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Abstract

Phase contrast magnetic resonance angiography (PC-MRA) is a non-invasive method

for 3D vessel delineation, which for each voxel not only provides measurement of speed

(conveyed as a speed image), but also gives a three-component estimate of flow direction (in

the form of phase images). In this thesis, we present a new approach to reconstructing vessels

and aneurysms from PC-MRA, and demonstrate how speed and flow coherence information

extracted from a PC-MRA dataset can be combined for detecting and reconstructing normal

vessels and aneurysms with relatively low flow rate and low signal-to-noise ratio (SNR).

We propose to use a Maxwell-Gaussian mixture density to model the background signal

and combine this with a uniform distribution for modelling vascular signal to give a Maxwell-

Gaussian-uniform (MGU) mixture model of speed image intensity. The MGU model param-

eters are estimated by the Expectation-Maximisation (EM) algorithm. It is shown that the

Maxwell-Gaussian mixture distribution models the background signal more accurately than a

Maxwell distribution. Although the MGU model works satisfactorily in classifying the back-

ground and vessel voxels, for relatively low flow rate and low SNR vessel regions (especially

inside an aneurysm), we find that it is hard to distinguish vessel voxels from the background

voxels because of their low intensity value.

To deal with this problem, we propose to include the information about local flow co-

herence as a priori knowledge modelled by a Markov random field (MRF). A new coherence

measure, namely local phase coherence, which incorporates information about the spatial re-

lationships between neighbouring flow vectors, is defined and shown to be more robust to

noise than prior coherence measures. The MGU statistical measure from the speed images

and the local phase coherence measure from the phase images are combined in a Bayesian

framework to estimate the posterior probabilities of vessel and background. It is shown that

segmentation based on speed and flow coherence information gives a higher accuracy at low

and high SNR values than segmentation using either speed or flow coherence information

alone. Finally, the vessels and aneurysms are reconstructed by using a sub-voxel based level

set method running on the estimated posterior probabilistic maps of vessel and background.

The new method is tested on an aneurysm phantom data set and 7 clinical data sets. The

results show that the proposed method can help detecting and reconstructing relatively low

flow and low SNR regions when both speed and flow coherence information are utilised.
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Chapter 1

Introduction

The objective of this thesis is to reconstruct brain vessels and aneurysms from phase contrast

magnetic resonance angiography (PC-MRA), which for each voxel provides an estimated rate

of flow (speed) and a three-component estimate of flow direction (velocity field). It is common

to perform vascular reconstruction relying on speed information alone [57, 49, 84, 87, 45, 46].

The focus of this work is to demonstrate that flow coherence (directional) information, which

is extracted from the flow velocity field, can be combined with the speed information to detect

and reconstruct normal vessels and aneurysms with relatively low signal-to-noise (SNR) and

low flow rate.

This chapter begins by introducing the endovascular treatment of intracranial aneurysms,

and then discusses the limitations of PC-MRA in detecting aneurysms and low flow regions.

Finally, a summary of the thesis is given.

1.1 Endovascular treatment of intracranial aneurysms

An intracranial (brain) aneurysm is a bulge in the arteries and usually develops on the weak

part of the major arteries located at the base of the brain1. The weakness of the arteries

causes the vessel wall to swell outward and form the saccular aneurysm. The diameter of the

aneurysm sac can range from a few millimetres to several centimetres. A ruptured aneurysm

can cause fatal internal bleeding or haemorrhage.
1The common sites of the aneurysms are on the major arteries including internal carotid artery/posterior

communicating artery (30%), anterior communicating artery (40%), bifurcation of the middle cerebral artery

(25%) and basilar artery (5%) [83, pp. 3963]. 25% of patients has multiple aneurysms.

7
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a. b.

Figure 1.1: (a) A digital substraction angiogram (DSA) and (b) 3D reconstruction of the

vasculature. Aneurysm is pointed to by an arrow in each image.

An intracranial aneurysm is conventionally treated by craniotomy and microsurgical clip-

ping. However, aneurysms are increasingly treated by endovascular (inside vessel) coil em-

bolisation2 (ECE) with the patient awake [33, 32, 15]. ECE is cost effective, less expensive

than open surgery and only requires minimal operative intervention [23]. For ECE treat-

ment, the platinum coils are delivered by a microcatheter guided by a neuroradiologist with

the help of X-ray angiography, as illustrated in Figure 1.1a, which shows a 2D projection of

an aneurysm and its connecting vessels. When the microcatheter reaches the aneurysm, the

coil on the tip of the microcatheter is detached electrolytically and packed into the aneurysm.

Thrombosis, which is induced by the coils, excludes the aneurysm from the blood circulation

and prevents rupture of aneurysm. Clearly, it is a difficult task for a neuroradiologist to

navigate the microcatheter with the 2D projection views alone.

To increase the success rate and procedural safety of the treatments, radiologists need a

comprehensive and patient-specific understanding of the 3D shape, size and position of each

aneurysm as well as the vasculature in the vicinity of the aneurysm, as shown in Figure 1.1b.

This has created the need to develop 3D vascular reconstruction methods to generate vascular

models that can be used for diagnosis, as well as treatment, of aneurysms and other arterial

diseases.
2It is also known as the Guglielmi detachable coil (GDC) treatment after Guglielmi who developed the

technique in early 1990’s [33, 32].
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1.2 Limitations of MRA

a. b.

Figure 1.2: (a) Time-Of-Flight (TOF) MRA and (b) Phase Contrast (PC) MRA. As shown

in the figures, the presence of an aneurysm causes significant vascular signal loss in the MRA

speed image with some intensity levels approximately equal to those of the background signal,

thereby, producing a heterogeneous intensity pattern within the aneurysm. The inclusion of

such regions of inhomogeneous intensities is a challenge to robust vascular segmentation.

Magnetic resonance angiography (MRA) is a collection of non-invasive, non-irradiating

methods for 3D vessel delineation. Three major groups of MRA techniques are Time-Of-

Flight (TOF) MRA, Contrast Enhanced (CE) MRA and Phase Contrast (PC) MRA. The

main advantage of PC-MRA over TOF- and CE-MRA is that it not only gives information

about vascular morphology but also provides additional velocity field information beyond

the speed dependent intensity. Moreover, a PC-MRA speed image has good background

suppression and displays two high contrast voxel types: vessel and background [74]. Medical

diagnosis of vascular diseases is commonly performed on the basis of an analysis of MRA

speed images alone, which assign high intensity to the moving blood and cerebrospinal fluid

(CSF).

While most of the arterial anatomy can be shown clearly in MRA speed images, this is not

the case, for example, for intracranial aneurysms. These can contain low or complex flow and

are poorly represented in the images [79, 85]. The presence of an aneurysm causes significant

vascular signal loss in an MRA speed image with some intensity levels approximately equal

to those of background signal, thereby, producing a heterogeneous intensity pattern within
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the aneurysm, as shown in Figures 1.2a and 1.2b. These inhomogeneous sub-regions are a

challenge if vascular segmentation is to be robust.

A variety of approaches have been proposed for the segmentation of MRA speed images.

For instance, Mclnerney et al. proposed topologically adaptable surfaces (T-surfaces), which

is a variant of the classical deformable models but has an efficient topologically adaptable

property for segmentation of intracranial vasculature [57]. Another variant, geodesic active

contour was proposed to segment MRA speed images by Lorigo et al. [49]. In this case,

the contour was implemented by using the level set methods [78] to offer flexible topological

adaptability, and has been subsequently extended to be more locally adaptable according

to the properties of local geometrical structure, for example, eigenvalues of the tensor [84].

A fast vessel delineation method was suggested by iteratively reconstructing a vessel seg-

ment defined by two user specified starting and end points [87]. Krissian et al. [45, 46]

proposed a multiscale method to detect the vessel centreline and estimate vessel width based

on eigenvalue and eigenvector analysis of the Hessian matrix, which relies on the partial dif-

ferentiation of the MRA speed images. In all of these methods, an intensity-based gradient

function was employed to give information about the boundaries of vessels. A drawback in

using a gradient-based method is that, in practice, gradient values are not sufficiently high

in the low flow regions for robust segmentation.

This work was entirely motivated by the need to develop a fully automatic reconstruc-

tion algorithm that could reliably segment and then reconstruct the vasculature including

aneurysms, vessels at the vicinity of the aneurysms and other regions of low flow and low

SNR from PC-MRA data. This will lead us to consider both the physics of PC-MRA image

formation and segmentation based on both statistics of image formation and flow coherence.

A result of applying our new method is shown in Figure 1.3.

Figure 1.3a shows a maximum intensity projection (MIP) of an aneurysm, which is located

at the centre of the MIP. In the figure, the feeding (middle cerebral) vessel can be clearly seen

because of its high intensity, whereas, the shape of the aneurysm is not obviously displayed

because the flow rate inside is low and hence the intensity inside the aneurysm is low. A

3D reconstruction of the vasculature and aneurysm based on the speed information alone

is depicted in Figure 1.3b. Observe that although the vessels are clearly reconstructed,

the aneurysm is not well reconstructed due to its low intensity. Figure 1.3c shows the 3D

reconstruction based on the integrated speed and flow coherence information approach, and
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a. b. c.

Figure 1.3: A closeup of an aneurysm: (a) maximum intensity projection (MIP), (b) 3D

reconstruction using speed information alone and (c) 3D reconstruction using speed and flow

coherence information.

reveals that the shapes of the vessels and aneurysm are well delineated.

1.3 Thesis summary

In this thesis, we propose a new way of segmenting PC-MRA data. Firstly, based on knowl-

edge of PC-MRA image formation and physical characteristics of blood flow, we investigate

a tailored statistical description of the signals in PC-MRA data. Secondly, additional flow

coherence information extracted from the velocity field is exploited to improve the segmenta-

tion quality of brain vessels and aneurysms. The new method is summarised in this section

and in Figure 1.4.

In Chapter 2, we derive the background and vascular signal statistical models based on

knowledge of image formation process and physical characteristics of blood flow, and combine

these models to characterise the signals in PC-MRA speed images, in terms of a Maxwell-

Gaussian-uniform (MGU) model. For each voxel in speed images, the model provides the

probabilities of vessel and background based on its intensity value. In particular, we show that

a Maxwell-Gaussian mixture distribution represents the background signal more accurately

than a Maxwell distribution used in prior work [5]. The MGU model shows a better fit to

clinical data and gives fewer false positive voxels (misclassified vessel voxels) in segmentation.

The method we propose draws on the fact that the flow pattern in the vasculature is

locally coherent. In other words, if blood is flowing in a direction v, neighbouring voxels

should have a high probability of exhibiting flow in the same direction v. In Chapter 3, a
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Figure 1.4: A flow diagram of the proposed reconstruction process.

local phase coherence (LPC) measure is derived to estimate the degree of coherence amongst

neighbouring voxels, which gives useful information about the flow coherence within a local

region. We find that (a) the LPC measure is more robust to noise than prior coherence

measures and (b) when the SNR is low, segmentation using the LPC measure gives a more

accurate segmentation result than a segmentation using speed information alone.

In Chapter 4, we combine the LPC measure and the statistical measure based on the

MGU model in a Bayesian framework. The framework encodes knowledge of the PC-MRA

speed image formation and physical characteristics of blood flow through the likelihood func-

tions of vessel and background (MGU model) and incorporates the LPC measure into the

prior probability by using a Markov random field (MRF) model. We show that the (Maxi-

mum A-Posteriori) MAP-MRF segmentation based on speed and flow coherence information

outperforms segmentation using either speed or flow coherence information alone, and gives

a higher segmentation accuracy than both at low and high SNR values.

The key ideas developed in Chapters 2 - 4 are integrated together in Chapter 5, which

presents a sub-voxel based level set method to extract and reconstruct the vascular surface in

the posterior probability maps of vessel and background obtained by the Bayesian framework
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presented in Chapter 4. Experiments on a geometrically accurate straight tube show that the

surface boundary extracted by the resulting sub-voxel level-set MAP-MRF method is clearly

defined according to the probabilities of vessel and background, and smoother than the voxel-

based equivalent method; and the accuracies of the sub-voxel based method and the voxel

resolution method are comparable. We also show that the sub-voxel level-set MAP-MRF

method is more accurate than an intensity gradient-based approach in extracting surface

boundary.

Finally, in Chapter 6, the performance of the proposed method is evaluated on an

aneurysm phantom and 7 clinical datasets. The results show that the combination of image

and flow coherence information is useful in detecting and constructing normal vessels and

aneurysms with relatively low SNR and low flow rate. We briefly present a summary and

highlight possible directions of future work in Chapter 7.



Chapter 2

Maxwell-Gaussian-uniform (MGU)

mixture model for phase contrast

magnetic resonance angiographic

images

2.1 Introduction

Phase Contrast Magnetic resonance angiography (PC-MRA) is a non-invasive and flow-

dependent method of vessel visualisation. Phase contrast PC-MRA speed images are often

used for medical diagnosis of vascular diseases because most of the arterial anatomy can be

shown clearly in the images, which assign high intensity to the moving blood and cerebrospinal

fluid (CSF). Moreover, a PC-MRA speed image has excellent background suppression and

displays two high contrast voxel types: vessel and background [74]. The work described in

this chapter was driven by the growing need for a better understanding of the PC-MRA sig-

nal statistical properties, including background and vascular signals, so that a better image

segmentation could be derived for characterisation of vasculature and aneurysms.

Based on our knowledge of the PC-MRA image formation, in this chapter we propose to

use a Maxwell-Gaussian mixture density model of the background signal combined with a

uniform distribution for vascular signal to give a Maxwell-Gaussian-uniform (MGU) mixture

model. The MGU model parameters are estimated by the Expectation-Maximisation (EM)

14
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algorithm [10]. We have derived the update equations for this particular model and present

a number of experiments on clinical images. The results show that the Maxwell-Gaussian

mixture distribution (a) models the background signal more accurately than the Maxwell

distribution, as used in [5], (b) exhibits a better fit to clinical data and (c) gives fewer false

positive voxels (misclassified vessel voxels) in segmentation. Finally, we conclude by pointing

out a potential problem in segmenting objects with low or complex flow and low SNR when

using the proposed MGU model. A possible solution to this problem is discussed later in

Chapters 3 and 4.

2.2 Phase contrast magnetic resonance angiography (PC-MRA)

PC-MRA is a flow-sensitised MR protocol for the imaging of vessels. It measures the x, y and

z velocity components of the flow vectors on a voxel-by-voxel basis, and provides velocity field

information about the motion of blood in the brain. To be more specific, each component

of the flow vector is directly related to the phase shift (angles) φ induced by the dephasing

and rephasing of the moving spins under the influence of the phase contrast magnetic field

gradients [74]. In PC-MRA imaging, two images with voxel-wise phases φ1 and φ2, are

acquired with different sensitivity to movement along a specific scan direction, resulting from

the application of two opposite bipolar gradients of differing strengths. The resulting net

phase shift (phase difference), ∆φ = φ2−φ1, is then directly proportional to the directionally

encoded velocity component v within a given voxel. The 3D velocity vector at each voxel

v (= (vx, vy, vz)T ) is composed of the three velocity components measured separately. A

speed-based image may be obtained by applying a modulus operation to the three directional

components voxel by voxel, as shown in Figure 2.1. To suppress the spurious phase shifts

occurring in extremely low regions (e.g. background air), an average magnitude mask is also

applied at each voxel. Although this reconstructed image is a magnitude-weighted speed

image, it is commonly referred to as speed image (since the phase shifts are flow sensitized

along the three orthogonal components, x, y and z, the result is directly proportional to the

speed).

A typical speed image is shown in Figure 2.2, in which the intensity value is directly

proportional to the flow rate. The higher the velocity, the higher the image intensity level

assigned to the voxel. A PC-MRA acquisition of the brain normally takes about 10mins
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to obtain all 3 velocity components. Four data volumes, three phase values (vx, vy and vz)

and speed (or flow magnitude), are obtained after the scanning. For clinical diagnosis, only

the PC-MRA speed images are commonly used for visualisation of vessels. The three phase

values are almost exclusively used for visualisation of flow fields.

Figure 2.1: Formation of a speed image. A speed image is obtained by applying the modulus

operation to the three directional components.

Figure 2.2: A typical PC-MRA speed image, in which the intensity value is directly propor-

tional to the flow rate. The higher the velocity, the higher the image intensity level assigned

to the voxel.
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2.3 Statistical analysis of PC-MRA signals

This section derives statistical distributions for the target vascular signals in MRA speed

images as well as for background regions containing static, signal generating tissues (brain,

CSF and scalp) or signal-absent material (air, cortical bone) in accordance with the PC-MRA

image reconstruction process and physical characteristics of blood flow. These two models

are then combined additively to form a complete distribution of an MRA speed image.

2.3.1 Phase angle definition and its properties

The phase angle of a complex-valued MR signal S1 is defined as φ1 and computed by

arg(S1) = tan−1
(

Im{S1}
Re{S1}

)
, (2.1)

where Re{S1} and Im{S1} denote real and imaginary components of the signal respectively,

as illustrated in Figure 2.3. It is assumed that both real and imaginary components are

statistically independent and corrupted by zero-mean Gaussian noise with equal variance σ2
p

[37], i.e. Re{S1} and Im{S1} ∼ N(0, σ2
p). The probability density function (PDF) of φ1 is

given by [47]

fφ1(φ1) =
e−κ2

2π
· {1 +

√
πκ · cos(φ1 − φ̄1) · eκ2·cos2(φ1−φ̄1) · [1 + erf(κ · cos(φ1 − φ̄1))]}, (2.2)

where φ1 ∈ [−π, π), κ = M1√
2σp

, erf(x) =
(

2√
π

)
· ∫ x

0 e−w2
dw is the error function, φ̄1 is the

mean phase and M1 is the magnitude of signal S1. Note that fφ1 = 0 for φ1 �∈ [−π, π). The

PDFs at different signal-to-noise ratios (SNR = M1
σp

= 0, 1, 3 and 6) are plotted in Figure 2.4.

It is noted that the PDF becomes uniformly distributed when the SNR is zero, and tends to

a Gaussian distribution when the SNR is sufficiently high.

2.3.2 Speed image definition and its properties

For each velocity component at a voxel, two complex-valued signals, S2 and S1, are acquired.

These signals experience the same pulse sequence excitation and spatial encoding during

imaging but differ by the polarity or strength of a bipolar gradient applied along the axis of

the velocity component being measured. A velocity induced phase shift (phase difference)

∆φ is produced by the angular difference between the two signal phases [72], i.e.

