ �RegðfiÞÞ; (2)

where ’ð�Þ is the cost function reflects the matching degree,
and Regð�Þ is the regularization term enforced on fi to pre-
vent unrealistic and unsmooth deformable transformations.

Fig. 1. The schematic illustration of the pairwise registration process.
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� is the parameter controlling the tradeoff between the
matching term and the regularization term. Î is the Fr�echet
mean on the non-euclidean Riemannian manifold defined by

Î ¼ 1

n

Xn

i¼1

fiðIiÞ: (3)

The general groupwise registration framework is illus-
trated in Fig. 2.

2.2 Face Recognition as a Groupwise Image
Registration Process

Intuitively, faces are topological objects, and motions of
faces have close relationship with deformable transforma-
tions. For instance, the variation caused by facial expres-
sions, which is one of the major challenges for face
recognition, is a physical deformable and topology preserv-
ing transformation. It can be well formulated by the regis-
tration problem reflected in Equations (1) and (2). Similarly,
if robust anatomical features and similarity measure func-
tions are defined, then the registration process can also be
robust against illumination changes.

Therefore, we are motivated to formulate the face recogni-
tion problem as deformable image registration and feature
matching problem. The most straightforward solution is to
register each query image to each training image in a pair-
wise manner, and classify the query image to the person
which has the resulting smallest energy function value in
Equation (1). However, as discussed in Section 2.1, formulate
face recognition in this way has two limitations. First, the
query image is to transform each individual training image’s
space for comparison, comparing the energy function value
obtained in different image space is problematic. Second,
this strategy is sensitive to outliers and registration to a spe-
cific training image already introduced bias. To resolve the

above two limitations, we propose a novel groupwise regis-
tration framework for face recognition, the basic principle of
the proposed method is summarized in Algorithm 1.

In the next section, we will introduce the feature guided
hierarchical MRF groupwise registration framework for
face recognition.

3 THE FEATURE GUIDED HIERARCHICAL MRF
GROUPWISE REGISTRATION FRAMEWORK

There are two main stages for the proposed registration
framework. First, anatomical features are extracted from
each pixel position at its corresponding most salient
scale as the pixel signature. Second, based on the
extracted features, the deformation model is formulated
as a MRF labeling problem to perform groupwise regis-
tration in a hierarchical manner.

3.1 Anatomical Signature Construction for Each
Pixel

The first step of the proposed registration framework is
to extract salient anatomical features at each pixel loca-
tion to reflect the structural property around the pixel in
facial images.

It is shown in [40] that saliency of features is closely
related to the scale from which the features are extracted.
Important structures in facial images such as noses, mouths,
and eyes have different sizes and shapes. Therefore, ana-
tomical features should be extracted with different scales of
interest from different facial regions to ensure their saliency
and representation power.

We measure the saliency based on local image structural
complexity. Specifically, the survival exponential entropy
[41], [42] was used as a statistical measure for local image
structural complexity. It is defined by

MaðXÞ ¼
Z

Rmþ

F
a

jXjðxÞdx
 ! 1

1�a

; (4)

where a � 0 is the order of SEE, it is set to 3 in this paper by
cross validation. X 2 Rm is a m-dimensional random vector.

Fig. 2. The schematic illustration of groupwise registration. The template
(group mean) is estimated which has the smallest geodesic distances
among the six input images on the Riemannian manifold. Each image Ii
can be transformed to the template space with transformation fi (black
solid arrows). The template can also be warped to each individual
image’s space by the backward transformation f�1

i (blue dashed
arrows).
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Let X ¼ ½X1; . . . ; Xm�T , jXj denotes the random vector

jXj ¼ ½jX1j; . . . ; jXmj�T . F
a

jXjðxÞ is the multivariate survival

function defined by

F
a

jXjðxÞ ¼ P ðjXj > xÞ ¼ P ðjX1j > x1; . . . ; jXmj > xmÞ; (5)

where x 2 Rm
þ , and Rm

þ is defined as:

Rm
þ ¼ fx 2 Rm : x ¼ ðx1; . . . ; xmÞ; xi � 0; i ¼ 1; . . . ;mg: (6)

In Equation (4), the random vector x is sampled by the fol-
lowing procedure: First, each dimension of x is normalized
to the same range ½0; 1�. Then each dimension of the normal-
ized random vector is uniformly partitioned into 64 bins.