∆φ = φ2 − φ1 = arg(S2) − arg(S1), (2.3)



2.3. Statistical analysis of PC-MRA signals 18

Figure 2.3: Phase angle φ1 and signal phase shift ∆φ = φ2 − φ1.

Figure 2.4: Probability density functions (PDF) of a phase angle φ1 in different signal-to-

noise ratios (SNR). It is noted that the PDF becomes uniformly distributed when the SNR is

zero, and tends to a Gaussian distribution when the SNR is sufficiently high.
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as shown in Figure 2.3. The resulting net phase ∆φ for a voxel is directly proportional to

the flow rate of material in the voxel in the specified direction.

An MRA speed image is reconstructed on a voxel-by-voxel basis by taking the modulus

of the three corresponding phase shifts, ∆φx, ∆φy and ∆φz, sensitised along orthogonal x,

y and z axes respectively. An average magnitude mask M̄ is also applied to suppress the

spurious phase shifts occurring in extremely low signal regions (e.g. background air), i.e.

i = M̄ ·
√

∆φ2
x + ∆φ2

y + ∆φ2
z, (2.4)

=
√

(M̄∆φx)2 + (M̄∆φy)2 + (M̄∆φz)2, (2.5)

where i is the resulting image intensity and M̄ = 1
Nacq

∑Nacq

n=1 Sn is the average magnitude of

all signals acquired at the same voxel, Nacq is the number of acquisitions at each voxel.

The number of acquisitions (Nacq) at each voxel depends on the pattern of bipolar gradi-

ents applied: for a six-point reconstruction method (Nacq = 6) a pair of oppositely oriented

bipolar gradients are used for each velocity component, while for a four-point reconstruction

method (Nacq = 4) a single image acquired with a null bipolar gradient (i.e. no velocity

sensitivity) is used in combination with each of three velocity encoded images [6]. Although

this reconstructed image is a magnitude-weighted speed image, it is commonly referred to as

speed image (since the phase shifts are flow sensitized along the three orthogonal components,

x, y and z, the result is directly proportional to the speed).

2.3.3 Statistical analysis of vascular signals

In modelling the intensity characteristics of vessel voxels, we assume a laminar flow pattern

is present. In this case, for a circular vessel cross-section, the velocity flow is then parabolic

[16, 68, 67], as shown in Figure 2.5. Hence, the intensity profile is given by

i(r) = C ·
(

1 − r2

R2

)
, (2.6)

where i is the intensity and is a function of r, C is a scaling constant (incorporating the signal

magnitude), R is the vessel radius and r is the distance from vessel centre to the boundary.

The PDF fvessel(i) for a vessel voxel that has intensity i is directly proportional to the image

area, a(x = i), in which all the voxels have the same intensity i. fvessel(i) is calculated as the

rate-of-change of area having intensity greater than or equal to i, i.e.

fvessel(i) ∝
∣∣∣∣da(x ≥ i)

di

∣∣∣∣ . (2.7)



2.3. Statistical analysis of PC-MRA signals 20

The area a(x ≥ i) is given by, using Equation 2.6,

a(x ≥ i) = πr2 = πR2 ·
(

1 − i

C

)
. (2.8)

Therefore, the PDF fvessel(i) is constant and can be regarded as a uniform distribution, which

can be expressed as

fvessel(i) = wUfU(i), (2.9)

where wU is a weight (or prior probability) assigned to the uniform distribution, fu(i) = 1
Imax

,

Imax is the maximum intensity in the observed frequency histogram. Although, in practice,

the visible vessels have voxel intensities in the high intensity region, the number of vessel

voxels in clinical images is a small proportion (about 1% - 4%) of the frequency histogram.

Hence, for the sake of simplicity, we assume that the uniform distribution spreads over the

entire intensity range [0, . . . , Imax].

Figure 2.5: In modelling the intensity characteristics of vessel voxels, we assume a laminar

flow pattern is present. In this case, for a circular vessel cross-section, the velocity flow is

then parabolic.
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2.3.4 Statistical analysis of background signals

A more involved description is required for signals in regions of background as a wide range

of phase shift behaviour may be encountered, and also in practice the background regions

occupy a large proportion of a speed image.

According to prior work [5], M̄∆φj is assumed to follow a zero-mean Gaussian distribution

in Equation 2.5, where j = x, y and z. The distribution described by the modulus of

three independent zero-mean Gaussians with equal variance σ2
M is a Maxwell distribution.

Hence, according to the Equation 2.5, the PDF of background signal is given by a Maxwell

distribution [5, 71],

fM (i) =
2i2√
2πσ3

M

· e

(
−i2

2σ2
M

)
, (2.10)

where i ≥ 0 and fM(i) = 0 when i < 0.

Figures 2.6a and 2.6b show a background region of interest (ROI) inside an in-vivo speed

image and its corresponding histogram respectively. The histogram was fitted by a Maxwell

distribution using the relationship σM = Ipeak√
2

, where Ipeak is the intensity value at which the

histogram achieves its maximum, i.e. dfM (i)
di = 0 at i = Ipeak. In Figure 2.6b, it is observed

that the Maxwell distribution fits well in the low intensity region, but not in the high intensity

region (indicated by an arrow in the figure).

The reason for the failure of the Maxwell distribution in describing the background sig-

nal is the deviation of the magnitude-weighted phase values M̄∆φ in Equation 2.5 from a

Gaussian distribution. Neither of the tails in the magnitude-weighted phase image histogram

is perfectly fitted by a Gaussian distribution in clinical images (indicated by the arrows in

Figure 2.7b, in which, for the purpose of illustration, a 95% HPD1 interval is used). This

distortion of the ideal Gaussian model results from contributions due to slight tissue mo-

tion, small vessels of sub-voxel size, ghosting artifacts and relatively low SNR in background

regions of the phase images. These factors contribute to high voxel intensity in nominally

background regions of the images. As well, as plotted in Figure 2.4, the low SNR makes the

distributions of phase angles, φ1 and φ2, deviate from the Gaussian distribution, which in

turn flattens the distribution of ∆φ and makes the probabilities at both tails higher. To-
1A formal definition of HPD interval can be found in [12]. In general, given a probability content (95%),

the HPD interval occupies the smallest volume in the parameter space (e.g. [0, . . . , Imax]), which contains

most (95%) of the probability. Moreover, the probability density of every point inside the HPD interval is at

least as large as that of any point outside it.
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a. b.

Figure 2.6: (a) Region-of-interest (ROI) inside a speed image and (b) its corresponding his-

togram (dashed) respectively. In Figure 2.6b, it is observed that the Maxwell distribution

(solid) fits well in the low intensity region, but not in the high intensity region (indicated by

an arrow in Figure 2.6b).

gether with the Rician nature of noise in the signal magnitude [5], it is not surprising that

the distribution of their product, the magnitude-weighted phase value M̄∆φ, is not entirely

Gaussian when the SNR is low, especially in background regions.

To accommodate this recognised failing of the Maxwell distribution model and reduce the

error in fitting the background signal [58], we assume that there are two additional residual

distributions each located at the side of the ideal Gaussian model and they follow non-zero

mean Gaussian pattern. Therefore, for each encoding direction, the PDF of the magnitude-

weighted phase value M̄∆φ consists of a zero-mean Gaussian (located at the centre) and two

non-zero mean Gaussian distributions (located at each side), and is given by

fM̄∆φk
(M̄∆φk) =

wl√
2πσl

· e
−(M̄∆φk−µl)

2

2σ2
l +

wc√
2πσc

· e
−M̄∆φ2

k
2σ2

c +
wr√
2πσr

· e
−(M̄∆φk−µr)2

2σ2
r , (2.11)

where k = {x, y, z}; wl, wc and wr are the weights attached to the distributions, and sum

to one; µl and µr are the means; σl and σr are the standard deviation; subscripts l and r

represent left and right distributions respectively. By using the EM algorithm to estimate

the parameters in Equation 2.11 [10], Figure 2.8a shows the fitted distribution using one

zero-mean Gaussian distribution and two opposite non-zero mean Gaussian distributions.

Figure 2.8b illustrates the individual distributions. Appendix A will provide a more detailed
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a. b.

Figure 2.7: (a) Region-of-interest (ROI) inside a magnitude-weighted phase image M̄∆φ and

(b) its corresponding histogram (dashed) respectively. In Figure 2.7b, it is observed that both

tails of the magnitude-weighted phase image histogram are not perfectly fitted by a Gaussian

distribution (solid) (indicated by the arrows in Figure 2.7b).

discussion about the triple Gaussian mixture model.

After application of modulus operator on the three magnitude-weighted phase values,

as derived in Appendix A, the PDF of background signal can be approximated by a linear

mixture of a Maxwell distribution fM (i) with variance σ2
M and a Gaussian distribution fG(i)

with mean µG and variance σ2
G, which is given by

fbackground(i) = wMfM (i) + wGfG(i), (2.12)

where wM and wG are weights (or prior probabilities) assigned to the Maxwell and Gaussian

distributions respectively. As shown in Figure 2.9, using the EM algorithm (detailed in Sec-

tion 2.4), a Maxwell and Gaussian mixture model achieves a better fit to the given histogram

of a PC-MRA speed image, when compared with Figure 2.6b.

2.3.5 Maxwell-Gaussian-uniform (MGU) model

Thus, with reference to Equations 2.12 and 2.9, we conclude that the overall PDF f(i) of a

PC-MRA speed image can be modelled as a Maxwell-Gaussian and uniform finite mixture



2.3. Statistical analysis of PC-MRA signals 24

a. b.

Figure 2.8: (a) The fitted distribution (solid) using one zero-mean Gaussian distribution and

two opposite non-zero mean Gaussian distributions, (b) reveals the individual distributions

(solid). The dashed line shows the given phase image histogram.

Figure 2.9: Histogram of an MRA speed image (solid). The histogram was subsequently fitted

by a Maxwell-Gaussian mixture distribution (dashed). It reveals that the Maxwell-Gaussian

mixture model achieves a better fit than the Maxwell model, as shown in Figure 2.8b.
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distribution, namely a Maxwell-Gaussian-uniform (MGU) model, which is given by

f(i) = wMfM(i) + wGfG(i)︸ ︷︷ ︸
Background Signal

+ wUfU(i)︸ ︷︷ ︸
V ascular Signal

, (2.13)

where wM + wG + wU = 1.

2.4 Parameter estimation using the Expectation-Maximisation

(EM) algorithm

This section shows how we apply the EM algorithm to estimate the six parameters in the

MGU model, and how we initialise these parameters based on the observed histogram of the

data. The initialisation and estimation processes are fully automatic and fast, and do not

require any pre-set values. Convergence is usually reached after 10-20 iterations and takes

less than 1 second on a 500MHz PC. We then present the properties of the MGU model

parameters.

2.4.1 EM algorithm and parameter initialisation

In Equation 2.13, the proposed mixture model has six parameters: wM , wG, wU , σ2
M , µG and

σ2
G, which need to be estimated. The EM algorithm can be used to estimate the parameters by

maximising the log-likelihood of the mixture distribution at each iteration [10]. The update

equations can be derived as shown in Appendix B. The update equations and posterior

probabilities at the kth iteration are summarised for each distribution as follows. For the

Maxwell (M) distribution,

wk+1
M =

1
n
·
∑

i

h(i) · pk(M |i) and (2.14)

(σ2
M )k+1 =

∑
i h(i) · pk(M |i) · i2

3 ·∑i h(i) · pk(M |i) , (2.15)

where n represents the total number of voxels, h(i) denotes the observed histogram distribu-

tion, the intensity i ranges from 0 to Imax and

pk(M |i) =
wk

Mfk
M(i)

fk(i)
. (2.16)

For the Gaussian (G) distribution,

wk+1
G =

1
n
·
∑

i

h(i) · pk(G|i) and (2.17)
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µk+1
G =

∑
i h(i) · pk(G|i) · i∑

i h(i) · pk(G|i) and (2.18)

(σ2
G)k+1 =

∑
i h(i) · pk(G|i) · (i − µk+1

G )2∑
i h(i) · pi(G|i) , (2.19)

where

pk(G|i) =
wk

Gfk
G(i)

fk(i)
. (2.20)

For the uniform (U) distribution,

wk+1
U =

1
n
·
∑

i

h(i) · pk(U |i), (2.21)

where

pk(U |i) =
wk

Ufk
U (i)

fk(i)
and (2.22)

fk
U (i) =

1
Imax

. (2.23)

In our implementation, the initial parameter estimates were found automatically. Let

h(i), hinit
M (i) and hinit

G (i) be the observed, initial Maxwell and initial Gaussian histograms

respectively. The initial standard deviation σinit
M , as described in Section 2.3.4, is set to Ipeak√

2
.

The initial histogram of the Maxwell distribution is then given by

hinit
M (i) = C · fM (i|σinit

M ), (2.24)

where

C =
e · √π

4
· h(Ipeak) · Ipeak (2.25)

to ensure that hinit
M (Ipeak) has the same height as h(Ipeak), as shown in Figure 2.10. Let AM

be the area of h(i) covered by hinit
M (i), and Atotal be the total area covered by h(i). Then,

winit
M is defined as the ratio of AM to Atotal, i.e.

winit
M =

AM

Atotal
. (2.26)

The residual histogram hres(i) is computed as:

hres(i) = abs(h(i) − hinit
M (i)) · u(i − Ipeak), (2.27)

where u(i−Ipeak) is a step function2. The initial mean and standard deviation of the Gaussian

distribution, µinit
G and σinit

G , are obtained from the 95% HPD interval of hres(i), where HPD
2The purpose of using a step function is, for the robustness of the method, to ensure that the mean of the

Gaussian distribution is always larger than the peak of the Maxwell distribution.



2.4. Parameter estimation using the Expectation-Maximisation (EM) algorithm 27

Figure 2.10: The observed histogram h(i) (dashed) and the initial histogram of the Maxwell

distribution hinit
M (i) (solid).

interval stands for the Highest Posterior Density interval representing most (95%) of the mass

of the distribution [12] and helps to avoid the influence of the long (relatively small) tail of

hres(i) on the estimations of mean and standard derivation. The initial histogram of the

Gaussian distribution is given by

hinit
G (i) = C ′ · fG(i|µinit

G , σinit
G ), (2.28)

where

C ′ =
√

2π · hres(µinit
G ) · σinit

G (2.29)

to ensure that hinit
G (µinit

G ) has the same height as hres(µinit
G ), as shown in Figure 2.11. Let

AG be the area of hres(i) covered by hinit
G (i). Again, winit

G is defined as the ratio of AG to

Atotal, i.e.

winit
G =

AG

Atotal
. (2.30)

Finally,

winit
U = 1 − winit

M − winit
G if winit

M + winit
G < 1. (2.31)

Otherwise, in order to maintain the robustness of the method, winit
M , winit

G and winit
U are set

to empirically obtained values, e.g. winit
M = 0.91, winit

G = 0.08 and winit
U = 0.01. Convergence
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of the EM algorithm is generally reached after about 10-20 iterations when the changes of all

estimated parameters are less than 1%.

Figure 2.11: The observed histogram hres(i) (dashed) and the initial histogram of the Gaussian

distribution hinit
G (i) (solid).

2.4.2 Properties of the MGU model parameters

This section investigates the properties of the six MGU model parameters, wM , wG, wU , σM ,

µG and σG, across the PC-MRA slices of a geometrically accurate straight tube with an 8mm

diameter. The tube was scanned using the PC-MRA protocol on a 1.5T GE MR scanner

at the Department of Clinical Neuroscience, King’s College, London. The data volume size

was 256 × 256 × 20 voxels with a voxel dimension of 0.625 × 0.625 × 1.3mm3. The flow rate

was constant and set at 300mms−1. Figures 2.12a and 2.12b show two cropped PC-MRA

images with the same area (31x80 voxels in a slice). With these two data sets (one is pure

background and the other has vessel voxels in the images), the changes in parameter values

can be compared. Figure 2.12a shows the background region, while Figure 2.12b shows a

cross-section of the tube.

The EM algorithm was first applied to the background data set. Figure 2.13 shows the

variations of parameter values across the twenty PC-MRA slices. The average values are
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a. Background region.

Maximum intensity = 171.

b. Cross-section of a tube.

Maximum intensity = 1591.

Figure 2.12: Two PC-MRA images with the same area for comparing changes in parameter

values when there are some vessels in the image.

as follows: (wM , wG, wU , σM , µG, σG) = (0.910 ± 0.075, 0.081 ± 0.075, 0.009 ± 0.005, 30.177 ±
1.183, 83.344±10.925, 15.052±5.584). Figure 2.13a shows that the weights for the background

region (wM + wG = 0.991) and vessel region (wU = 0.009) are almost constant. Figure 2.13b

shows that the standard deviation of the Maxwell distribution, σM , is consistent across slices

with an average value of 30.177. Figures 2.13c and 2.13d, shows the variations of the mean

and standard deviation of the Gaussian distribution, µG and σG, across the slices with an

average small weight, wG = 0.08, assigned to the Gaussian distribution.

In order to study the changes in parameter values when there are vessel voxels in the image.

The EM algorithm was applied to the data set in Figure 2.12b. The average values found in

this case were as follows. (wM , wG, wU , σM , µG, σG) = (0.796 ± 0.091, 0.157 ± 0.090, 0.047 ±
0.002, 28.260±1.593, 83.453±11.263, 18.906±3.443). Figure 2.14 shows the values of weights

across slices. Comparing to the parameters obtained above when there is no vessel voxel, it is

observed that the weight for vessel wU is almost constant across slices and has been increased

because of the presence of vessel voxels in the dataset. Observe that the behaviour of wM

and wG are complementary in order to maintain an approximately constant weight for the

background histogram (Maxwell + Gaussian) across slices. Also, the standard deviation of

the Maxwell distribution (σM ) are almost constant (Figure 2.14b) and comparable to that

when there is no vessel voxel in the dataset (Figure 2.13b). Finally, Figures 2.14c and 2.14d

show the variations of the mean µG and standard deviation σG of the Gaussian distribution.

2.5 Comparing the MGU and Maxwell-uniform (MU) models

This section compares the new MGU model with the MU model in terms of the qualities of

histogram fitting and segmentation.
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a. Weights for the Maxwell (M), Gaussian

(G) and uniform (U) distributions

respectively. wM + wG + wU = 1. Average

values are wM = 0.910 ± 0.075,

wG = 0.081 ± 0.075 and wU = 0.009 ± 0.005.

b. Standard deviation of the Maxwell

distribution. Average value is

σM = 30.177 ± 1.183.

c. Mean of the Gaussian distribution.