Comparing to the conventional Shannon entropy, SEE
has the following advantages [41], [42]: (1) SEE is always
non-negative; (2) SEE has consistent definition in both the
continuous and discrete domains; and (3) the probability
density function (pdf) used to compute the Shannon
entropy may not exist. However, the survival function
defined by Equation (5) to calculate SEE always exists.

For each pixel ~p, we denote the square region centered at
it with scale (i.e., the side length) s as Rsð~pÞ. We also denote
the histogram of intensity distribution in Rsð~pÞ as Hsð~pÞ. It
is clear that the larger the value of MaðHsð~pÞÞ, the more
complex the image structures contained in Rsð~pÞ. However,
it should also be noted that regions exhibit high self-similar-
ity over a range of scales should not be considered as
salient, such as regions filled with regular textures. There-
fore, the saliency measure Asð~pÞ is defined as the SEE value
of Hsð~pÞ weighted by the Jensen Shannon divergence
between Hsð~pÞ and Hs�Dsð~pÞ by

Asð~pÞ ¼MaðHsð~pÞÞ � JSDðHsð~pÞ; Hs�Dsð~pÞÞ; (7)

where JSDð�Þ denotes the Jenson Shannon divergence [43],
s� Ds denotes the predecessor scale with respect to scale s.
For each pixel ~p, the most salient scale S~p from which to
extract features is calculated by

S~p ¼ arg max
s
Asð~pÞ: (8)

In this paper, the best possible scales are defined within a
range from 4 to 20 pixels, with scale difference parameter Ds
set to 1. Fig. 3 shows a typical example of the top 10 most
salient regions with their corresponding scales determined
by the proposed saliency measure operator. It can be
observed from Fig. 3 that for images belonging to the same
person, the most salient regions and their corresponding
scales detected are very similar to each other with high
degrees of repeatability, while those from a different person
are significantly different. There is no additional processing
step for the proposed saliency detector such as non-maxi-
mum suppression. Therefore, the effectiveness of the pro-
posed saliency measure operator is illustrated.

Once the most salient scale S~p to extract features from
pixel~p is determined, anatomical features are extracted from
a local square region RS~pð~pÞ centered at ~p with scale S~p.
Because of the robustness of the Gabor wavelet and LBP fea-
tures against local illumination changes and their superior

representation power [24], they are used as the anatomical
signature for each pixel ~p within region RS~pð~pÞ. Specifically,
40 Gabor filters with five center frequencies and eight orien-
tations as in [13] are used, and only the magnitude of the
Gabor filtered responses are used for anatomical features.
For the LBP features, we follow the settings in [11], where the
uniform pattern histogram with radius 2 and number of
neighboring pixel samples 8 is used as the LBP feature,
resulting in 59 dimensional LBP features. Therefore, the final
anatomical signature for each pixel is a 99 dimensional fea-
ture vector (40 Gabor features and 59 LBP features).

It is worth pointing out that the role of the anatomical
signature calculated for each pixel in the proposed method
is significantly different from the one in local feature match-
ing methods [12], [13]. In local feature matching methods,
the extracted local features from different regions will be
concatenated to form the final global feature and directly
served as input to the classifiers, while in the proposed
method, the anatomical signature for each pixel is used to
guided the deformable registration process and the spatial
relationship between different pixels is preserved.

3.2 The Hierarchical MRF Groupwise Registration
Model

After calculating the anatomical signature for each pixel in
Section 3.1, we introduce a hierarchical MRF groupwise reg-
istration model to construct the group mean facial image
space (i.e., the template).

Given n training images I1; . . . ; In, we denote their corre-
sponding feature maps obtained in Section 3.1 as ~F1; . . . ; ~Fn.
For each pixel ~p, ~Fið~pÞ is the 99 dimensional anatomical sig-
nature of~p in image Ii ði ¼ 1; . . . ; nÞ.