Average value is µG = 83.344 ± 10.925.

d. Standard deviation of the Gaussian

distribution. Average value is

σG = 15.052 ± 5.584.

Figure 2.13: Variations of MGU model parameters across slices for the background region.
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a. Weights for the Maxwell (M), Gaussian

(G) and uniform (U) distributions

respectively. wM + wG + wU = 1. Average

values are wM = 0.796 ± 0.091,

wG = 0.157 ± 0.090 and wU = 0.047 ± 0.002.

b. Standard deviation of the Maxwell

distribution. Average value is

σM = 28.260 ± 1.593.

c. Mean of the Gaussian distribution.

Average value is µG = 83.453 ± 11.263.

d. Standard deviation of the Gaussian

distribution. Average value is

σG = 18.906 ± 3.443.

Figure 2.14: Variations of MGU model parameters across slices with a tube filled with constant

flowing fluid at the middle of the images.
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2.5.1 Quality of histogram fitting

The first comparison looks at the difference between MU and the proposed MGU models for

describing the statistical characteristics of signal in MRA speed images. Intracranial scans

(PC-MRA) of two patients were performed using a 1.5T GE MR scanner at the Department

of Clinical Neuroscience, King’s College London. The scan volume was 256× 256× 28 voxels

with a voxel size about 0.8×0.8×1mm3 (details of the scans are given in Section 6.4.1). The

comparison of the proposed MGU model with the previously reported MU model was based

on the absolute difference error for all slices (28 slices) in the two scans, where the absolute

difference error is defined as

Absolute difference error =
∑Imax

i=0 |histm(i) − histo(i)|∑Imax
i=0 histo(i)

× 100%, (2.32)

where histm represents the histogram estimated by using the MGU model or MU model,

and histo represents the histogram observed from a given data set. Results are plotted in

Figures 2.15a and 2.15b. The Maxwell-Gaussian mixture model produced significantly better

histogram fits than the Maxwell model for describing the background signal in PC-MRA

speed images, reducing the absolute difference error by an average of 13%.

2.5.2 Quality of segmentation

A typical result of histogram fitting on a clinical MRA speed image with the MGU model is

shown in Figure 2.16. For comparison, a MU mixture model fitted using the EM algorithm

is shown in Figure 2.17, which reveals that the Maxwell model provides a poorer fit than

the Maxwell-Gaussian mixture model for background signal. It is also worth noting that,

in practice, the imperfection of the Maxwell background signal model, is exaggerated by

ghosting artifacts and partial volume effect in the clinical data.

Given an estimated mixture model, a PC-MRA speed image can be segmented statistically

on the basis of the MAP (Maximum A-Posteriori) criterion. Assuming that the weights (or

prior probabilities) remain constant, then, using the MAP criterion, a voxel xj ∈ {0, 1}, where

j = {1, . . . , n}, xj = 1 and xj = 0 denote vessel and background respectively, is classified as a

vessel voxel when the vessel probability wUfU (i) is greater than the background probability

wMfM(i) + wGfG(i). Therefore, a threshold can be found by seeking the intersection of the

background and vessel probability distributions. As indicated by the arrows in Figures 2.16

and 2.17, the threshold tMGU found by using the MGU model is higher than the threshold
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a. Patient 1.

b. Patient 2.

Figure 2.15: The MU model (dashed) was compared with the proposed MGU model (solid) by

computing the absolute difference error for all slices in the two scans. This shows that the

MGU model is better than the MU model for describing the background signal in PC-MRA

speed images by an average of 13%.
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Figure 2.16: Histogram of an MRA speed image (dashed) and the Maxwell-Gaussian-uniform

(MGU) mixture model (solid). The threshold tMGU found by using the MGU model is usually

higher than the threshold tMU found by using Maxwell-uniform (MU) mixture model. (as

compared with Figure 2.17).

Figure 2.17: Histogram of an MRA speed image (dashed) and the Maxwell-uniform (MU)

mixture model (solid).
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tMU found by using the already defined MU model. As shown in Figures 2.18a and 2.18b,

fewer false positive voxels (misclassified vessel voxels) will be detected if the threshold tMGU

rather than tMU is used in the segmentation process (the original MRA speed image is shown

in Figure 2.6a). As such, the threshold tMGU found by using the MGU model tends to be

more correct.

a. b.

Figure 2.18: (a) A segmented image using a threshold tMGU found by employing the MGU

model. (b) A segmented image using a threshold tMU found by employing the MU model.

These figures show fewer false positive voxels (misclassified vessel voxels) detected when

threshold tMGU is used in the segmentation process (the original MRA speed image is shown

in Figure 2.6a).

2.6 Problem of segmentation based on speed information alone

Figures 2.19a and 2.19b show an MRA speed image and a binary-segmented image produced

using the MGU model in a MAP classification method. The aneurysm is indicated by an

arrow in the figure. The overall segmentation is good, except for the regions inside the

aneurysm. Note that the resulting segmentation inside an aneurysm is adversely affected by

the significant signal loss seen in the speed images. This results from low or complex flow

within the aneurysm which causes some of the intensity values to drop as low as those of

the background voxels. Consequently, the distinction between background and vessel voxels

cannot be made on the basis of statistical treatment of the intensity values. This signal loss
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phenomenon is common in large aneurysms and regions of low flow rate. Similar results are

obtained in a second aneurysm shown in Figures 2.20a and 2.20b. We will discuss in detail

how to overcome this problem in Chapter 4.

a. b.

Figure 2.19: Patient 1: (a) An MRA speed image and (b) a binary-segmented image produced

using the Maxwell-Gaussian-uniform (MGU) mixture model and a MAP classification method.

The aneurysm is indicated by an arrow in the figure. It is noted that the resulting segmentation

is adversely affected by the significant signal loss towards the centre of the aneurysm.

2.7 Summary

In this chapter, we have derived a Maxwell-Gaussian-uniform mixture (MGU) model for

modelling the background and vascular signal statistical characteristics of PC-MRA images

generated by a phase-difference PC-MRA post-processing algorithm. The parameters of the

MGU model were estimated automatically by using the Expectation-Maximisation (EM)

algorithm, for which update equations were derived.

Experiments have been carried out on phantom and clinical images to illustrate the ap-

plicability of the MGU model, and show that the MGU model (a) fits better than the con-

ventional Maxwell-uniform (MU) distribution the PC-MRA signal distribution, and (b) gives

fewer false positive (misclassified as vessel) voxels in segmentation.

The experimental results further show that the overall segmentation is satisfactory. It

should be pointed out that slow or complex flow can lead to low signal intensities in the
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a. b.

Figure 2.20: Patient 2.

speed image, especially inside the aneurysm. This affects the segmentation result in these

regions because the intensity values drop to almost the same level as the background (tissue)

voxels. This lowers the SNR values and makes the vessel voxels hard to distinguish from the

background voxels. Because vessels and aneurysms differ in shape and size, it is difficult to

develop a simple but effective morphological means to improve segmentation. Rather than

relying on the speed information alone, the available but unused information will be used to

overcome this problem.

In the following chapters we propose to address this problem by introducing a ”flow

coherence” measure into the image segmentation process. This measure is introduced in the

next chapter and explored in the context of a new image segmentation method in Chapter

4.



Chapter 3

Local phase coherence (LPC)

measure

3.1 Introduction

As discussed in the previous chapter, the overall segmentation based on the proposed physics

based statistical model (MGU model) is satisfactory (Quantitative comparisons will be pre-

sented in Section 4.4.3). However, the quality of the statistical segmentation will be affected

by the significant signal loss due to the low flow or complex flow inside the vasculature. This

leads to the incorporation of directional information, provided by the PC-MRA protocol, in

the segmentation process so that the segmentation quality can be increased. In this chapter,

we propose a new coherence measure to quantify locally coherent flow patterns, which is

named the local phase coherence (LPC), and is extremely helpful in distinguishing locally co-

herent flow fields from (non-coherent) random flow fields. We hypothesise that this measure

will be very useful for flow discontinuity and vessel detection, flow feature extraction. The

application to vessel detection is explored in more detail in Chapter 4.

In Section 3.2, we briefly review related coherence measurements based on: (a) the devia-

tion of vector directions from their mean vector [73] and (b) the ratio of the length of the net

flow vectors to the total vector length [43, 81]. We show that these two apparently different

measures are similar and in fact are related by a simple non-linear relationship. Conceptually,

within a given window, these measures compute the ”dispersion” of flow vector directions,

and assign higher values to locally coherent flow patterns and lower values to random flow

patterns. However, one drawback is that these measures assume that flow vectors are spatially

38
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independent of each other, making them incapable of unambiguously capturing information

about the spatial correlations of flow vectors. This can lead to an inherent ambiguity in coher-

ence values because the same coherence value can be assigned to two different groups of flow

vectors having the same orientation distribution, but with a different spatial arrangement.

In Section 3.3, to overcome this deficit, we introduce a new concept of spatial dependence

between flow vectors in the local coherence measure, which is similar to the idea of enhancing

spatial relationship (co-occurrence matrix) in texture analysis [35]. We then present a formal

definition of the LPC measure based on the dot products of the neighbouring flow vectors

within a window. This measure describes how the flow vectors cohere with each other, and

more importantly incorporates the spatial dependence between the flow vectors explicitly.

In Section 3.4, we use synthetic images to evaluate and compare the performance of the

LPC measure and the related coherence measures. Specifically, we compute the coherence

maps for the synthetic images using the different coherence measures, perform segmentation

between coherent and random regions, and measure the segmentation error. We find that (a)

the LPC measure is more robust to noise than other coherence measures, and also (b) when

the SNR is low, segmentation using the LPC measure gives a more accurate segmentation

result for distinguishing coherent regions from random regions than a segmentation using

speed information alone, as described in Chapter 2. In Section 3.5, we demonstrate the

applicability of the proposed LPC measure for enhancing locally coherent vessel voxels in

phantom and clinical images. Conclusions are presented in Section 3.6.

3.2 Related coherence measures

This section briefly reviews previously proposed and related coherence measurements based

on: (a) the deviation of vector directions and (b) the ratio of the length of the net flow

vectors to the total vector length, and discusses the differences and similarities between the

two different coherence measurements.

3.2.1 Measurement based on deviation of vector directions

Given a group of flow vectors, V ∈ {v1, ..., vN}, where vi = (vx
i , vy

i , vz
i )T , it is natural to

evaluate their flow coherence by finding their mean vector and measuring the deviation (or

the ’spread’) of vector directions from the mean vector. Rao and Jain [73] suggested projecting



3.2. Related coherence measures 40

the flow vectors onto the mean vector using the dot-product operation. This leads to the

coherence measure CMdev defined as,

CMdev =
∑

i∈W vi · v̄∑
i∈W ||vi|| , (3.1)

where vi represents any vector inside a window W and v̄ represents the mean vector, which

is given by

v̄ =
∑

i∈W vi

N
, (3.2)

where N is the number of flow vectors inside the window W. It is noted that vi are normalised

vectors, i.e. ||vi|| = 1, for i = 1 . . . N , because it is intended to measure the directional

information alone [73]. Another reason for normalising the vectors is to avoid any vector with

relatively large magnitude dominating the local coherence measurement. From Equations 3.1

Figure 3.1: This figure shows that the length of the net flow vector
∑

i∈W vi is the sum of the

projections
∑

i∈W ||vi|| × cos(θi − θ̄) of all individual vectors vi onto the direction of the net

(mean) flow vector, where ||vi|| = 1 and N is the number of vectors in a window W .

and 3.2, the coherence measure CMdev can be rewritten as

CMdev =
1∑

i∈W ||vi||
∑
i∈W

||∑j∈W vj ||
N

× cos(θi − θ̄), (3.3)

where θi and θ̄ represent the orientation of any flow vector vi and the mean vector v̄ respec-

tively, as shown in Figure 3.1 (although the flow vectors are inherently in 3D, they are plotted

in 2D for illustration only). It is also shown in Figure 3.1 that the length of the net flow
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vector
∑

i∈W vi is the sum of the projections
∑

i∈W ||vi||× cos(θi − θ̄) of all individual vectors

vi onto the direction of the net flow vector, where ||vi|| = 1 and N is the number of vectors

in a window W . Hence, ||∑j∈W vj || =
∑

i∈W cos(θi − θ̄) in Equation 3.3. Since vectors are

normalised, then
∑

i∈W ||vi|| = N . The coherence measure CMdev can be re-expressed as

CMdev =
||∑i∈W vi||2

N2
, (3.4)

which is bounded by a range between 0 and 1, i.e. CMdev ∈ [0 . . . 1]

3.2.2 Measurement based on ratio of the length of the net flow vectors to

the total vector length

Another approach to measuring flow coherence was proposed by Summers et al. [81]. The

coherence measure is defined as

CMratio =
||∑i∈W vi||∑

i∈W ||vi|| , (3.5)

where vi represents a normalised vector inside a window W . The coherence measure CMratio

represents the ratio of the length of the net flow vectors to the total vector length. Since

vectors are normalised, the coherence measure CMratio can be rewritten as

CMratio =
||∑i∈W vi||

N
, (3.6)

which is bounded by a range between 0 and 1, i.e. CMratio ∈ [0 . . . 1].

It is clear, from Equations 3.4 and 3.6, that the two apparently different coherence mea-

sures, CMdev and CMratio, are related non-linearly by

CMdev = (CMratio)2. (3.7)

This relationship is illustrated in Figure 3.2, which shows that CMratio shows a greater sen-

sitivity to low coherence than CMdev, giving a high-pass-filter effect. Therefore, in theory,

CMdev is better than CMratio because the values of coherence measure of the background

random regions are suppressed relatively. This relationship will be manifested in the experi-

mental results presented in Section 3.4.

3.3 Local phase coherence (LPC) measure

In this section, we propose a new measure, namely local phase coherence (LPC), to quantify

the degree of coherence of local flow velocities. Although other coherence measures have



3.3. Local phase coherence (LPC) measure 42

Figure 3.2: This figure shows the relationship between CMdev and CMratio, CMdev =

(CMratio)2.

been proposed in earlier works, as described in the Section 3.2, little attention has been

paid to treating the coherence and random flow patterns as regions of texture. A texture-

based approach [34, 35] emphasises the spatial relationships (or inter-relationships) between

adjacent voxels. A coherent flow texture corresponds to slight changes in the flow directions

between the adjacent flow vectors in a window W , whereas a random flow texture corresponds

to large changes in the flow directions between adjacent flow vectors in W . The flow direction

changes can be calculated using the dot product operation between the two neighbouring flow

vectors. This section begins by illustrating the problems of the lack of spatial dependence in

the coherence measures and then defines the proposed LPC measure.

3.3.1 The need for the enhancement of spatial relationships

For the coherence measures CMdev and CMratio, proposed in earlier work, the measures are

independent of the relative positions of the flow vectors. As such, different flow patterns,

with the same orientation distribution, will be given the same value of coherence. Figure

3.3 illustrates this. In this example, it can be seen that the flow pattern in Figure 3.3a
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a. More coherent and less random pattern. b. Less coherent and more random pattern.

Figure 3.3: This figure shows two flow patterns, where (a) is more coherent than (b). However,

if we calculate the degree of coherence using CMdev and CMratio, as described in the Section

3.2, we find that CMdev = 0.64 and CMratio = 0.8 for both flow patterns. It reveals the

deficiency of these measures in characterising the coherent and random flow patterns.

is intuitively more coherent than the flow pattern in Figure 3.3b. However, if we examine

the orientation distribution of these two patterns, we find that both patterns have the same

orientation distribution consisting of (a) three flow vectors pointing toward the North East

direction (π
4 ), (b) three flow vectors pointing toward East direction (zero radian), and (c)

three flow vectors pointing toward South East direction (−π
4 ). These two regions differ only

by having different relative positions of the vectors. If we calculate the degree of coherence

using CMdev and CMratio, we find that CMdev = 0.64 and CMratio = 0.8, and the same value

assigned for the two different flow patterns. This lack of distinction reveals the deficiency of

these measures in characterising the coherent and random flow patterns.

3.3.2 Defining LPC measure

To overcome the above drawback, in this section, we propose a new coherence measure based

on the use of spatial correlation. Given a window Ws with a centre on voxel s, each voxel in

Ws contains a normalised vector v = {vx, vy, vz}T , indicating the flow direction, a number of

pairs of adjacent vectors can be formed in Ws. The LPC measure at s is defined as the sum

of dot products of these adjacent vector pairs.

Formally, we may loosely follow the notations used by Geman and Geman [28] in letting
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Zn = {1, . . . , n} represent a regular lattice structure with n voxels (or pixels), and n be the

number of voxels in an image. Let S = {si|i ∈ Zn} be a set of voxels, V = {vi|i ∈ Zn} be

the corresponding set of flow vectors, and N = {Ni|i ∈ Zn} be a neighbourhood system for

S. Let Ws be a window at voxel s ∈ S containing a subset of voxels of S, i.e. Ws ⊂ S. The

neighbourhood system at s is given by

Ns(c) = {si, sj ∈ Ws | 0 < ||si − sj||2 ≤ c}. (3.8)

Note that c specifies the order of the neighbourhood system. For example, when c = 1, it is a

first-order neighbourhood system because every voxel inside Ws forms a pair with its nearest

neighbour, as shown in Figure 3.4a, in which Ws is a 3x3 window mask in a slice. It becomes

a second-order neighbourhood system when c = 2, as shown in Figure 3.4. The LPC measure

is defined as

CMlpc(c) =
∑

si,sj∈Ws,Ns(c)

vi · vj . (3.9)

In a slice, the number of adjacent vector pairs for c = 1 and c = 2 are 12 and 20, respectively.

CMlpc is bounded by the size of the set Ns, i.e. CMlpc ∈ [−Ns,Ns]. For instance, the value

range of CMlpc is between -12 and 12 when c = 1, and -20 and 20 when c = 2. In this

thesis, a 3x3 window mask is used in a slice (or 3x3x3 in 3D) for reasonable localisation of

the measure and for the speed of computation.

a. 1st order neigbourhood system. b. 2nd order neigbourhood system.

Figure 3.4: The neigbourhood system Ns.