Recall that the general groupwise registration process
can be expressed by Equation (2). In this paper, the deform-
able registration process is formulated as a MRF labeling
problem defined by

JðÎ;fiÞ ¼
Xn

i¼1

ð’ðÎ;fiðIiÞÞ2 þ �RegðfiÞÞ

¼
Xn

i¼1

X

~p2V

D~p

�
fi~p
�
þ

X

ð~p;~qÞ2N i

V~p;~q
�
fi~p; f

i
~q

�
0
@

1
A;

where V denotes the image domain, and N i denotes the
neighborhood system defined in V. In this paper, the four-

Fig. 3. Typical example of the top 10 salient regions detected by the pro-
posed saliency measure operator on three facial images of the FERET
database. (a) and (b) are facial images belonging to the same person,
while (c) is a facial image of a different person. The most salient regions
are highlighted by the green squares, and the side length of each square
denotes the most salient scale of the corresponding region to extract
features.
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connected neighborhood system is adopted. D~pðfi~pÞ is the
data term representing the penalty of assigning pixel ~p in
image Ii the label fi~p, and V~p;~qðfi~p; fi~qÞ is the smoothness term
which penalizes the cost of label discrepancy between two
neighboring voxels~p and~q in image Ii.

The deformable registration problem is converted to a
MRF labeling problem by quantizing the deformable trans-
formation fi. Specifically, we define a discrete set of labels
fLjL ¼ ff1; f2; . . . ; fmgg, where each label fj ðj ¼ 1; . . . ;mÞ
is corresponding to one specific displacement vector ~dj.
Therefore, assigning a voxel~p 2 Ii with label fi~p means mov-
ing pixel~p off the original position with displacement vector
~dfi

~p
. In this paper, the displacement vector is represented by a

bounded discrete window W ¼ f0;�t;�2t; . . . ;�wtgU ,
where U is the dimension of the window, since we are deal-
ing with 2D facial images, U ¼ 2. t is set to 1, and w is set to
12 in this paper. Therefore, the bounded discrete window is
W ¼ f0;�1;�2; . . . ;�12g2.

The smoothness term V~p;~qðfi~p; fi~qÞ is defined by the piece-
wise truncated absolute distance by

V~p;~q
�
fi~p; f

i
~q

�
¼ min

�
�;
��~dfi

~p
� ~dfi

~q

���; (10)

where � is a constant representing the maximum penalty.
The data term D~pðfi~pÞ is defined based on the anatomical

signature difference between the warped image Ii and the
group mean image Î by

D~p

�
fi~p
�
¼
��~FÎð~pÞ � ~FIið~pþ ~dlipÞ

��2

2
; (11)

where ~FÎð~pÞ denotes the anatomical signature of voxel ~p in
the group mean image Î, and ~FIið~pþ ~dlipÞ denotes the ana-
tomical signature of voxel ~p in image Ii after ~p is displaced
off the original position with displacement vector ~dlip .

The optimization of Equation (9) can be achieved by the
greedy iterative algorithm similar to [36] to iteratively refine
the group mean Î and the a-expansion algorithm [44] to
solve the MRF labeling problem. The optimization proce-
dure can be summarized by Algorithm 2.

With Algorithm 2, we can construct the group mean Î
based on input training images Ii. However, directly per-
form groupwise registration among all training images may

be not sufficient to account for the possible large variations
across different training facial images. To this end, we pro-
pose a hierarchical groupwise registration strategy. The
basic principle is that, facial images with similar appearance
are clustered into a group, assuming that they have closer
distances in the Riemannian manifold represented by
deformable transformations. If a group still contains many
facial images which may have large variations across each
other, it can be further clustered into different smaller
groups. Therefore, a pyramid of groups is formed, and the
final group mean (i.e., the template) can be constructed in a
hierarchical bottom-up manner.

In this paper, affinity propagation (AP) [45] is adopted
for clustering, which can automatically and robustly deter-
mine the number of cluster centers. The input of AP is the
similarity matrix Q, where Qði; jÞ denotes the similarity
between the ith facial image and the jth facial image. The
survival exponential entropy based normalized mutual
information (SEE-NMI) is adopted as the similarity function
to calculated Qði; jÞ. SEE-NMI not only shares the robust-
ness properties of the conventional MI [43] against local illu-
mination changes, but also has the advantages of SEE
defined in Section 3.1. The SEE-NMI between two facial
images Ii and Ij is defined by

SEE-NMIðIi; IjÞ ¼
MaðHðIiÞÞ þMaðHðIjÞÞ

MaðHðIi; IjÞÞ
; (12)

where HðIiÞ, HðIjÞ, and HðIi; IjÞ denote the marginal inten-
sity distribution of Ii, marginal intensity distribution of Ij,
and the joint intensity distribution of Ii and Ij, respectively.

Fig. 4 shows a typical example of the pyramid con-
structed for 10 facial images to estimate the template in a
hierarchical manner. It can be observed from Fig. 4 that
images with similar appearance are first clustered into the
same group to perform groupwise registration. The final
template (i.e., on the top of the pyramid) can be built by the
bottom-up hierarchical groupwise registration strategy with
Algorithm 2 as the basic building block to perform group-
wise registration within each group in the pyramid.

Fig. 5 shows a typical example of the two facial images
belonging to the same person but with different facial
expressions before and after they are transformed to the
template space. It can be observed that after the groupwise
registration process, variations caused by different facial
expressions can be satisfactorily recovered, which is evi-
dence from the high degree of similarity between the two
images after they are transformed to the template space.
Their corresponding deformation fields are also visualized
in Figs. 5e and 5f, respectively. Therefore, the motivation
and effectiveness of the proposed method is illustrated.

After estimating the template Î and the deformation field
fi to transform each training image Ii to Î, we can classify a
new facial image Inew as described by Operations 3 and 4 in
Algorithm 1. We estimate the similarity between the trans-
formed new facial image and each training image based on
their corresponding feature maps calculated by the proce-
dure described in Section 3.1 to ensure robustness. Specifi-
cally, we first calculate the feature map of Inew, and denote
it as ~FInew . Then, we register Inew to the template Î with the
proposed MRF labeling based registration method, and
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denoting the resulting deformation field as fnew. Finally, we
calculate the euclidean distance between fnewð~FInewÞ and
fið~FIiÞ ði ¼ 1; . . . ; nÞ, where ~FIi is the feature map of training
image Ii. The label of Inew is determined as the one of the
training image which has the most similar transformed fea-
ture map to the new facial image.

It should be noted that a possible alternative strategy to
construct the group mean space is to first construct the
group mean image of each subject, and then perform group-
wise registration among the subject-specific group mean
images to obtain the final group mean image. This strategy
is also similar to the hierarchical registration strategy
adopted in this paper, where the final group mean space is
estimated in a bottom-up manner from the constructed
group means of similar facial images.

It should also be noted that the proposed method
requires a training set of facial images to construct the tem-
plate space. However, the proposed method does not
require the subject identity information (i.e., subject labels)
during the training stage. Therefore, it is an unsupervised
learning method.

4 EXPERIMENTAL RESULTS

Extensive experiments have been conducted to evaluate the
proposed method on four face recognition benchmark data-
bases: FERET [46], CAS-PEAL-R1 [47], FRGC ver 2.0 [48],
and LFW [56]. The proposed method has also been com-
pared with different state-of-the-art face recognition meth-
ods on the three databases. In all experiments, the order a of

Fig. 5. (a) and (b) are two original facial images belonging to the same person but with different facial expressions from the FERET database. (c) and
(d) are the corresponding results after transforming (a) and (b) to the template space, respectively. (e) and (f) are the corresponding deformation
fields to transform (a) and (b) to the template space, respectively. It can be observed that the variations caused by facial expressions have been
recovered.

Fig. 4. A typical example of the pyramid constructed for 10 facial images from the FERET database to build the template with hierarchical groupwise
registration. The original facial images are at the bottom level. Note that all the images will be compared to the same template space (i.e., the top
level of the pyramid).
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the survival exponential entropy was set to 3, and the param-
eter � controlling the maximum penalty of the smoothness
term in Equation (10) was set to 15 by cross validation. The
nearest neighbor classifier was adopted in all experiments.