Having defined the LPC measure, its similarities and differences can be highlighted by

comparison with the two coherence measures, CMdev and CMratio. While these gave values

of 0.64 (CMdev) and 0.8 (CMratio) for both the examples in Figures 3.3a and 3.3b, while
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the corresponding values of the LPC measure are 0.90 and 0.78 respectively when c = 2

and 0.92 and 0.72 respectively when c = 1. This implies that the LPC measure can better

discriminate between the coherent flow patterns and the random flow patterns. A more

detailed comparison of their performances will be presented in the next section.

3.4 Experimental results

In this section, we present the results from a number of experiments aimed at comparing

the performance of the three different coherence measures, CMdev, CMratio and CMlpc, on

synthetic images.

3.4.1 Synthetic images

There are three major advantages of using synthetic images for comparison of the perfor-

mances. Firstly, the true flow pattern and the true signal-to-noise ratios (SNR) of the images

is known and can be controlled for a quantitative comparison. Secondly, given that the

true flow pattern is known, the histograms of individual regions can correctly represent the

statistical characteristics of each region in the pattern for segmentation. This means, using

the synthetic images, we can have complete knowledge about the probabilistic structure of

this supervised two-category classification problem [21]. Finally, the synthetic images are

always ”clean” and free from image artifacts. The evaluated performance should represent

the optimal performance of the coherence measures.

The synthetic images consist of two 256×256 flow patterns: (a) vertical straight tubes and

(b) circular tubes with 8 and 4 pixel width, as shown in Figures 3.6a and 3.6b respectively.

The typical size of PC-MRA images is 256 × 256 voxels and the size of vessels ranges, on

average, from 8 voxels for large vessels to 4 (or even fewer) voxels for small vessels, as shown

in Figure 3.5. The simulated parameters were therefore chosen to mimic the clinical case.

The white strips in Figures 3.6a and 3.6b represent the positions and regions of the simulated

flow, while the black strips represent the background regions. The total areas of the white

and black strips are the same in each image. In Figure 3.6a, the simulated ”flow” runs from

the top to bottom direction, while in Figure 3.6b, it is in the clockwise direction.

For the purpose of image synthesis, we assume that each component is corrupted by

Gaussian noise with zero mean and the same standard deviation σ [37]. In Figure 3.6a, the
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Figure 3.5: Width of vessels.

a. Vertical straight tubes. b. Circular tubes. c. The coordinate system.

Figure 3.6: True patterns of the synthetic images (tubes are 8 pixel width) and the coordinate

system.



3.4. Experimental results 47

flow vector inside the tubes is given by

vx = nx, vy = −A + ny, vz = nz, (3.10)

where A represents the true flow magnitude, nx, ny and nz are the zero-mean Gaussian noise

components with the same standard deviation σ. The flow vector in the background is given

by the same set of equations, except that A is set to zero. SNR is then given by

SNR =
A

σ
, (3.11)

where σ is set to 28 (on average, σ is found to be about 28 in the clinical PC-MRA images

from our datasets). Similarly, the tube flow vector in Figure 3.6b is given by

vx = A × sinθ + nx, vy = −A × cosθ + ny, vz = nz, (3.12)

where θ is defined in Figure 3.6c. The magnitude (or the speed) of the flow at each voxel is

given by m = (v2
x + v2

y + v2
z)

1
2 . Figures 3.7a and 3.7b show the speed images of the synthetic

flow patterns (SNR = 3). As with clinical practices, voxels with high flow rates are assigned

intensity values higher than those assigned to the voxels with low flow rates. The histograms

corresponding to these simulated images are plotted in Figures 3.7c and 3.7d respectively.

The background distributions overlap heavily with those of the tubes because of the low

SNR (SNR=3). Segmentation was then performed using the MAP (Maximum A-Posteriori)

method on the histograms of vessel and background voxels in the speed images [21], which

chose the intersections of the histograms as the threshold. Figures 3.7e and 3.7f show that,

when the SNR is low, segmentation results based on the speed information alone are not very

encouraging.

3.4.2 Error measurements and results

Given that the true pattern is known, the segmentation (or classification) error can be accu-

rately calculated by counting the number of misclassified pixels, which is given by

Segmentation error =
Number of misclassified pixels

Total number of pixels in the image
× 100%. (3.13)

The segmentation errors of the speed images (SNR = 3), as shown in Figures 3.7e and

3.7f, using the speed information (histograms) alone are 15.08% and 14.86% for the vertical

straight tubes and circular tubes respectively. The high segmentation error rates reveal that

segmentation using speed information alone is inadequate when the SNR is low.
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a. Speed image. b. Speed image.

c. Speed image histogram (vertical tubes). d. Speed image histogram (circular tubes).

e. Segmented image using speed information

alone. Segmentation error = 15.08%.

f. Segmented image using speed information

alone. Segmentation error = 14.86%.

Figure 3.7: Speed images of the synthetic flow patterns (SNR = 3, tubes were 8 pixel width),

their histograms and segmented images using speed information alone.
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Segmentation based on the four different coherence measures were compared: CMdev

(Equation 3.1), CMratio (Equation 3.6), CMlpc(c = 1) and CMlpc(c = 2) (Equation 3.9).

For each coherence measure, e.g. CMlpc(c = 2), the coherence maps for the two synthetic

images (vertical and circular tubes) were calculated on a voxel-by-voxel basis. Examples for

CMlpc(c = 2) are shown in Figures 3.8a and 3.8b. We then generated histograms of the

background and tube regions from each of the corresponding coherence maps, as plotted

in Figures 3.8c and 3.8d for CMlpc(c = 2). The background and tube histograms were

then used for thresholding the coherence maps using the MAP classification method. The

thresholded images for CMlpc(c = 2) are shown in Figures 3.8e and 3.8f. It is observed that

these two thresholded images match the true flow patterns (Figures 3.6a and 3.6b) better

than the segmented images obtained using speed information alone (Figures 3.7e and 3.7f).

Specifically, the segmentation errors are 3.71% and 4.84% for the vertical straight tubes and

circular tubes respectively. Compared to the segmentation errors using speed information

alone (15.08% for vertical tubes and 14.86% for circular tubes), it is clear that segmentation

using flow coherence information gives a higher segmentation accuracy when the SNR is

low. For the sake of comparison, Table 3.1 gives the segmentation errors of CMlpc(c = 2),

CMlpc(c = 1), CMratio and CMdev, and reveals that CMlpc gives smaller segmentation error

than CMratio and CMdev.

Tube types CMlpc(c = 2) CMlpc(c = 1) CMratio CMdev

Vertical 3.71% 4.02% 6.47% 6.30%

Circular 4.84% 5.25% 6.23% 6.29%

Table 3.1: Segmentation errors of CMlpc(c = 2), CMlpc(c = 1), CMratio and CMdev

It is interesting to see that the segmentation errors change significantly when the SNR

increases (from SNR = 2 to SNR = 7). The segmentation errors of the four different coherence

measures are plotted in Figure 3.9. Figure 3.9 shows the transition from (a) when the SNR

was low, the quality of segmentation using flow coherence information is better than that

using speed information alone; to (b) when the SNR was high, segmentation using speed

information alone is better than that using flow coherence information.

The two major behaviours seen in segmenting these images may be understood as follows.

Firstly, speed histograms overlap heavily when the SNR is low, making the MAP segmentation
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a. Map of coherence CMlpc(c = 2) of the

vertical straight tubes.

b. Map of coherence CMlpc(c = 2) of the

circular tubes.

c. Histogram of CMlpc(c = 2). d. Histogram of CMlpc(c = 2).

e. Segmented image using CMlpc(c = 2).

Segmentation error = 3.71%.

f. Segmented image using CMlpc(c = 2).

Segmentation error = 4.84%.

Figure 3.8: Coherence measure, its histogram and segmented image of the vertical straight

tubes and circular tubes. (SNR = 3, tubes were 8 pixel width)
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based on speed information problematic and increasing the segmentation error. On the other

hand, when the SNR is low, the spatial correlation of flow vectors provides more robust

information than the speed information for segmentation with a noisy background. Secondly,

speed histograms become well separated when the SNR is high. As such, the segmentation

error using speed information is enormously reduced. The segmentation error using flow

coherence information, however, is kept constant because of the inevitable errors made at the

tube boundaries (flow discontinuities) and the inherent random coherence flow patterns in

the background.

Figure 3.9 shows that, among the four different coherence measures, CMlpc(c = 2) and

CMlpc(c = 1) give better overall segmentation results than CMdev and CMratio in the two

synthetic images with the tube width set to 8 and 4 pixels. Although CMlpc(c = 2) gives

a smaller segmentation errors than CMlpc(c = 1), the difference between CMlpc(c = 1) and

CMlpc(c = 2) is relatively small. The difference between them will be manifested when they

are tested in the 3D synthetic images presented in the next section.

3.4.3 Three-dimensional LPC measure

Although the synthetic images in the previous section are in 2D, the LPC measure is inher-

ently a general measure that can be applied in any higher dimension. This section shows how

to apply the LPC measure in 3D and, as in the previous section, compares its performance

with the previously described measures, CMdev and CMratio.

The extension to 3D is naturally done by applying a 3x3x3 window cube in an image

volume. The size of the neighbourhood system, as defined in Equation 3.8, is then increased.

The numbers of adjacent vector pairs |Ns| for c = 1 and c = 2 are 54 and 158 respectively,

which substantially increases the computational load. In the experiments outlined below,

we used the same synthetic flow patterns but extended the patterns into 3D (straight and

circular cylindrical tubes) with SNRs ranging from 2 to 7. The tube diameters were 8 and

4 voxels, and the image volume sizes were 256x256x(8+2) and 256x256x(4+2) respectively

(the extra two image slices are the top and bottom background slices).

Figure 3.10 summarises the segmentation results using the four different coherence mea-

sures, CMdev, CMratio, CMlpc(c = 1) and CMlpc(c = 2). Note that the vertical axes have

been rescaled compared to Figure 3.9. In general, the results in Figure 3.10 are comparable

to the results in Figure 3.9, which show the applicability of the LPC measure to the 3D pat-
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a. Vertical straight tubes (8 pixel width) b. Circular tubes (8 pixel width)

c. Vertical straight tubes (4 pixel width) d. Circular tubes (4 pixel width)

Figure 3.9: Errors of segmentation using two-dimensional flow coherence information from

the synthetic images (vertical and circular tubes).
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terns, and reveal that the LPC measures, especially the second order LPC measure (c=2),

perform better than the two other measures, CMdev and CMratio, and the first order LPC

measure CMlpc(c = 1). Note that, between CMlpc(c = 1) and CMlpc(c = 2), the second

order neighbourhood system gives more flow coherence evidence to the coherence measure,

which makes the measure more robust to noise. It is observed that the overall segmentation

errors are lower than those in Figure 3.9 (all vertical axes have been rescaled) because, in

3D patterns, the ratio of the flow boundary (flow discontinuity) voxels to the total voxels is

lower than that in 2D.

3.5 Application to PC-MRA images

The proposed coherence measure has been applied to a number of clinical PC-MRA images.

Figure 3.11 shows that flow vectors inside the vessels are locally coherent, whereas flow vectors

outside the vessels are random. It is also worth pointing out that, as it is illustrated in the

figure, flow vectors are likely to be dependent inside vessels. If a flow vector inside a vessel

is pointing in a direction v, its neighbouring flow vectors should have a high probability of

pointing in the same direction v. This is consistent with the results of clinical flow studies

[29, 50, 80] and simulations of computational fluid dynamics (CFD) [13, 24, 64]. For this

reason, we can hypothesise that the local coherent flow pattern becomes a useful feature for

distinguishing the vascular voxels from the background voxels in PC-MRA images.

To illustrate the applicability of the LPC measure, we applied the second order LPC mea-

sure CMlpc(c = 2) to phantom and clinical images. A 180o U-bend tube with 8mm diameter

(SST phantom, ISMRM Flow and Motion Study Group, Stanford CA) was scanned using the

PC-MRA protocol on a 1.5T GE MR scanner at the Department of Clinical Neuroscience,

King’s College London, United Kingdom. The data volume size was 256 × 256 × 81 voxels

with voxel dimensions of 0.625 × 0.625 × 1.3mm3. The flow rate was constant and set at

300mms−1. The scan details were as follows: axial scan, TE/TR = 7.3/20ms, flip angle 18o,

1 signal average, FOV: 22 × 16cm2, VENCS: 400mms−1 and acquisition matrix: 256 × 160

pixels.

Figure 3.12a shows a speed image corresponding to a cross-section of the joining arc of

the U-bend tube, in which the fluid was flowing into the left tube and flowing out from

the right tube. This figure also shows that the intensity values in the middle are low and
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a. Vertical straight tubes (8 voxel width) b. Circular tubes (8 voxel width)

c. Vertical straight tubes (4 voxel width) d. Circular tubes (4 voxel width)

Figure 3.10: Errors of segmentation using three-dimensional flow coherence information from

the synthetic images (vertical and circular tubes). Note that, relative to Figure 3.9, all vertical

axes have been rescaled.
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Figure 3.11: This figure shows that flows inside the vessels are locally coherent.

a. Speed image. b. Local phase coherence map.

c. ROIs in the speed image. d. Flow field (ROI-A: Inside

the tube)

e. Flow field (ROI-B:

Background)

Figure 3.12: Speed image, local phase coherence map and flow fields of a 180o U-bend tube.
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that some of the voxels have intensity values almost as low as the background. However, as

shown in Figure 3.12b, the 3D LPC map shows a more homogeneous appearance than the

corresponding speed image shown in Figure 3.12a. In particular, the region inside the tube is

more uniform. Figure 3.12c shows the positions of two regions of interest (ROI) selected for

visualisation of the local velocities and flow fields. The components in the xz plane (Figures

3.12d and 3.12e) demonstrate that the flow is coherent inside the tube and random in the

background. The SNRs (= mean/variance) of the regions of interests, ROI-A and ROI-B in

Figure 3.12c, are 4.2 and 2.2 respectively.

a. Speed image. b. Local phase coherence map.

Figure 3.13: Clinical speed image and local phase coherence map.

Figure 3.13a shows a clinical speed image of a patient with an aneurysm (indicated by

the arrow) scanned using the PC-MRA protocol on a 1.5T GE MR scanner at King’s College

London (The scan details can be found in Section 6.4.1). The arrow indicates an intracranial

aneurysm with a pronouncedly inhomogeneous appearance on the speed image. Figure 3.13b

shows its corresponding LPC map. It is observed that the voxels inside both the aneurysm

and vessels exhibit high LPC and form piece-wise homogeneous regions, whereas the non-

vessel voxels have relatively low and random LPC. Figure 3.14 shows the ROIs in the speed

image, in which the SNRs of the regions of interest, ROI-A and ROI-B, are 3.6 and 1.8

respectively.
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Figure 3.14: ROIs in the speed image.

3.6 Summary

In this chapter, we have presented a new local coherence measure, namely the local phase

coherence (LPC) measure, which greatly enhances the spatial correlations of the neighbouring

flow vectors. We have demonstrated that the proposed LPC measure is useful in separating

local coherent flow fields from random flow fields. Although the experiments carried out in

the chapter are in 2D and 3D, it is straightforward to apply the LPC measure to any higher

dimension as well. Moreover, since the LPC measure computes the spatial correlation by

using the dot product operation, which is a relative measure based on the angular difference

between two vectors, the LPC measure is orientation invariant. Note that the proposed LPC

measure is not restricted to normalised vector fields. The LPC measure could be weighted

by the flow magnitude at the centre of the window mask, which is given by

CMlpc(c = 1 or c = 2) = |vs| ·
∑

si,sj∈Ws,Ns

vi · vj , (3.14)

where vs represents the vector at the centre of the window Ws. The LPC measure is poten-

tially useful for flow discontinuity and vessel detection, flow feature extraction in flow-like

patterns and optical flow fields.

We have carried out experiments on synthetic images to evaluate and compare the perfor-

mance of the LPC measure and two other related coherence measures that have appeared in

the literature. The experimental results show that (a) when the SNR is low, the segmentation
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using the flow coherence measure is more accurate than the segmentation using the speed in-

formation alone; (b) the LPC measure outperforms other coherence measures assuming that

flow vectors in a field are dependent, and (c) the second order LPC measure (c=2) performs

better than the first order LPC measure (c=1) because it gives more evidence of flow vector

correlations.

On the other hand, when the SNR is high, simple segmentation using a threshold based

on the speed information alone outperforms that using the coherence measure. In Chapter

4 we investigate the idea of a single segmentation process to achieve better segmentation

results using both speed and flow coherence information.



Chapter 4

A probabilistic framework for

combining speed and flow

coherence information

4.1 Introduction

The concept of data fusion is to aggregate data having complementary characteristics acquired

from different sources so that better quality information can be achieved. The data sources

can be the outputs of feature extraction methods (e.g. edge or optical flow), or sensing and

imaging devices (e.g. laser or ultrasound rangefinders, MR and CT). To increase segmentation

quality for objects having real flow fields (e.g. vessels or pipes) or objects having flow-like

features (e.g. edges or optical flow fields), this chapter introduces a probabilistic data fusion

framework for combining speed (or flow magnitude) and flow coherence information, which

have been described in Chapters 2 and 3 respectively.

As illustrated in Chapter 3, segmentation using speed information alone performs well

when the SNR is high because the background and object histograms are well separated.

However, when the SNR is low, the background and object histograms start to overlap,

which makes the speed information unreliable. The flow coherence measure introduced in

Chapter 3 compensates for the deficiency of the speed information and yields more reliable

information for segmentation when the SNR is low. As such, the benefit of aggregating speed

and flow coherence information is that a better segmentation algorithm, which performs well

59
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for both low and high SNR values, can be achieved.

In our method, a probabilistic framework is employed for data fusion because it provides

a consistent framework for (a) enhancing the local relationships between the voxels through

the prior probability, i.e. the MRF-Gibbs distributions, (b) modelling knowledge of the image

formation process through the likelihood function, i.e. the MGU statistical model in Chapter

2, and (c) making the minimum risk decision, i.e. MAP estimation, given that the prior

probability and likelihood function are known.

Experiments have been carried out on synthetic and clinical images. The results show

that the new segmentation approach outperforms segmentation using either speed or flow

coherence information alone by giving higher segmentation accuracy at both low and high

SNR values.