4.1 Experimental Results on the FERET Database

In the FERET database [46], the gallery set (i.e., Fa) contains
1; 196 frontal images of 1; 196 subjects. There are four probe
sets in the standard FERET evaluation protocol: The Fb
probe set contains 1; 195 images of different facial expres-
sion variations, Fc contains 194 images taken under differ-
ent illumination conditions, Dup I has 722 images taken
later in time with aging variations of 243 subjects, and Dup
II is a subset of Dup I with 234 images of 75 subjects which
were taken at least one year after the corresponding facial
images in the gallery set. Sample images of the FERET data-
base are shown in Fig. 6.

For each image, the following preprocessing steps were
performed. Each image was cropped and normalized to the
resolution of 128	 128 based on the manually located eyes
positions provided by the FERET database to contain only
the facial region. Then, histogram equalization was per-
formed to reduce the possible distortions caused by illumi-
nation changes.

In order to evaluate the effectiveness of the proposed
hierarchical groupwise MRF based registration strategy,
we have also included the results obtained by the pair-
wise registration strategy in our preliminary work in
[33] and the results obtained by two state-of-the-art
deformable registration algorithms, namely the diffeo-
morphic Demons (D-Demons) [49] based on the optical
flow equation and the fast free form deformation (FFD)
model [50] with B-spline basis functions. Table 1 lists the
rank-1 recognition rates of different approaches on all
four probe sets of the FERET database. Results obtained
by our method without using the hierarchical registra-
tion strategy are also reported. For all the other methods
under comparison, the recognition rates are directly cited
from their corresponding papers, as it is assumed that
the recognition rates reported in the corresponding
papers are under their optimal parameter settings.

It can be observed from Table 1 that the proposed method
consistently achieves the highest recognition rate among all
methods under comparison on the four probe sets. There-
fore, the discriminant power and robustness of the proposed
method against facial expression variations, illumination

changes, and aging variations are implied. It can also be
observed that the recognition performance of the proposed
method significantly degrades without using the hierarchi-
cal registration strategy. Therefore, the importance of miti-
gating the effects of large inter-person face variations at the
beginning stage of the registration process is reflected. The
hierarchical registration strategy reduces the risk of being
stuck at suboptimal solutions for estimating the template
space. Moreover, it is shown that the the recognition rates
obtained with the groupwise registration scheme are consis-
tently higher than those obtained by the pairwise registration
strategy (i.e., even without using the hierarchical registration
strategy). Therefore, the importance of estimating the tem-
plate space in an unbiased manner with the groupwise regis-
tration scheme instead of explicitly selecting one facial
image as the template is also reflected.

It should be noted that the maximum number of images
allowed within each group during hierarchical groupwise
registration also affect the performance of the proposed
method. If the maximum number of images allowed within
each group is too large, then images with large variations
may be clustered into the same group and lead to inaccurate
registration results. On the other hand. If this value is too
small, the robustness of our method will be reduced as
images from the same person maybe clustered into different
groups. Fig. 7 shows the rank-1 recognition rates of our
method with respect to different maximum numbers of
images allowed within each group on the four probe sets.
Moreover, to illustrate the importance of incorporating local
anatomical features to guide the registration instead of
using pixel intensity information alone, in Fig. 7 the rank-1
recognition rates of the proposed method using only the
pixel intensity as feature to guide the registration process
are also given.

Fig. 7 illustrates that our method achieves its best recog-
nition accuracy when the maximum number of images
within each group is around 20. This value was set to 20 in
this paper for all experiments. The recognition performance
for different databases may be further improved with differ-
ent values of maximum number of images in each group. In

Fig. 6. Sample images from the FERET database.

TABLE 1
The Rank-1 Recognition Rates (in Percent) of Different

Approaches on Four Probe Sets of the FERET Database

H-groupwise MRF and groupwise MRF denote our method with and
without using the hierarchical registration strategy, respectively, and
pairwise MRF denotes the pairwise registration strategy in our prelimi-
nary work in [33]. Rows 4 and 5 show the recognition rates obtained by
using the diffeomorphic Demons [49] and fast free form deformation
(FFD) [50] pairwise registration strategies, respectively. For each col-
umn, the highest recognition rate is bolded.
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this paper, it is empirically fixed to 20 as the input query
images and databases are unknown beforehand in real
world applications. The recognition rate for using pixel
intensity alone as feature to guide the registration process is
significantly lower than the one using salient local anatomi-
cal features, especially on the Fc probe set with respect to
illumination changes.

The running time required to constructed the template
space by the proposed groupwise registration strategy is
around 17:6 minutes, and the average time required to
recognize each new query image in the recognition phase
is around 15 seconds for the FERET database on a com-
puter with Intel Xeon 2.66-GHz CPU. It should be noted
that the template construction stage can be completed
offline, which does not affect the efficiency in the recog-
nition stage. The computational efficiency of the pro-
posed method can be further improved by parallel
processing and code optimization.

4.2 Experimental Results on the CAS-PEAL-R1
Database

The CAS-PEAL-R1 database [47] contains 30; 863 images of
1;040 subjects, among which 595 are males and 445 are
females. The CAS-PEAL-R1 standard evaluation protocol
contains a gallery set consisting of 1;040 images of 1;040
subjects taken under the normal condition, a training set
consisting of 1;200 images of 300 subjects for building the
recognition model or tuning the parameters of a model, and

six frontal probe sets contain facial images with the follow-
ing types of variations: expression, accessory, lighting,
aging, background, and distance.

For each image, similar preprocessing steps to the
FERET database in Section 4.1 were performed, where
each image was cropped and normalized to the resolution
of 128	 128 based on the eyes positions provided by the
CAS-PEAL-R1 database, and histogram equalization was
performed. Samples images from the CAS-PEAL-R1 data-
base are shown in Fig. 8.

Table 2 lists the rank-1 recognition rates obtained by
different approaches on the CAS-PEAL-R1 database. For
comparison purpose, recognition rates of using the diffeo-
morphic Demons [49] (D-Demons) algorithm, fast free
form deformation model [50], and the pairwise MRF

Fig. 7. Rank-1 recognition rates of our method with respect to the maximum number of images within each group on the FERET database. For com-
parison purpose, the rank-1 recognition rates of using only the pixel intensity as feature to guide registration are also included.

Fig. 8. Sample images from the CAS-PEAL-R1 database.
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registration strategy [33] are also included. The recognition
rates of all the other methods under comparison are
directly cited from their corresponding papers. Experimen-
tal results obtained by our method without using the hier-
archical registration strategy are also included. It can be
observed from Table 2 that our method achieves the high-
est overall recognition rates. It is shown in Table 2 that
without using the hierarchical registration strategy, the rec-
ognition performance of our method degrades. Also,
higher recognition rates are obtained by using the group-
wise registration scheme than using the pairwise registra-
tion strategy.

Similar to Section 4.1, we also compare the proposed
method which uses salient anatomical features to guide
the registration process to the one using pixel intensity
information alone to drive the registration process, and
the corresponding rank-1 recognition rates are shown
in Fig. 9.

It can be observed from Fig. 9 that the proposed method
which uses salient local anatomical feature to drive registra-
tion consistently outperforms the intensity guided registra-
tion strategy, especially under the illumination change
condition. Therefore, the advantage of using feature guided
registration strategy is strongly implied.

The running time required to construct the template
space is around 54:8 minutes, and the average time required
to recognize each new query image in the recognition phase
is around 16 seconds for the CAS-PEAL-R1 database on a
computer with Intel Xeon 2.66-GHz CPU.

4.3 Experimental Results on the FRGC ver 2.0
Database

The proposed method was also evaluated on the FRGC ver
2.0 database. The FRGC ver 2.0 database [48] is known as
one of the largest face image data sets available. Sample
images of the FRGC ver 2.0 database are shown in Fig. 10.
Similar to the experimental settings in Sections 4.1 and 4.2,
each image was normalized and cropped to the size of
128	 128, and histogram equalization was performed.

The FRGC ver 2.0 database contains 12; 776 images of 222
subjects in the training set, with 6;360 images were taken
under the controlled condition and 6;416 images were taken
under the uncontrolled condition. It also contains 16;028 tar-
get images taken under the controlled illumination condi-
tion. In this paper, the experiment 1 and experiment 4
standard protocols of the FRGC ver 2.0 database were used
to evaluate the proposed method. For the experiment 1 pro-
tocol, there are 16;028 query images taken under the con-
trolled illumination condition. For the experiment 4
protocol, there are 8;014 query images taken under the
uncontrolled illumination condition, which is the most chal-
lenging protocol in FRGC.