4.2 Integration using a probabilistic framework

In this section, we begin by introducing a powerful probabilistic framework, namely the MAP

estimation, which is commonly used in solving computer vision and statistical problems. We

then discuss the use of Markov random fields (MRF) models to estimate the MAP solution

in a more robust and efficient manner, and enhance the local relationships between sites

(pixels or voxels). A brief explanation of the typical minimisation methods for the MAP-

MRF estimation follows. Finally, we show how to incorporate the speed (or flow magnitude)

and flow coherence information as a priori knowledge in the MAP-MRF estimation so that

the segmentation error can be reduced.

4.2.1 Maximum a posteriori (MAP) estimation

Maximum a posteriori (MAP) estimation has been a useful statistical tool in solving computer

vision problems, such as object and pattern classification [21, 38, 10], and image restoration

[28, 9] because it makes a decision with minimum risk [10, 53]. Given that the posterior

probability is known, the MAP estimation classifies the image voxels with minimum error of

probability [52].

Let S = {si|i ∈ Zn}, where Zn = {1, . . . , n}, represent a regular lattice structure with n

sites. Let X = {xi|i ∈ Zn} and Y = {yi|i ∈ Zn} be the true image and the observed image

respectively, where xi can be equal to one of the labels in L = {1, 2, . . . ,m}, yi represents one
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of the observed values, e.g. intensity {0, . . . , Imax}, and m is equal to the number of possible

classes. Let ΩX = L × · · · × L = Ln be the sample space of X , X ∈ ΩX , and ΩY be the

observation space, Y ∈ ΩY .

The MAP estimation, in principle, maximises the posterior probability p(X|Y) of the true

image X given the observed image Y, i.e. p(X|Y) = p(x1, . . . , xn|y1, . . . , yn). Given that the

prior probability p(X ) and likelihood function p(Y|X ) are known, the posterior probability

can be estimated according to the Bayes’ theorem,

p(X|Y) ∝ p(X )p(Y|X ), (4.1)

where p(X ) represents the prior beliefs about the image, and p(Y|X ) embodies the knowledge

in image formation and noise properties. The MAP decision rule for the optimal solution X̂
is given by,

X̂ = arg max
X∈ΩX

p(X )p(Y|X ), (4.2)

which, however, represents an exhaustive combinatorial optimisation problem because of the

large search for X in ΩX . The size of ΩX is equal to mn, i.e. |ΩX | = mn. Typically, m = 2

if it is a binary segmentation problem and n = 256 × 256. This means that it is almost

impossible to search the whole sample space ΩX extensively for the optimal solution X̂ , and

we must therefore use the prior probability to constrain the solution.

For example, if the prior probability p(X ) is non-informative or uniformly distributed,

then the MAP estimation is equivalent to the Maximum Likelihood Estimation (MLE). On

the other hand, the prior probability can be informative and influential in the MAP estimation

if appropriate a priori knowledge is incorporated [12]. Moreover, multiple prior information

sources can be aggregated in the prior probability so that the uncertainty in the decision

process can be reduced. An good example is the integration of intensity (pixel site) and edge

(line site) information in the prior probability [28]. (see also [27] for another good example

in surface reconstruction). This is the main idea used in this chapter.

4.2.2 Markov random field (MRF) models and Gibbs distributions

Markov random field (MRF) theory was introduced to the image processing community by

Geman and Geman [28] for modelling the local relationships between image voxels so that

the optimal solution of the MAP estimation could be obtained in a more robust and efficient

manner, either by the simulated annealing algorithm (SA) [28] or the iterated conditional
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modes (ICM) method [9]. Geman and Geman showed that the MRF model is an effective

way of representing a priori knowledge. Moreover, Clark and Yuille [19] proposed using the

MRF model for combining multiple information sources.

We assume that the local relationships between sites in S are described by a neighbour-

hood system N , which is defined as

N = {Ni|i ∈ Zn}, (4.3)

where Ni ⊆ S represents a set of sites adjacent to the site si. There are two properties of N .

Firstly, site si is assumed not to belong to its neighbourhood set, i.e. si �∈ Ni, and secondly

interactions between sites are bi-directional, i.e. si ∈ Nj ⇔ sj ∈ Ni.

The definition of a Markov random field: given a neigbourhood system N , X is an MRF

if and only if two conditions are satisfied [28].

p(X ) > 0, for all X ∈ ΩX and (4.4)

p(xi|xj, i �= j) = p(xi|xj , sj ∈ Ni), (4.5)

where i, j ∈ Zn. Equation 4.4, which is the positivity property of the MRF, states that any

realisation of the field X is possible. Any field that satisfies this condition is also called a

random field [48]. Equation 4.5 describes the Markovian property of the MRF, which denotes

the individual conditional probability at each site and represents the local characteristics be-

tween sites. This states that the probability of an event at site si is dependent only on the

events at the neighbouring sites sj. According to [28, 8], the joint probability p(X ) of any

process satisfying Equation 4.4 is uniquely determined by the conditional probabilities specified

in Equation 4.5. This implies that if X is an MRF, the joint probability p(X ) (in Equation

4.4) of the variables xi, i ∈ Zn, can be derived from the individual conditional probabilities.

However, the immediate question that follows is how to determine the conditional probabil-

ities. By virtue of the Hammersley-Clifford theorem [8], the Gibbs distribution provides us

with a practical way of specifying the conditional probabilities.

Hammersley-Clifford theorem: let N be a neighbourhood system. Then X is a MRF with

respect to N if an only if p(X ) is a Gibbs distribution with respect to N . A Gibbs distribution

of X is given by,

p(X ) =
1
Z

× e−
U(X)

T , (4.6)

where T is a temperature parameter, U(X ) is the energy function and Z is a normalising
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constant and is given by

Z =
∑

X ′∈ΩX

e−
U(X′)

T , (4.7)

i.e. the normalising constant is the summation of all the values of possible realisations (or

configurations). A clique c is a subset of sites, c ⊆ S, which can be a single-site clique

c ∈ C1 = {si}, a pair-site clique c ∈ C2 = {si, sj|si and sj are adjacent} or multiple-site

clique. The energy is then defined as

U(X ) =
∑

si∈C1

V1(xi) +
∑

{si,sj}∈C2

V2(xi, xj) + higher order energy terms, (4.8)

where V1 and V2 are potential functions. Note that the potential function V2 enforces the

Markovian property of the MRF by encoding the local dependence between adjacent sites si

and sj. In this thesis, the first order energy U(X ) (Ising model) is used because, in practice,

it strikes a balance between the complexity of the local relationships and computational load.

Specifically, the Ising model is employed, which includes either the nearest four neighbours

in 2D, or the nearest six neighbours in 3D. Depending on the nature of applications and

availability of parallel processors, higher energy models may be utilised to enhance higher

order interactions between sites, e.g. second order dependence or triple-site clique c ∈ C3 =

{si, sj , sk|si, sj and sk are adjacent}.
Suppose that the likelihood function p(Y|X ) can be re-expressed by an MRF. From Equa-

tions 4.2 and 4.6, the MAP decision rule becomes

X̂ = arg max
X∈ΩX

(
1
Z ′ × e−

U(X)+U(Y|X)
T

)
, (4.9)

where Z ′ is a normalising constant. This in turn leads to a new minimisation problem, and

the MAP-MRF decision rule can then be re-expressed as

X̂ = arg min
X∈ΩX

(
U(X ) + U(Y|X )

T

)
= arg min

X∈ΩX

(
U(X|Y)

T

)
, (4.10)

where U(X ), U(Y|X ), U(X|Y) denote the prior, likelihood and posterior energies respectively.

The prior energy U(X ) represents a hierarchical interaction structure [28], which can be

easily extended from a local dependence structure to a complete connected structure. In

practice, only local relationships are incorporated in the prior energy. This makes the par-

allelisation of the optimisation algorithms feasible in principle. Moreover, the attractiveness

of the MRF-Gibbs modelling lies in its exponential form because it turns a product of prob-

ability distributions into a sum of energy terms, which makes the quantitative analysis of
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the optimal solution more mathematically tractable. For example, it gives quadratic energy

terms if the distributions are Gaussian.

4.2.3 Optimisation methods for the MAP-MRF estimation

The derived objective function in Equation 4.10 can be optimised either by global methods

or local methods. Global and local methods differ mainly in the nature of the solutions

obtained. The former seeks the global minimum even though there are many local minima,

whereas the latter finds the minimum locally, which could be the global minimum if there

is only one minimum or if the initial estimate is very close to the global solution. A good

review of a variety of optimisation methods can be found in a book by Li [48].

The simulated annealing (SA) algorithm is a global stochastic optimisation method, and

was independently introduced by Kirkpatrick [42] and Černy [18]. SA is an iterative optimi-

sation process based on a Monte Carlo technique, (Metropolis algorithm [60] or Gibbs sampler

[28]), which randomly generates a large number of configurations X ∈ ΩX at each step. Ac-

cording to the Metropolis algorithm, the next configuration X ′ is generated from the current

configuration X using a perturbation mechanism, which changes randomly the current label

of one site si into a new label by a small distortion, e.g. displacement of a neighbouring site

sj ∈ Ni [1]. If the energy change U(X ′|Y)−U(X|Y) is negative, then the change is accepted.

Otherwise, the change is accepted only if e
−(U(X′|Y)−U(X|Y))

T ≥ random[0, 1). In a simpler way,

the Gibbs sampler, at a fixed T , generates the next configuration X ′ from the current config-

uration X by changing one site si into one of the labels in L randomly according to the local

conditional probabilities1 p(xi|si ∈ Ni). Usually, at a fixed T , this ”configuration changing”

process is stopped if there is an adequate number of accepted changes or if it exceeds a fixed

number of changes.

It has been shown by Geman and Geman [28] that employing either the Metropolis algo-

rithm or the Gibbs sampler, and regardless of the initial configuration, SA will converge to the

globally optimal MAP solution if each site is visited infinitely often and the temperature value

T decreases gradually after each iteration step, according to a specific decreasing schedule

T (t), which satisfies two conditions: (a) T (t) → 0 as t → ∞; and (b) T (t) ≥ n∆/log t, where
1For example, assumed that there are two labels, {0, 1}, p(xi = 0|si ∈ Ni) = 0.3 and p(xi = 1|si ∈ Ni) =

0.7. If a random number is generated, which is ranged between 0 and 1, then label 0 is assigned if the number

is between 0 and 0.3, and label 1 is assigned if the number is between 0.3 and 1.
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n represents the total number of sites, t (≥ 2) denotes the number of iterations and

∆ = (max
X

U(X|Y)) − (min
X

U(X|Y)). (4.11)

In practice, to avoid a larger number of iterations in approaching the freezing point T →
0, T (t) is set to C/log(1 + t), where C = 3 or 4 [28]. SA iteratively seeks for a lower

energy configuration in each step. However, depending on the current temperature value, it

allows occasional increases in energy level to avoid local minima. The tradeoff is that a long

computation time is incurred [9, 36].

Besag [9] proposed a deterministic local search method, namely iterated conditional modes

(ICM). Unlike SA, ICM persistently seeks a lower energy configuration and never allows in-

creases in energy, which guarantees a faster convergence rate. For example, in the segmenta-

tion of brain images, ICM converges within 10 iterations, whereas SA needs 1000 iterations

[36]. It should be noted that the temperature value T is fixed throughout the entire search-

ing process. ICM assumes that (a) the observed variables Y = {yi|i ∈ Zn} are conditionally

independent, i.e. p(Y|X ) =
∏n

i=1 p(yi|xi) in Equation 4.2 and U(Y|X ) =
∑n

i=1 U(yi|xi)

in Equation 4.10; and (b) the state of a site si depends only on the states of its adja-

cent sites Ni (Markovian property), i.e. p(X ) =
∏n

i=1 p(xi|si ∈ Ni) in Equation 4.2 and

U(X ) =
∑n

i=1 U(xi|si ∈ Ni) in Equation 4.10. These two assumptions enable the maximi-

sation of the local posterior probability p(xi|yi, si ∈ Ni) in each iteration step such that the

overall posterior probability p(X|Y) can be optimised after a convergence has been reached.

The local posterior probability, which is defined as

p(xi|yi, si ∈ Ni) = p(xi|si ∈ Ni)p(yi|xi), (4.12)

at a site si, is equivalent to the minimisation of its local posterior energy

U(xi|yi, si ∈ Ni) = U(xi|si ∈ Ni) + U(yi|xi). (4.13)

It is clear that the optimisation is entirely local and is extremely simple to implement.

In general, although SA may seem preferable because it guarantees convergence to the

global optimal MAP solution, there are two advantages of using ICM. Firstly, by having a

comprehensive knowledge of the image formation process and noise properties, as described

in Chapter 2, the initial estimate of the true image X can be very close to the optimal

solution. Compared with SA, consistent and fast convergence makes ICM more attractive in

some time-critical applications.



4.2. Integration using a probabilistic framework 66

Recently, new deterministic global methods have been developed for solving MRF prob-

lems in computer vision. Examples include the Exact MAP estimation algorithm [76, 41, 31],

mean field theory [40, 22, 27] and the graduated non-convexity method [11]. However, some

of these methods are in the early stages of development. To make the most of these methods,

more detailed comparisons are necessary to understand their strengths and weaknesses.

4.2.4 Fusing speed and flow coherence information in the MAP-MRF prior

energy

A priori knowledge is very important for solving statistical decision problems, like the MAP

estimation in Equation 4.2, because it influences the determination of the posterior probability

and in turn affects the decision certainty [12]. As pointed out in Section 4.2.2, the MRF prior

energy U(S) encodes the local relationships between sites, and in fact is a practical and

effective way of aggregating multiple prior information [19, 53], such as intensity values,

edges and other useful features.

Most prior works in MAP-MRF based data fusion are related to the combination of

intensity and edge information. For example, Geman and Geman [28] proposed to combine

pixel intensity values and binary edge values. The use of MAP-MRF models has been further

investigated and applied in a variety of ways, such as surface reconstruction [27, 26], a weak

membrane modelling [11], ill-posed problems in vision [53] and fusion of sensory information

[19]. In general, the prior energy is given by,

U(X ) = λ
∑
i∈Zn

∑
sj∈Ni

(xi − xj)2(1 − li)

︸ ︷︷ ︸
Spatial smoothing term

+ µ
∑
i∈Zn

li

︸ ︷︷ ︸
Edge term

, (4.14)

where xi ∈ L, li (∈ {0, 1}) represents a binary edge element between two neighbouring sites, λ

and µ denote weights (constants) attached to each term. This form of prior energy smoothes

the image locally when there is no existence of an edge element (li = 0), and preserves the

image edges when an intensity discontinuity exists (li = 1). While minimising the prior

energy, the second term becomes a penalty term to the line elements if µ is positive. A

smoother image will be obtained if µ is large and positive.

In this chapter, by applying the concepts of data fusion, we propose a new flow coherence

term in the MRF prior energy, based on the coherence measure presented in Chapter 3, such

that the information about flow coherence and speed (or flow magnitude) can be effectively
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incorporated into the a priori knowledge, and a better quality segmentation can be obtained.

Assume that there exists a flow field in an image, in which flow vectors with different flow

magnitudes and directions are situated at the centre of the sites. Each site variable xi ∈ X
will be classified as one of the labels {0, 1}, where xi = 1 if the site belongs to the object

having locally coherent flow and relatively high flow magnitude, and xi = 0 if the site belongs

to the background with random and relatively low flow. Assume that the flow coherence O
is a constant field rather than an MRF because the observed flow field is fixed during the

energy minimisation process, and that xi and oi are located at the same site. Based on the

coherence measure between the normalised flow vectors, a site is labelled as one, i.e. oi = 1,

if the flow vectors are locally coherent at xi, or oi = 0 if the vectors are locally non-coherent.

Note that the MRF X can be initialised based on the statistics of the flow magnitudes, as

described in Chapter 2. The goal is to partition an image into two separate and distinct

regions: (a) the object and (b) the background based on the flow magnitudes and coherence.

The a priori knowledge is derived based on an observation that a site si is likely to belong

to the object class, xi = 1, if its neighbouring object sites and itself are locally coherent, i.e.

xj = 1, oi = 1 and oj = 1. The interactions between sites are described as follows. If oi = 0,

i.e. flow is not locally coherent at a site si, then the site belongs to background, i.e. xi = 0.

If oi = 1, then the site si belongs to the object only if its adjacent sites belong to object

xj = 1 and are locally coherent oj = 1. Otherwise, xi = 0. The new prior energy term is

then defined as

U(X ,O) =
∑
i∈Zn

∑
sj∈Ni

β1(1 − xi)xjoioj + β2xi(1 − xjoioj)

︸ ︷︷ ︸
F low coherence term

, (4.15)

where β1 and β2 are positive weights, which need not sum to one, and Ni is the Ising first

order neighbourhood system. The parameter β1 controls the influence of the object-and-

coherent sites in the interactions between the adjacent sites, while β2 governs the weight of

the background or non-coherent sites. Note that in similarity to the standard anisotropic

Potts model, which weights cliques according to their orientations, β1 and β2 could be set to

different values. For instance setting β1 to a higher value than β2 will enhance the interaction

between the object-and-coherent sites [75, 48, 61]. For simplicity in the MRF model, only

(but not limited to) the flow coherence term is included in the total prior energy in this work.
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As such, from Equation 4.10, the MAP-MRF decision rule becomes

X̂ = arg min
X∈ΩX

(U(X ,O) + U(Y|X )), (4.16)

where U(X ,O) is the flow coherence prior energy defined in Equation 4.15 and U(Y|X ) is

the likelihood energy. Note that the ICM method is employed in this work, i.e. T is constant

in Equation 4.10 and, hence, is not included in Equation 4.16. Also, in this work, each

site si contains likelihood energies for the background and vessel voxels, which are given by,

according to Equation 2.13 in Section 2.3.5,

For background voxel, U(yi|xi = 0) = − log
(

wMfM (yi) + wGfG(yi)
wM + wG

)
and (4.17)

For vessel voxel, U(yi|xi = 1) = − log fU(yi), (4.18)

respectively.

4.3 Experimental results on synthetic images

Recall from Chapter 3 that the speed information gives better segmentation results for high

SNR regions, but becomes unreliable when the SNR level is low. The flow coherence measure

compensates well for this deficiency and provides more reliable information for the segmenta-

tion of low SNR regions. On the other hand, segmentation using flow coherence information

alone is not as good as that using the speed information alone in high SNR regions. To

investigate a possible improvement on this by combining the methods, we implemented the

MAP-MRF model using a first order neighbourhood system (Ising Model) and the new flow

coherence prior energy aggregating the complementary speed and flow coherence information

in a flexible and unified probabilistic framework. In this section, we present the implementa-

tion details, and experimental results based on the two synthetic images: the vertical straight

tubes and circular tubes described in Section 3.4.1 (Figures 3.6a and 3.6b respectively).