The recognition performance of different methods on
the FRGC ver 2.0 database was measured by the receiv-
ing operator characteristics (ROC), which is the face veri-
fication rate (FVR) versus the false accept rate (FAR). For
both the experiment 1 and experiment 4 protocols, there
are three ROC value: ROC 1 corresponding to images
collected within semester, ROC 2 corresponding to
images collected within year and ROC 3 corresponding
to images collected between semesters. Table 3 lists the
FVR at FAR of 0:1 percent with respect to the experiment
1 protocol of different methods. The recognition rates of
LGBP þ LGXP are directly cited from reference [14], and

TABLE 2
The Rank-1 Recognition Rates (in Percent) of Different Approaches on Six Probe Sets of the CAS-PEAL-R1 Database

H-groupwise MRF and groupwise MRF denote the proposed method with and without using the hierarchical registration strategy, respectively. The
last column reports the recognition rate of the union of the six probe sets (i.e., All) for each method. For each column, the highest recognition rate is
bolded.

Fig. 9. Rank-1 recognition rates of the six probe sets on the CAS-PEAL-
R1 database by using the proposed method and using pixel intensity
guided registration strategy. Fig. 10. Sample images from the FRGC ver 2.0 database.
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the recognition rates of LGBPHS, LBP, and the BEE Base-
line are directly cited from reference [33].

It can be observed from Table 3 that the proposed
method consistently achieves the highest FVR values at
FAR = 0:1% for all three ROC values among other meth-
ods under comparison. Specifically, comparing to the BEE
baseline algorithm (i.e., PCA on large scale data), the pro-
posed method achieves more than 20 percent of the FVR
improvement on all the three ROC values. Moreover, the
advantage of using the hierarchical registration strategy
is illustrated.

Table 4 lists the FVR value at FAR of 0:1 percent with
respect to the experiment 4 protocol of different methods,
which is the most challenging protocol in FRGC.

It can be observed from Table 4 that our method achieves
significantly higher recognition rates than other methods
under comparison. Therefore, the robustness of the pro-
posed hierarchical groupwise MRF based registration strat-
egy is demonstrated.

More comparisons between our method and other state-
of-the-art face recognition approaches are shown in Table 5
of the ROC 3 values for both the experiment 1 and experi-
ment 4 protocols. One of the best results reported in the lit-
erature for the FRGC ver 2.0 experiment 4 protocol is in
reference [55], with 92:43 percent recognition rate. The

recognition performance of the proposed method can also
be improved by integrating more advanced and novel
image features such as those used in reference [55].

The running time required to constructed the template
space by the proposed groupwise registration strategy is
around 32:4 minutes, and the average time required to rec-
ognize each new query image in the recognition phase is
around 8 seconds for the FRGC ver 2.0 database on a com-
puter with Intel Xeon 2.66-GHz CPU.

4.4 Experimental Results on the LFW Database

Our method was also evaluated on the labeled faces in the
wild (LFW) [56] database. It contains 13; 233 facial images of
5,749 different persons. The facial images were taken from
unconstrained environments with large variations in pose,
facial expression, background, and lighting conditions. In
this paper, the ‘View 2’ set in the LFW database (i.e., the set
designed for final testing and benchmarking [56]) was used
for evaluation, where our method was evaluated in the 10
fold cross validation manner similar in [57]. We followed
the standard image restricted configuration setup in [56],
where only the match/non-match information is available
for each pair of training images. Moreover, there is no out-
side training data used other than those provided by the
LFW database. Fig. 11 shows some typical examples of
the matched and non-matched image pairs from the
LFW database.

During the training phase, we first estimate the template
space with the proposed hierarchical groupwise registration
method based on the training image pairs in the available
nine splits (i.e., ‘View 2’ was evaluated in a 10 fold cross val-
idation manner). Then, based on the registered training
image pairs to the template space, we determine the best
matching threshold, and apply it to the remaining 10th split.
The experiment was repeated 10 times.

Table 6 lists the estimated mean accuracies and the
standard error of the mean obtained by our method and

TABLE 4
The FVR Value of Different Approaches at FAR ¼ 0:1%
in Experiment 4 of the FRGC Ver 2.0 Database, Where

H-Groupwise MRF and Groupwise MRF Denote Our Method
with and without Using the Hierarchical Registration

Strategy, Respectively

For each column, the highest FVR value is bolded.