4.3.1 Implementation details

This section will provide details of the implementation. The goal is to find an image X̂
with minimum energy configuration through an energy minimisation process using the ICM

method, (described in Section 4.2.3) because of its fast convergence rate, simple implemen-

tation and the availability of a good initial estimate based on our knowledge of the image
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formation process. T is set to 1 throughout the minimisation process [9]. The implementation

process is outlined in Figure 4.1.

Each image is initially segmented using the EM algorithm with the utilisation of the MGU

statistical model (Chapter 2). The result is then treated as an initial estimate for the MAP-

MRF model, which iteratively maximises the posterior energy U(X|Y) and changes the site

class {0, 1} at each site according to the intensity X and flow coherence O information. The

iteration process is repeated until the posterior energy is maximised and there is no change

in site classes. The final estimate represents the output image. Convergence is normally

reached after 10 iterations.

(1) Segment the image using the EM algorithm and MGU model.

Initial estimate X 0 and likelihood energy U(Y|X ) are obtained,

where U(Y|X ) = −log P (Y|X ), negative log of the likelihood function.

(2) Compute the coherence measure CMlpc(c = 2) at each site.

(3) Segment the image using CMlpc(c = 2). O is obtained,

where oi = 1 and 0 represent coherent and non-coherent sites respectively, and

xi and oi are located at the same site position.

(4) Iterate for k = 1, . . . ,MaxItn: (MaxItn = Maximum number of iterations)

(5) Iterate for i = 1, . . . , n: (n = Total number of sites)

(6) xk
i = arg minxk

i ∈L(U(xk
i |oi, x

k−1
j , oj) + U(yi|xk

i )),

where

U(xk
i |oi, x

k−1
j , oj) =

∑
sj∈Ni

β1(1 − xk
i )x

k−1
j oioj + β2x

k
i (1 − xk−1

j oioj).

(7) Terminates if X k−1 = X k or k = MaxItn.

(8) Final estimate X̂ = X k.

Figure 4.1: Segmentation algorithm based on the MAP-MRF model using the flow coherence

prior energy.

4.3.2 Two-dimensional synthetic images

We segmented the two synthetic 2D images using different values of β1 and a fixed value of

β2. β2 was set to 1 throughout this thesis and, compared the differences in segmentation

when β1 was varied from 1 to 3. The segmentation performance was measured based on the

ratio of the number of misclassified pixels to the total number of total voxels, which is given
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by

Segmentation error =
Number of misclassified pixels

Total number of pixels in the image
× 100%. (4.19)

Figure 4.2 shows that when β1 = 2, segmentation errors are smaller than the other two

values, β1 = 1 and 3, over the whole range of SNR (from 2 to 7). As such, we set β1 = 2

in this implementation. Note also that the difference in segmentation errors between β1 = 2

and β1 = 3 is small, and the discrepancy in segmentation errors between the values of β1

is relatively small when the SNR is high. As with other MRF models [41, 31], the values

of β1 and β2 are application dependent and should be carefully chosen when the proposed

algorithm is utilised in other potential applications.

Figure 4.3 shows the results of the three different segmentation methods, based on (a)

speed information alone, (b) flow coherence information alone using the second order local

flow coherence measure CMlpc(c = 2), and (c) the MAP-MRF model using both speed and

flow coherence information. A substantial improvement is shown in Figure 4.3, where the

overall segmentation errors have been reduced and remain the lowest at all SNR values when

the speed and flow coherence information is combined using the flow coherence prior energy

in the MAP-MRF model.

4.3.3 Three-dimensional synthetic images

We extend the approach to 3D by applying the Ising model in three-dimensions, which

includes the six first order neighbouring voxels (x − 1, y, z), (x + 1, y, z), (x, y − 1, z), (x, y +

1, z), (x, y, z − 1) and (x, y, z + 1). The benefit of a 3D analysis is that information exchange

will be encouraged across the image slices rather than only within a slice in the 2D case so

that, in our applications, vessels traversing in the through-plane direction can be identified.

As with the 2D application, shown in Figure 4.2, Figure 4.4 reveals that the overall

segmentation errors of the 3D synthetic images are lowest when β1 and β2 are set to 2 and 1

respectively. With these values of β1 (= 2) and β2 (= 1), the results in Figure 4.5 demonstrate

that the MAP-MRF model with the flow coherence prior energy gives a better performance

overall than the segmentations using speed information alone and flow coherence information

alone.
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a. Vertical straight tubes (8 pixel width) b. Circular tubes (8 pixel width)

c. Vertical straight tubes (4 pixel width) d. Circular tubes (4 pixel width)

Figure 4.2: Segmentation errors in the 2D synthetic images (vertical and circular tubes) with

different values of β1 = 1, 2, 3 for a fixed value of β2 = 1.
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a. Vertical straight tubes (8 pixel width) b. Circular tubes (8 pixel width)

c. Vertical straight tubes (4 pixel width) d. Circular tubes (4 pixel width)

Figure 4.3: Comparison on the results based on (1) segmentation using speed information

alone, (2) segmentation using flow coherence information alone, and (3) segmentation using

both speed and flow coherence information. All segmentations were done on the 2D synthetic

images (vertical and circular tubes). β1 = 2 and β2 = 1.
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a. Vertical straight tubes (8 voxel width) b. Circular tubes (8 voxel width)

c. Vertical straight tubes (4 voxel width) d. Circular tubes (4 voxel width)

Figure 4.4: Segmentation errors on the 3D synthetic images (vertical and circular tubes).

Different values of β1 = 1, 2, 3 and fixed value of β2 = 1.
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a. Vertical straight tubes (8 voxel width) b. Circular tubes (8 voxel width)

c. Vertical straight tubes (4 voxel width) d. Circular tubes (4 voxel width)

Figure 4.5: Comparison on the results based on (1) segmentation using speed information

alone, (2) segmentation using flow coherence information alone, and (3) segmentation using

both speed and flow coherence information. All segmentations were done on the 3D synthetic

images (vertical and circular tubes). β1 = 2 and β2 = 1.
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4.4 Application to PC-MRA images

In this section, we apply the MAP-MRF approach to the segmentation of PC-MRA images.

We begin by presenting an automatic threshold determination method for the classification

of coherent and non-coherent voxels in the LPC map. Segmentation results on the PC-MRA

images are then presented. Finally, the performance of the MAP-MRF method is evaluated

by using a geometrically accurate tube.

4.4.1 Automated threshold determination for the LPC map

A typical LPC map and its histogram are shown and plotted in Figures 4.6a and 4.6b respec-

tively. Note that the second order LPC measure, CMlpc(c = 2), is used and, therefore, the

values of LPC range from -158 to 158. Figure 4.6b shows that the histogram is right-shifted

and skewed.

a. Local phase coherence map. b. Histogram of the local phase coherence

map.

Figure 4.6: Local coherence map and its histogram.

In fact, the LPC histogram can be described by three classes: background with low LPC,

brain tissue with slightly higher LPC, and vessel with extremely high LPC, as illustrated

in Figures 4.7a and 4.7b. The background (B) and brain tissue (T) histograms overlap

heavily because of the non-stationary, but slightly coherent, motion of the non-vessel brain

tissue. In contrast, the vessel (V) histogram is separated clearly from the background (B)

and brain tissue (T) histogram. The point of separation - the desired threshold - is indicated

approximately by an arrow in Figure 4.7b (midway between T and V histograms).
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a. Regions of interest. b. Individual histograms of regions of interest.

Figure 4.7: Regions of interest and their histograms.

In a similar way to Chapter 2, where we model the background and vascular signals in PC-

MRA speed images, in LPC maps, we model the background, brain tissue and vessel regions

with three separate Gaussian distributions. It is worth noting that theoretical modelling of

the LPC histogram is extremely difficult because of the high correlation between the velocity

random variables, and normalisation and dot product operations of the correlated variables

when the coherence measure is calculated. We again use the EM algorithm [10] to fit the

LPC histogram by a mixture of the three Gaussian distributions. Figure 4.8a shows the

fitting of the triple Gaussian model (dashed line). The individual histograms of the Gaussian

distributions are shown in Figure 4.8b.

We define the mean and standard deviation of the brain tissue distribution as µT and

σT respectively, and use µT + α · σT as the non-vessel threshold (we set α equal to 3 in this

thesis). A voxel with LPC above the non-vessel threshold is labelled as a coherent voxel.

Otherwise, it is labelled as a non-coherent voxel. As shown in Figure 4.9, the coherent voxels

form a number of vessel ’clusters’, though there are some randomly distributed voxels due to

random coherent noise, small coherent motion of the non-vessel tissue during scanning and

ghosting artifacts. These ’outliers’ can be ignored if they are far away and disconnected from

the vasculature, and their intensity values in a speed image are low.

4.4.2 Segmentation results on PC-MRA images

For the sake of comparison, two clinical PC-MRA images (as shown in Figures 4.10a and

4.11a) were processed using the speed information alone. As described in Chapter 2, by the
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a. Histogram of LPC map and fitting of the

triple Gaussian model.

b. Individual histograms of the Gaussian

distributions.

Figure 4.8: LPC histogram and the triple Gaussian model.

Figure 4.9: Coherent voxels.
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results shown in Figures 4.10b and 4.11b, the aneurysms pointed at by the arrows are not

completely segmented because of the low or complex flow inside the aneurysm. The results

of applying the MAP-MRF segmentation algorithm combining speed and flow coherence

information are shown in Figures 4.10c and 4.11c. It is clear that there are improvements in

segmentation, especially inside the regions of the aneurysms. The differences between Figures

4.10b and 4.10c are highlighted in Figure 4.10d. Similarly, the differences between Figures

4.11b and 4.11c are highlighted in Figure 4.11d.

Note that there are few false negative voxels (two or three voxels) in the middle of the

aneurysms. There are two major reasons for this. First, the flow rate was extremely low at

the middle of the aneurysms, which can lead to serious corruption of the velocity field by

noise. Secondly, a circular (or deformed circular) flow pattern was present with an associated

singularity in the middle of the aneurysms. These factors affect the local phase coherence

measure. However, the holes in the middle do not affect the quality of visualisation and can

be removed easily. The segmentation processing time in these cases was fast, about 8 seconds

per slice on a 500MHz PC (on average).

4.4.3 Performance of the MAP-MRF method

This section describes details of flow phantom experiments, and presents results related to

a quantitative comparison between the MAP-MRF method and the segmentation based on

speed information alone.

Flow phantom and measurement of error

The flow phantom is a geometrically accurate straight tube, which was made by using MR

compatible materials (silicone elastomer, Sylgard 184, Dow Corning Corp, MI, USA). It was

constructed using a lost metal technique based on a numerically controlled, milled mould

[82]. The phantom provides accurately defined lumen dimensions, which are 8mm diameter

and 400mm long for the tube within a silicon block of 400mm length and 100mm wide. The

phantom was filled with saline flowing at a constant rate of 300mms−1. The phantom was

scanned using the PC-MRA protocol on a 1.5T MR scanner (GE Sigma) at the Department

of Neuroscience, King’s College London, London. The image size was 256 × 256 × 40 voxels

and dimensions were 0.625 × 0.625 × 1.3mm3. The scan details were as follows: axial scan,

TE/TR = 7.3/20ms, flip angle 18o, 1 signal average, FOV: 22× 16cm2, VENCS: 400mms−1
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a. Original speed image. b. Segmented image using speed information

alone.

c. Segmented image using speed and flow

coherence information.

d. Difference between (b) and (c).

Figure 4.10: Segmentation results and comparison.
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a. Original speed image. b. Segmented image using speed information

alone.

c. Segmented image using speed and flow

coherence information.

d. Difference between (b) and (c).

Figure 4.11: Segmentation results and comparison.
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and acquisition matrix: 256 × 160 pixels.

Figure 4.12 shows a maximum intensity projection of the straight tube. The image has

been cropped for the purpose of illustration. The left and right hand sides are the inflow and

outflow regions respectively. Although the speed inside the tube remained constant during

the experiments, the SNR was decreasing from the inflow region to the outflow region due to

progressive saturation of fluid. Also, it is recognised that imperfections in velocity encoding

due to non-linearities in the gradient systems can cause a position dependent deviation in the

velocity images [7]. These two factors may influence the behaviour of the surface extraction

method but were not taken into consideration in the experiments below.

Figure 4.12: Maximum intensity projection of the straight tube phantom. The left and right

hand sides are the inflow and outflow regions respectively. (For the purpose of visualisation,

the image has been interpolated linearly by adding 4 extra points between the sampled points.)

We define the measurement error in a slice as the percentage difference between the

estimated area and the true area of the straight tube,

Error =
Aestimated − Atrue

Atrue
× 100%, (4.20)

where Aestimated and Atrue represent the estimated and true areas respectively. Since the true

diameter is known (8mm), the true area Atrue is 16π mm2. The estimated area Aestimated is

equal to the number of vessel voxels multiplied by the voxel size (0.6252 mm2) in a slice. As

such, the error is negative when Aestimated underestimates the true area.

Results

Figure 4.13 shows the results of applying both methods on the straight tube flow phantom,

where the area error defined in Equation 4.20 is used as the measure of comparison. This figure

shows that the MAP-MRF based approach using both speed and flow coherence information

gives higher segmentation accuracy (on average, −21.24% of the true area, underestimated)
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Figure 4.13: This figure shows that the errors of area estimation (underestimation) are

−21.24% and −41.56% for the MAP-MRF based approach and method using speed infor-

mation alone respectively. The difference between two methods is 20.32%.

than the segmentation method using speed information alone (on average, −41.56% of the true

area, underestimated). The average difference between the two methods is 20.32%. Figure

4.14a shows an example speed image of the flow phantom data, in which the cross-section of

the phantom is located at the centre. Figures 4.14b and 4.14c show the segmentation results

of using speed information alone and the MAP-MRF method. The differences between these

two images are highlighted and shown in Figure 4.14d, which reveals the advantage of using

flow coherence information for segmenting the low SNR regions near the boundary of the

tube.

4.5 Summary

As speed and flow coherence information appear to be inadequate when applied individually to

segmenting objects with a wide range of SNR values, we have presented a general and efficient

MAP-MRF framework for combining speed and flow coherence information for segmentation.

Experiments on synthetic and clinical images show that the new method reduces segmentation

errors across SNR values ranging from SNR = 2 to 7. Further, experiments on a geometrically
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a. Original speed image. b. Segmented image using speed information

alone.

c. Segmented image using speed and flow

coherence information.

d. Difference between (b) and (c).

Figure 4.14: Segmentation results and comparison.
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accurate straight tube shows that the MAP-MRF method is more accurate than the method

using speed information alone by an average of 20.32%.

The new approach could be used not only for object segmentation with real flow patterns,

but also applied to objects with flow-like patterns, e.g. for optical flow analysis. The flow

magnitude and coherence in the optical flow field might provide useful cues for the segmenta-

tion of optical flow on a local level. A potential application could be for smoothing the flow

field. This could be achieved by dividing the flow coherence field O into three separate MRFs

for each directional component rather than a fixed field in the energy minimisation process in

order to encourage smoothness of the flow vectors inside the object. A smoothness constraint

similar to the continuity equation for an optical flow field [38] could be used. As such, a

smooth flow field could be obtained in a unified and consistent probabilistic framework after

segmentation.



Chapter 5

Surface extraction using a sub-voxel

level set approach

5.1 Introduction

Extracting a surface from MRA data is clinically an important step because the extracted

3D surface provides a radiologist with essential visual and quantitative information about

the 3D shape, size and position of an aneurysm and the vasculature in the vicinity of the

aneurysm. This information is very useful for both diagnosis and treatment of aneurysms as

well as other arterial diseases.

This chapter presents a variational framework for vascular reconstruction based on prob-

abilities of vessel and background obtained by using an MRF model (Chapter 4), which itself

exploits the physics-based MGU statistical model (Chapter 2) and the local phase coherence

(LPC) measure (Chapter 3). Thus this chapter unifies all the ideas developed in this thesis

so far. The framework employs the concept of region statistics in the vascular reconstruction

process [89] and searches for an optimal surface by maximising the vascular and background

posterior probabilities inside and outside a given surface respectively.

The framework is implemented by using a variation of the level set method [4]. It pro-

vides a number of attractive features, which are very useful in this application. Firstly, the

vascular surface is represented implicitly in an Eulerian framework, rather than in a La-

grangian framework as in [20]. As such, parameterisation of the surface can be avoided. This

greatly simplifies the implementation of the 3D surface extraction method and helps surface

smoothing because surface curvature can be easily computed. Moreover, the level set method

85
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is flexible in handling multiple objects and their topological changes. Secondly, unlike the

standard level set method [66], the new implementation is run in sub-voxel resolution mode

so that the extracted surface is located at the exact position, where the speed function F (or

driving force) on the surface is equal to zero [4].

Traditionally, intensity gradient-based (or edge-based) approaches to vascular segmenta-

tion and reconstruction have been popular [57, 49, 84, 87] possibly because edge-based active

contour methods have proved successful in other areas of medical image analysis. However,

in PC-MRA images, due to the relatively low flow rate and the highly curved nature of many

brain vessels, the true intracranial vessel boundaries may not have a high SNR or intensity

gradient. Consequently, conventional edge-based methods often do not work well in this ap-

plication. We will return to this point later in this chapter, where we compare the accuracy

of the level-set MAP-MRF method with a level-set intensity gradient-based approach.

Experiments have been carried out using a geometrically accurate flow phantom. The re-

sults of the experiments show that (a) for PC-MRA images, surface boundaries extracted from

the sub-voxel based method are clearly defined in a voxel and smoother than the voxel-based

equivalent method (a typical result is shown in Figure 5.1), and the reconstruction accu-

racies of the sub-voxel level-set MAP-MRF method and the voxel-based equivalent method

are comparable; and (b) the sub-voxel level set MAP-MRF method can achieve a higher re-

construction accuracy in PC-MRA images than a sub-voxel level-set intensity gradient-based

approach.

a. b.