TABLE 5
Comparisons with More State-of-the-Art Methods on the FRGC

Ver 2.0 Database with Respect to FVR at FAR ¼ 0:1% (in %)

For each column, the highest recognition rate is bolded.

Fig. 11. Sample matched and non-matched image pairs from the LFW
database.

TABLE 3
The FVR Value of Different Approaches at FAR ¼ 0:1%
in Experiment 1 of the FRGC Ver 2.0 Database, Where
H-Groupwise MRF and Groupwise MRF Denote Our

Method with and without Using the Hierarchical
Registration Strategy, Respectively

For each column, the highest FVR value is bolded.
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those reported by other competing methods on the LFW
result website.1 For fair comparison purpose, most of
the competing methods adopted for comparison had the
same setting in this paper: They were tested under the
strictest LFW protocol by their authors, where the image
restricted configuration setup was used and there was
no outside training data used other than those provided
by LFW. In order to investigate the contribution of the
proposed SEE-based salient detector, we also compared
the face verification performance of our method using
the SEE-based salient detector and the difference of
Gaussian (DoG) salient detector used in SIFT [40], which
is one of the best detectors stated in [58].

It can be observed from Table 6 that our method achieves
the highest verification performance among all the com-
pared methods, which reflects the effectiveness of our
method for face verification under the unconstrained envi-
ronments. Moreover, the verification rate obtained by our
method using the SEE-based salient detector is higher than
the one using the DoG salient detector, which illustrates the
advantage of using the proposed SEE-based salient detector.
It is also observed that using the groupwise registration
scheme and the hierarchical registration strategy clearly
outperforms the pairwise registration strategy.

Fig. 12 shows the verification performance of different
methods with the ROC curves, and it can be observed that
our method has the best verification performance among all
the methods under comparison. It matches with the obser-
vations in Table 6.

To investigate how the order a of the survival exponen-
tial entropy in Equation (4) influence the recognition perfor-
mance, the mean face verification rates with different values
of a for the LFW database are shown in Fig. 13.

It can be observed from Fig. 11 that when a ¼ 3, our
method gives satisfactory verification accuracy. When a is
too small, the SEE-based saliency measure in Equation (7)
may not be effective to capture the salient regions in
facial images. On the other hand, when a is too large, the
SEE-based saliency measure may be too sensitive and
not robust.

The average running time to determine whether a pair
of query image is matched or non-matched is around 32
seconds on a computer with Intel Xeon 2.66-GHz CPU.

5 CONCLUSION

In this paper, we formulate the face recognition problem as a
groupwise registration and feature matching problem. A
robust salient scale detector based on the survival exponen-
tial entropy is proposed to extract the anatomical features
from the most salient scales. The deformable transformation
space is discretized and represented by the Markov random
field labeling framework, which is integrated with the salient
anatomical signature of each pixel to drive the registration
process. In order to deal with possible large variations
between different facial images, a hierarchical groupwise
registration strategy is proposed. During the recognition
phase, each query image is transformed to the template
space and compared with the existing training images. Our
method has been extensively evaluated on four benchmark
databases: FERET, CAS-PEAL-R1, FRGC ver 2.0, and the
LFW databases. It is also compared with several state-of-the-
art face recognition methods. Experimental results demon-
strate that our method achieves the highest recognition and
verification rates among other methods under comparison,
which demonstrates the effectiveness of our method.

1. http://vis-www.cs.umass.edu/lfw/results.html.

Fig. 12. The ROC curve comparisons between the proposed method
and other state-of-the-art methods on the LFW database.

Fig. 13. The mean face verification rates with different values of a in
Equation (4) on the LFW database.

TABLE 6
The Estimated Mean Accuracies and the Standard Deviations

for View 2 of the LFW Database

SEE-H-Groupwise MRF and DOG-H-Groupwise MRF denote our
method using the proposed SEE and the difference of Gaussian (DoG)
salient detector in [40], respectively. Groupwise MRF denote our method
without using the hierarchical registration strategy. The highest verifica-
tion rate is bolded.
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