Figure 5.1: A typical result of the flow phantom experiment is shown. (a) and (b) shown

surface boundaries extracted by using the voxel-based level-set MAP-MRF approach and the

sub-voxel level-set MAP-MRF approach respectively. It is observed that the surface boundary

in (b) is clearly defined in a voxel and smoother than that in (a).
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5.2 Surface extraction based on vascular and background prob-

abilities

To extend the segmentation developed in the preceding chapters, we consider a variational

framework for vascular reconstruction. In this framework, a surface, which separates the

vascular and background regions, is deformed in order to maximise the total probabilities

of vessel and background inside and outside the surface. Using the divergence theorem, we

derive the equation of surface motion given the initial surface.

Definitions: Let S(	u, t) be a family of parameterised surfaces, where 	u and t are space

and time parameters respectively, and t ∈ [0,∞). In 3D, 	u = (u, v) ∈ [0, 1] × [0, 1] and

S(	u, t) : [0, 1] × [0, 1] × [0,∞) → 3. Let I : Ω → + be an image volume, and Ω be an open

set of 3. We assume that there are two distinct regions (inside and outside the vasculature)

in the image volume, which are separated by the surface S. Let Ri and Ro be inside and

outside regions representing the vascular region and background region respectively.

The vascular reconstruction is formulated as a global energy minimisation problem, which

makes use of the intensity statistics of the inside and outside regions. The probabilistic energy

functional Eprob(t) is given by

Eprob(t) =
∫

Ri

−Pv · dV +
∫

Ro

−Pb · dV, (5.1)

where dV is a volume element in the Euclidean space, Pv and Pb represent the posterior

probabilities of the vessel and background at each voxel respectively, which are estimated

by using the MRF model. Minimising the probabilistic energy Eprob represents finding an

optimal surface for which the total posterior probability is at a maxima.

Given a surface S, we apply the steepest-descent method to search for the local minimum

of Eprob(t), i.e. we look for a minimum of Eprob(t) closest to S along the straight line in the

direction of −dEprob(t)
dt [44]. According to Appendix C, a partial differential equation can be

derived which governs the surface motion, and is given by

∂S
∂t

= (Pv − Pb) n̂, (5.2)

where n̂ is the outward unit normal of the surface S and −1 ≤ Pv − Pb ≤ 1. We will refer to

Pv −Pb as the ”statistical force”. Equation 5.2 describes a motion equation of the surface S,

which controls the motion of the surface towards the local minimum of Eprob(t) over time.

When convergence is reached, i.e. dEprob(t)
dt = 0, the final surface describes the vascular shape.
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Equation 5.2 can be implemented using the level-set method [78], which will be described in

more detail in Section 5.3. The level set method requires an initial surface S0 = S(t = 0) as a

starting point for the evolution equation of the surface S. The choice of the initial surface can

greatly affect the convergence rate as determined by Equation 5.2. In our case, we construct

the initial surface S0 near the optimal solution using the voxel-based MAP method on the

probabilistic maps of vessel and background obtained by using the MRF model. We have

found that convergence of the evolution equation is usually reached after 8 iterations.

Our approach is related to work in 2D image segmentation proposed by Zhu-Yuille [89] and

Paragios-Deriche [70], which minimises the negative logarithm of the posterior probability.

Compared with their methods, there are two main advantages to our approach. The first is

that it works in 3D. A proof of the applicability of the method to 3D is given in Appendix

C. The second advantage is that our method provides a linear bound on the statistical

force, Pv − Pb ∈ [−1, 1], because we do not use logarithms of probability to define it, e.g.

logPv − logPb . This means that the statistical force does not require normalisation and is

stable even when the probabilities, Pv or Pb, are close to zero.

As proposed by Mumford and Shah [62], irregular boundaries (especially obtained from

the probabilistic maps [89]) can be smoothed by introducing a smoothing term (also called

a regularising term) to the minimisation problem. As such, a surface area energy term Earea

is included for smoothing of the object shape, and is given by

Earea(t) =
∫ ∫

S(�u,t)
dA, (5.3)

where S(	u, t) represents a simple, closed surface if t is fixed, dA is an element of area (in the

Euclidean sense). Given a surface S, we apply the steepest-descent method to search for the

local minimum of Earea(t). According to [77], we obtain a partial differential equation

∂S
∂t

= −κn̂, (5.4)

where n̂ is an outward unit normal to S and κ is the mean curvature in 3D, i.e.

κ =
κ1 + κ2

2
, (5.5)

where κ1 and κ2 represent the maximum and minimum principal curvatures respectively

[25]. Equation 5.4, therefore, describes a motion equation of the surface S for minimising

the total surface area, which deforms the surface according to the magnitude of the mean
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curvature along the normal direction. As such, motion of a highly curved surface patch will

be encouraged, whereas motion of a flat surface (with low curvature) will be relatively small.

Finally, the total energy Etotal is a weighted sum of the probabilistic energy Eprob and

the smoothing energy Earea, which is given by

Etotal(t) = Wprob · Eprob(t) + Warea · Earea(t), (5.6)

where Wprob and Warea are weights attached to the respective energy terms. From Equations

5.2 and 5.4, the equation of motion becomes

∂S
∂t

= [Wprob(Pv − Pb)︸ ︷︷ ︸
Probabilistic term

− Warea κ︸ ︷︷ ︸
Smoothing term

] n̂, (5.7)

where the first term is based on vessel and background probabilities and the second term is

a smoothing term based on the surface curvature.

5.3 Level set methods

The level set method has been shown to be a promising approach, especially for 3D surface

reconstruction of complex objects [51]. The major attractions of the level set method are (a)

its simple and implicit form for representing the evolving surface, in an Eulerian framework

which works in a fixed coordinate system, and (b) its flexibility in handling multiple objects

and topological changes of the object surfaces. These factors make the implementation easier.

Recently, level set methods have recently been extended to run in sub-voxel resolution so

that the extracted surface is located at the exact position, where the speed function F on

the surface is equal to zero [4]. In particular, as described in Equation 5.7, F relates to

a difference between probabilities of vessel and background, and the surface curvature for

regularisation. For the purpose of illustration, in this section, we briefly present the key ideas

of the method in 2D. An extension of these ideas into 3D is then presented. A more detailed

description of the methods can be found in [78].

Similar to the definitions in Section 5.2, let C(u, t) be a family of parameterised closed

contours, where u and t are space and time parameters respectively, and t ∈ [0,∞). In 2D,

u ∈ [0, 1] and C(u, t) : [0, 1] × [0,∞) → 2. The initial contour is given by C0 = C(u, t = 0).

Let F be a speed function defined on C, which controls the speed of C in the normal direction.

The speed function F needs to be recalculated after the position of C has been changed. The
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equation of motion is given by
∂C
∂t

= −F n̂, (5.8)

where n̂ represents the outward unit normal to C.

The concept of the 2D level set method is to build a 3D surface φ, which is one dimension

higher than the number of dimensions of C, and to represent C as a zero-level set of φ. This

is illustrated in Figures 5.2a and 5.2b shows a cross-section of the surface φ. In general,

motion of the contour can be tracked by the evolution of the level set function φ. Merging

and splitting of the contour can also be handled naturally.

a. b.

Figure 5.2: (a) In the level set method, a 2D contour is equivalent to a zero-level set of a 3D

surface φ. (b) Cross-section of the level set function φ.

According to [78], the level set function φ is commonly defined as a signed distance

function, and is given by

φ(x, y, t = 0) = ±dis(x, y, C0), (5.9)

where dis represents a distance function from a point (x, y) to the contour C0 which ensures

that φ does not become too flat or too steep near the contour C0 [65] and φ is positive if

the point is outside the contour and negative inside the contour. Also, φ satisfies |∇φ| = 1

for simple and computationally fast initialisation of φ [78, 65]. By applying the chain rule

of differentiation to Equation 5.9, the evolution equation of the level set function (and the

contour) is given by

φt + F|∇φ| = 0, (5.10)

where an initial level set function φ(x, y, t = 0) is given and F can be any (positive or

negative) speed function on the contour along the normal direction.

There are a number of geometric properties of the level set function φ, which can be easily
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derived, according to [78]. For instance

n̂ =
∇φ

|∇φ| , (5.11)

κ = ∇ · ∇φ

|∇φ| , (5.12)

where n̂ represents the normal vector and κ is the curvature of each level set.

The extension to 3D is straightforward. The evolving surface S represented by Equa-

tion 5.7 is embedded implicitly as a zero level set of a four dimensional hypersurface φ :

(x, y, z, t) →  and t is any particular time, i.e.

S = {(x, y, z, t) | φ(x, y, z, t) = 0}, (5.13)

where φ is a signed distance function and |∇φ| = 1. The initial surface S0 is given by

φ(x, y, z, t = 0) = 0. At a fixed time t, φ < 0 when (x, y, z) is inside the surface S and

φ > 0 when (x, y, z) is outside the surface S. The deformation of the surface S is achieved by

evolving the signed distance function φ. The definitions of the level set surface normal and

curvature are given in Equations 5.11 and 5.12 respectively. In particular, the curvature κ in

3D is set to the mean curvature [78], which is given by

κ = ∇ · ∇φ

|∇φ| ,

=
(φyy + φzz)φ2

x + (φxx + φzz)φ2
y + (φxx + φyy)φ2

z − 2φxφyφxy − 2φxφzφxz − 2φyφzφyz

(φ2
x + φ2

y + φ2
z)3/2

.

(5.14)

Finally, Equation 5.7 can be rewritten in the level set formulation, which for our problem is

given by

φt + [Warea κ − Wprob(Pv − Pb)] |∇φ| = 0. (5.15)

It can be observed from the above Equation that, the surface deformation will stop if Warea κ−
Wprob(Pv − Pb) = 0. In other words, the stopping criterion of the deforming surface is based

on the region intensity statistics inside and outside of the propagating surface, and the surface

curvature. However, if the smoothing term, Warea κ, is very small, the deformation will stop

if the probability of vessel Pv is roughly equal to the probability of background Pb.
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5.3.1 Numerical schemes for the level set methods

This section presents stable numerical schemes, as proposed by Sethian [78], for solving

Equation 5.10, which is recalled here

φt + F|∇φ| = 0,

where the initial level set function φ(x, y, t = 0) is given and F can be any (positive or

negative) speed function on the contour. In our application, according to Equation 5.7, F
will be equal to [Warea κ − Wprob(Pv − Pb)].

It is assumed that the level set function φ is initialised as a signed distance function (more

details about the initialisation will be given in Section 5.3.2). Let Fxyz and φxyz be the values

of the speed function and level set function at a position (x, y, z) respectively. Further, let

D+xu =
u(x + ∆x, y, z, t) − u(x, y, z, t)

∆x
, (5.16)

D−xu =
u(x, y, z, t) − u(x − ∆x, y, z, t)

∆x
, (5.17)

D+yu =
u(x, y + ∆y, z, t) − u(x, y, z, t)

∆y
, (5.18)

D−yu =
u(x, y, z, t) − u(x, y − ∆y, z, t)

∆y
, (5.19)

D+zu =
u(x, y, z + ∆z, t) − u(x, y, z, t)

∆z
, (5.20)

D−zu =
u(x, y, z, t) − u(x, y, z − ∆z, t)

∆z
, (5.21)

where u is an arbitrary function and ∆x, ∆y, and ∆z are one cell size in the x, y and z

directions, respectively. The update of φ is given by

φn+1
xyz = φn

xyz − ∆t[max(Fxyz, 0)∇+ + min(Fxyz, 0)∇−], (5.22)

where n represents the iteration number, φn
xyz represents the value of φ at a position (x, y, z)

after the nth iteration, ∆t denotes a time step for each iteration, and

∇+ = [max(D−xφn
xyz, 0)

2 + min(D+xφn
xyz, 0)

2

+ max(D−yφn
xyz, 0)

2 + min(D+yφn
xyz, 0)

2

+ max(D−zφn
xyz, 0)

2 + min(D+zφn
xyz, 0)

2]1/2 and (5.23)

∇− = [max(D+xφn
xyz, 0)

2 + min(D−xφn
xyz, 0)

2

+ max(D+yφn
xyz, 0)

2 + min(D−yφn
xyz, 0)

2

+ max(D+zφn
xyz, 0)

2 + min(D−zφn
xyz, 0)

2]1/2. (5.24)
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Figure 5.3: This figure illustrates that, to increase the implementation speed, the narrow band

method can be used to constrain propagation to a small surrounding region ”near” the current

contour or surface [3]. In our application, we set the narrow band as a two-voxel band for

both inside and outside of the current surface, i.e. a 4 pixel width from the inside to outside

of the surface, and let the narrow band regions (including interior and exterior narrow band

regions) be Ω′.

To increase the implementation speed, the narrow band method can be used to constrain

propagation to a small surrounding region ”near” the current contour or surface [3]. This is

illustrated in Figure 5.3. In our application, we set the narrow band as a two-voxel band for

both inside and outside of the current surface, i.e. a 4 pixel width from the inside to outside

of the surface, and let the narrow band regions (including interior and exterior narrow band

regions) be Ω′.

To ensure the stability of the numerical updates, a Courant, Friedrichs and Lewy (CFL)

condition is employed to ensure that the surface will not advance more than one voxel in each

time step [78]. Therefore, ∆t is set in Equation 5.22 under the condition that

max
Ω′ |F∆t| ≤ 1. (5.25)

Since the value of F varies inside the narrow band regions, the value of ∆t is set according

to Equation 5.25 after all voxels in the narrow band regions are scanned.

5.3.2 Building φ and F to sub-voxel accuracy

As mentioned earlier, the motion of a contour or surface can be tracked by the evolution of

the level set function φ, which is updated according to Equation 5.22. The level set function

φ and speed function F need to be re-built or re-initialised after every numerical update (or
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a certain number of updates). This is because, after several numerical updates, the signed

distance condition, |∇φ| = 1, of φ may be violated. Also, since the surface is advancing from

the current position, the speed function will no longer reflect the true speed values.

Previous sub-voxel implementations have been presented (e.g. [4, 78]) mainly for the 2D

case. However we present a method for building the level set function φ and the speed function

F to sub-voxel accuracy in 3D. There are two benefits to running at sub-voxel resolution.

Firstly, the stopping position of the level set function φ can be calculated accurately according

to Equation 5.15. As such, the final position of the evolving surface will be placed exactly in

a voxel where Warea κ−Wprob(Pv −Pb) = 0. Secondly, the evolving surface will not oscillate

near the energy minimum position, i.e. the surface will stop at the exact position where the

total energy term is at a minima.

Figure 5.4: The re-initialisation process is divided into two sub-processes. One for the outside

region of the contour C in 2D or surface S in 3D and another for the inside region.

We divide the re-initialisation process into two sub-processes. One for outside region of

the contour or surface and another for inside region, as shown in Figure 5.4. We will present

only the sub-process for the outside region as the corresponding sub-process for the inside

region can be implemented analogously.

We follow loosely the notations in [4], let φn be the current level set function after the

nth iteration of the numerical update, and φtemp be the re-initialised level set function. Also,

assume that φn does not satisfy the condition, |∇φ| = 1, of the signed distance function.

The goals of the rebuild are then as follows. Firstly, the level set function φtemp will be

re-initialised so that the signed distance condition is satisfied. Secondly, once the value of

φtemp is calculated, the magnitude of the speed function F on φtemp can then be computed

based on the true speed values.
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Figure 5.5: Illustration of a contour or surface at the narrow band voxels (within one voxel

distance).

inside or outside of the contour.

First of all, we identify all voxels located next to the surface (within one voxel distance),

as shown in Figure 5.5. For each of these voxels, we compute the exact distance from the voxel

to the surface based on its immediate neighbours within one voxel distance. For example,

consider the 2D case, as shown in Figure 5.6a. Here the inside region of the surface is

illustrated with grey colouring, the coordinates of the centre voxel are (x, y); the centre voxel

is next to and outside the surface; and r and s represent the distances from the centre voxel

to the surface along the x and y directions respectively. The closest distance φtemp from (x, y)

to the surface should satisfy (
φtemp

r

)2

+

(
φtemp

s

)2

= 1. (5.26)

Another example is shown in Figure 5.6b, where φtemp satisfies(
φtemp

r

)2

+

(
φtemp

min(s1, s2)

)2

= 1. (5.27)

Let q be the distance to the surface along the z axis direction,

ηx =

⎧⎪⎨
⎪⎩

1, if r1 ≤ ∆x or r2 ≤ ∆x,

0, otherwise,
(5.28)

ηy =

⎧⎪⎨
⎪⎩

1, if s1 ≤ ∆y or s2 ≤ ∆y,

0, otherwise,
(5.29)
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a. b.

Figure 5.6: Two examples showing a voxel next to the surface S (inside region of the surface

is gray in colour) and its distances, r and s, to the surface along the x and y axis directions

respectively.

ηz =

⎧⎪⎨
⎪⎩

1, if q1 ≤ ∆z or q2 ≤ ∆z,

0, otherwise,
(5.30)

where the functions ηx, ηy and ηz act as the switch functions, which are turned on if the surface

is within one voxel distance away from the current position in the respective directions. In

3D, the value of φtemp should satisfy

ηx

(
φtemp

r

)2

+ ηy

(
φtemp

s

)2

+ ηz

(
φtemp

q

)2

= 1, (5.31)

where r = min(r1, r2), s = min(s1, s2) and q = min(q1, q2). Hence, we get

φtemp = ±
√√√√ 1(ηx

r

)2 +
(ηy

s

)2 +
(

ηz

q

)2 , (5.32)

where φtemp is positive for regions outside the surface and negative for regions inside the

surface.

After all the voxels near the surface (within one voxel distance) have been initialised, we

need to initialise the values of the speed function F near the surface S based on the true

speed values f of the voxels [3]. In our application, the true speed value f will be equal to

[Warea κ − Wprob(Pv − Pb)] according to Equation 5.15. The speed function F based on f

should then have zero value in the entire volume.
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We now present a method, based on [3], for initialising the values of the speed function F
near the surface S. A condition ∇F ·∇φtemp = 0 is employed to ensure that the direction of

change of speed function is perpendicular to the direction of the change of φtemp. Therefore,

all voxels along the normal direction of the current surface will evolve at the same speed,

which is very useful for maintaining the stability of the method [4, 30].

In order to satisfy the condition ∇F · ∇φtemp = 0, the value of the speed function f at

voxel (x, y, z) should satisfy

ηx · ∂F
∂x

· ∂φtemp

∂x
+ ηy · ∂F

∂y
· ∂φtemp

∂y
+ ηz · ∂F

∂z
· ∂φtemp

∂z
= 0,

ηx(F − fr)
r

· φtemp

r
+

ηy(F − fs)
s

· φtemp

s
+

ηz(F − fq)
q

· φtemp

q
= 0, (5.33)

where ηx, ηy and ηz are defined in Equations 5.28, 5.29 and 5.30 respectively; and r, s and q

are defined in Equation 5.31;

fr =

⎧⎪⎨
⎪⎩

f(x − r1, y, z), if r1 ≤ r2,

f(x + r2, y, z), otherwise,
(5.34)

fs =

⎧⎪⎨
⎪⎩

f(x, y − s1, z), if s1 ≤ s2,

f(x, y + s2, z), otherwise,
(5.35)

fq =

⎧⎪⎨
⎪⎩

f(x, y, z − q1), if q1 ≤ q2,

f(x, y, z + q2), otherwise,
(5.36)

The values of f are interpolated linearly from the neighbouring values on the grid, e.g. as

shown in Figure 5.6b, the value of f(x, y − s1, z) is obtained by linearly interpolating the

values between f(x, y, z) and f(x, y − ∆y, z). Hence, re-arranging terms in Equation 5.33,

we obtain

F =
ηxfr

r2 + ηyfs

s2 + ηzfq

q2

ηx

r2 + ηy

s2 + ηz

q2

. (5.37)

For example, in the sample shown in Figure 5.6b, Equation 5.33 would become

(F − f(x + r, y, z))
r

· φtemp

r
+

(F − f(x, y − s1, z))
s1

· φtemp

s1
= 0, (5.38)

After all speed function values F and level set function values φtemp of the voxels near

the surface are calculated, the values F of other voxels in the exterior narrow band region

can then be computed, according to the condition ∇F · ∇φtemp = 0, while building the level

set function φtemp for other voxels in the exterior narrow band region. The fast marching
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methods are used to initialise (a) the values of φtemp under the condition |∇φtemp| = 1 and

(b) the speed function values F under the condition ∇F ·∇φtemp = 0 in the exterior narrow

band region [78].

For example, in 3D, if φtemp
xyz at a position (x, y, z) is computed based on the values

of φtemp
(x−1)yz , φtemp

x(y−1)z and φtemp
xy(z−1) by the fast marching method according to the condition

|∇φtemp| = 1, then the value of Fxyz should satisfy ∇F · ∇φtemp = 0 and, therefore,

Fxyz −F(x−1)yz

∆x
·
φtemp

xyz − φtemp
(x−1)yz

∆x
+

Fxyz −Fx(y−1)z

∆y
·
φtemp

xyz − φtemp
x(y−1)z

∆y
+

Fxyz −Fxy(z−1)

∆z
·
φtemp

xyz − φtemp
xy(z−1)

∆z
= 0. (5.39)

Then Fxyz is given by

Fxyz =
F(x−1)yz

∆x2 + Fx(y−1)z

∆y2 + Fxy(z−1)

∆z2

1
∆x2 + 1

∆y2 + 1
∆z2

. (5.40)

The same procedure described above is repeated for the inside region of the surface after

all voxels in the exterior narrow band region have been rebuilt. If the values of φtemp and

F are calculated for all voxels in the exterior and interior narrow band regions, then φtemp

is copied into φn+1 for the next numerical update, as given by Equation 5.22, based on φn+1

and F .

5.4 Surface extraction based on intensity gradient

For the sake of comparison between the conventional intensity gradient-based approach and

sub-voxel based level-set MAP-MRF method, this section begins by briefly introducing a

level-set intensity gradient-based surface extraction method, and then discusses its potential

problems for extracting object surfaces in PC-MRA images.

5.4.1 Geodesic active surfaces driven by a gradient function

The concept behind geodesic active surfaces is to minimise the weighted area of a surface by

deforming the surface towards the lower weighted surface area direction [77]. The model was

originally introduced by Malladi et al. [51] and Caselles et al. [17] in 2D for object boundary

detection and reconstruction, and has been subsequently extended to 3D by Yezzi et al. [88]

amongst others. A good discussion on geodesic methods can be found in [77].
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In general, the geodesic active surface is attracted towards object boundaries by minimis-

ing the weighted area of the surface. The weight function becomes zero (or extremely small)

when the surface arrives at the object boundary. Using the notation from Section 5.2, the

weighted surface area is given by

A(t) =
∫ ∫

S(�u,t)
g(|∇Î |)dA, (5.41)

where S(	u, t) represents a simple, closed surface if t is fixed, dA is an element of area in

Euclidean space and g(|∇Î |) is a function of intensity gradient, which is a monotonically

decreasing function and becomes zero as the intensity gradient |∇Î| tends to infinity, i.e.

g(|∇Î |) → 0 as |∇Î| → ∞. If t is fixed, A(t) gives the weighted surface area depending on

the shape of the surface and the gradient function g. g is commonly chosen as

g(|∇Î |) =
1

1 + |∇Î|p , (5.42)

where Î is a smoothed version of I, e.g. a Gaussian filtered image, p ∈ , and |∇Î| is the

intensity gradient of Î [51, 17, 70].

Given a surface S, we apply the steepest-descent method to search for the local minimum

of A(t), as given in Equation 5.41 [44]. According to [77], we obtain a partial differential

equation
∂S
∂t

= −(gκ + ∇g · n̂)n̂, (5.43)

where g = g(|∇Î |) for simplicity of notation, n̂ is an outward unit normal to S, κ is the

mean curvature in 3D and is defined in Equation 5.5. The equivalent level set formulation of

Equation 5.43 is given by

∂φ

∂t
+
(

gκ + ∇g · ∇φ

|∇φ|
)
|∇φ| = 0. (5.44)

Recalling from Equation 5.10, the speed function F is equivalent to
(
gκ + ∇g · ∇φ

|∇φ|
)

in

Equation 5.44. Similarly, the Equation 5.44 is solved by using the numerical scheme, as given

in Equation 5.22 (Section 5.3.1).

Equation 5.43 describes a motion equation of the surface S, which controls the deformation

of the surface towards the local minimum of A(t) over time. When convergence is reached,

i.e. dA(t)
dt = 0, the surface at this point in time describes the object shape.

As such, in the model of geodesic active surfaces, it is normally assumed that the true

object boundary has a high image gradient which delineates the shape of the object. However,

for PC-MRA images, this is not the case and is discussed in detail in the next subsection.



5.4. Surface extraction based on intensity gradient 100

5.4.2 Problems with the gradient-based approach applied to PC-MRA im-

ages

This subsection discusses problems with object reconstruction based on the intensity gradient

function in PC-MRA images. In order to illustrate the problem, Figure 5.7a shows a PC-MRA

speed image of the cross-section of a 8mm-diameter straight tube, which have been described

in Section 4.4.3. The image size is 35 × 35 pixels and the resolution is 0.625 × 0.625mm2.

Figure 5.7b plots an intensity profile along the white horizontal line drawn in Figure 5.7a.

From the intensity profile, it is observed that the left and right tube boundaries are roughly

located at the pixel positions 12 and 25 respectively.

a. b.

Figure 5.7: (a) A speed image of the cross-section of a 8mm-diameter straight tube, which is

a geometrically accurate MR flow phantom with fluid running inside at a constant flow rate

of 300mms−1. (b) The intensity profile along the white horizontal line shown in (a). From

the intensity profile, it is observed that the left and right tube boundaries are roughly located

at the pixel positions 12 and 25 respectively.

We used a Gaussian filter (with a standard deviation set to 2) to smooth the speed image

shown in Figure 5.7a . The intensity profile of the smoothed image Î is shown in Figure 5.8a.

Figure 5.8b plots the gradient values |∇Î| of the intensity profile shown in Figure 5.8a. We

employed the gradient function g(|∇Î |) defined in Equation 5.42 and set p = 0.01 to achieve

the highest contrast between the maximum and minimum of the gradient function values. A

plot of the gradient function is shown in Figure 5.8c. This reveals that the minimum values

of the gradient function are located at pixel positions 14 and 22 (pointed to by the arrows),

which are located clearly inside the tube and are different from the observed tube boundaries



5.4. Surface extraction based on intensity gradient 101

a.

b.

c.

Figure 5.8: (a) Intensity profile of the smoothed image Î of Figure 5.7a. (b) Gradient values

|∇Î| and (c) the corresponding gradient function g(|∇Î |) of the smoothed intensity profile

in (a). The arrows in (c) indicate the boundary positions located by the level-set intensity

gradient-based approach.
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as shown in Figure 5.7b.

This is because the SNR is low, and there is a low rate of change of intensity values,

near the boundary of the tube, which do not produce a sufficiently high gradient function for

boundary detection. The low SNR and low rate of change of intensity values can be caused

partly by the boundary layer1 of the fluid flow.

We conclude from the above observation that an intensity gradient-based approach may

not accurately detect the true tube (or vessel) boundary in PC-MRA speed images. A

quantitative comparison between the sub-voxel level-set intensity gradient-based approach

and the sub-voxel MAP-MRF approach will be presented next.

5.5 Experimental results

Based on the flow phantom experiments described in Section 4.4.3 in the previous chapter,

this section presents results related to a quantitative comparison (a) between voxel and sub-

voxel versions of the level-set MAP-MRF method and (b) between the sub-voxel level-set

MAP-MRF method (Sections 5.2 and 5.3), and a sub-voxel level-set intensity gradient-based

approach as described in Section 5.4.1. Note that a very similar voxel-based level-set intensity

gradient-based approach has also been proposed and implemented by Lorigo et al. [49] for

analysis of PC-MRA images.

Given an extracted surface S, we define the measurement error in a slice as the percentage

difference between the estimated area and the true area of the straight tube,

Error(S) =
Aestimated(S) − Atrue

Atrue
× 100%, (5.45)

where Aestimated(S) and Atrue represent the estimated and true areas respectively. Recall-

ing from Section 4.4.3, the true area Atrue of the tube is 16π mm2. The estimated area

Aestimated(S) is equal to the number of voxels inside or on the extracted surface S multiplied

by the voxel size in a slice. As such, the error Error(S) is negative when Aestimated(S) under-

estimates the true area. This error estimate will be used in subsequent analysis in Sections

5.5.1 and 5.5.2.
1The boundary layer of the fluid flow is a transition region, very close to the physical boundary of the

tube (or vessel in our application) in which the fluid velocity increases rapidly from zero at the boundary to

approach the velocity of the main stream in the tube.
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5.5.1 Comparison between methods running in voxel resolution and sub-

voxel resolution

We compared the performance between the level-set MAP-MRF methods running at (a) voxel

resolution and (b) sub-voxel resolution. Both methods are based on the probabilities of vessel

and background, estimated by using the MRF model (Chapter 4). The voxel-based method

runs on the probabilistic maps and classifies voxels based on the MAP method in the image

volume. The sub-voxel based method employs the level set method to deform the surface

obtained from the probabilistic maps (posterior probabilities of the vessel and background)

and positions the surface within voxels according to the probabilities in the neighbouring

voxels and the local surface curvature. The sub-voxel based method was initialised with the

surface of the voxel based method. After a local minimum was reached and the deformation

of the surface terminated, the original volume was interpolated linearly by adding 4 extra

points between any two voxel positions. The optimal surface was then extracted and regions

inside represented vessels and outside represented background.

We empirically set the weights Wprob and Warea in Equation 5.7 equal to 1 and 0.1

respectively because, according our experience, Warea is set smaller than Wprob in order to

preserve as much of the original shape as possible.

As shown in Figures 5.9a and 5.9b, the boundary extracted by the sub-voxel based method

is clearly defined according to the probabilities of vessel and background, and smoother than

the voxel-based method. A good and clear definition of surface boundary is important because

it could help to improve measurements of the diameter and neck size of an aneurysm. Figure

5.10 shows that the area error estimations (underestimation) are −21.24% and −20.27%

for the methods running in voxel and sub-voxel resolution respectively, which reveals that

the accuracies of the sub-voxel based method and the voxel based method are comparable.

Moreover, for the same experiment, Figure 5.11 shows the sum of the vascular probabilities

inside and background probabilities outside of the surface, and demonstrates that convergence

is reached quickly after one iteration (if a 0.1% of change is used as the threshold to indicate

convergence), but also a small change is observed after a few iterations because of the surface

adjustments caused by the curvature-based smoothing term. As such, in practice, we set the

number of iterations to 8. For this dataset, it takes 5 seconds for 35 × 133 × 40 voxels on a

500MHz PC.
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a. b.

c.

Figure 5.9: Comparison of a cross-section of the surface at the same slice extracted by using

(a) the voxel-based MAP-MRF approach (b) the sub-voxel level-set MAP-MRF approach, and

(c) the sub-voxel level-set intensity gradient-based approach.
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Figure 5.10: Area errors of the method running in voxel resolution and the approach using

the level set methods running in sub-voxel resolution. This figure shows that the errors of

area estimation are −21.24% and −20.27% for the methods running in voxel and sub-voxel

resolution respectively, and reveals that the accuracies of the sub-voxel based method and the

voxel resolution method are comparable.
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Figure 5.11: A plot of the change of the total probabilities of vessel and background inside

and outside the surface against the number of iterations of the level set method. Convergence

is reached quickly after one iteration (if a 0.1% of change is used as the threshold to indicate

convergence), but also a small change is observed after a few iterations because of the surface

adjustments caused by the curvature-based smoothing term. As such, in practice, we set the

number of iterations to 8. For this dataset, it takes 5 seconds for 35 × 133 × 40 voxels on a

500MHz PC.
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5.5.2 Comparison between the level-set intensity gradient-based approach

and sub-voxel based level-set MAP-MRF approach

Under the same experimental conditions as above, we compared a sub-voxel level-set intensity

gradient-based approach and sub-voxel based level-set MAP-MRF method. Figure 5.12 shows

the results of applying both methods on the straight tube flow phantom, where again we

have used the area error as the measure of comparison. The sub-voxel based level-set MAP-

MRF approach was found to give higher area estimate accuracy than the sub-voxel level-set

intensity gradient-based approach by an average of 33.23%. Figures 5.9a and 5.9b show

the contours found by using the sub-voxel level-set intensity gradient-based approach and

sub-voxel based level-set MAP-MRF approach respectively on the same cross-section of the

straight tube. This demonstrates that the sub-voxel based level-set MAP-MRF method

gives more accurate vessel boundaries than the sub-voxel level-set intensity gradient-based

approach.

Figure 5.12: In comparison, the errors of the area estimates (underestimation) are −53.50%

and −20.27% for the sub-voxel level-set intensity gradient-based approach and sub-voxel MAP-

MRF approach respectively.
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5.6 Summary

In this chapter, we have presented a surface extraction method based on the level set method

that utilises the vascular and background probabilities obtained based on the MRF model.

The attractiveness of the approach is that it uses intensity-based statistics of the vessel and

background, and does not require intensity gradient information.

A geometrically accurate straight tube with fluid flowing at a constant rate inside was

scanned. We used this scan to compare (a) the voxel and sub-voxel based level-set MAP-MRF

methods, (b) sub-voxel level-set MAP-MRF method and the sub-voxel level-set intensity

gradient-based approach. The experimental results show that the boundary extracted by

the sub-voxel based method is clearly defined according to the probabilities of vessel and

background, and smoother than the voxel-based method, and the accuracies of the sub-voxel

based method and the voxel resolution method are comparable. The results also show that

the sub-voxel based level-set MRA-MRF method is more accurate than the sub-voxel level-

set intensity gradient-based approach by an average of 33.23% respectively. For the phantom

dataset, the processing time for the sub-voxel level-set MRA-MRF method was 5 seconds (8

iterations) for 35 × 133 × 40 voxels on a 500MHz PC.

The variational framework implemented by using the level set method is flexible, in which

more information could be included easily in the same framework. In particular, the incor-

poration of information such as the true flow direction and local geometric structure (e.g.

geometric tensor) may help surface propagation. Finally, the surface extracted by the level

set method may be useful for 3D shape analysis and mesh generation for computational fluid

dynamics (CFD) analysis [78].



Chapter 6

Clinical and phantom studies

6.1 Introduction

An integrated approach to reconstructing vessels in PC-MRA images has been presented in

Chapters 2 to 5. This approach employs a Bayesian framework to combine the speed and

flow coherence information in a PC-MRA dataset and uses a sub-voxel level set method to

extract vascular surfaces. To assess the performance, in this chapter the approach has been

applied to clinical and phantom datasets. In this chapter, we present the experimental results

of the studies and discuss some properties of the approach.

The primary objective of the studies is to demonstrate the capabilities of the integrated

approach in reconstructing normal vessels and aneurysms with relatively low signal-to-noise

ratio (SNR) and low flow rate inside. These studies were conducted in collaboration with

the Department of Neuroscience, King’s College London, London and the Department of

Radiology, Radcliffe Infirmary, Oxford, who helped with data acquisition.

This chapter is organised as follows. Firstly, in Section 6.2, the performance of the

approach in reconstructing normal vessels is evaluated on two volunteer datasets. Then, in

Section 6.3, an aneurysm phantom study is conducted so that the improvement in segmenting

relatively low SNR and low flow regions, especially inside the aneurysm, can be compared

with the known position and shape of the aneurysm. Finally, five clinical cases are presented

in Section 6.4.

Regarding the implementation, the integrated approach was programmed in Visual C++

6.0 with the use of MATLAB 6.0 Release 12 as an interface, and was run on a 500MHz PC

in the Microsoft Windows NT environment with 512MB RAM.
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6.2 Volunteer studies

In this section, the approach is tested on two volunteer PC-MRA scans, which were acquired

on the Philips 1.5T ACS Gyroscan MR scanner at the Guy’s Hospital, London.

Volunteer 1 was scanned in a sagittal direction. The scan details were as follows. The

image size was 256 × 256 × 50 voxels and dimensions were 0.86 × 0.86 × 1.0mm3. The

other imaging parameters were: TE/TR = 6.2/14ms, flip angle 20o, 1 signal average, FOV:

20 × 17.6cm2, VENCS: 450mms−1 and acquisition matrix: 256 × 160 pixels. The data

processing window1: 170 × 142. Figures 6.1a and Figure 6.1b show the maximum intensity

projection of the dataset and the corresponding view of the 3D reconstructed vasculature

respectively. The individual processing times of the integrated approach were as follows. 1

second for the EM-based parameter estimation, 173 seconds for the computation of the 3D

LPC maps, 37 seconds for the MAP-MRF algorithm (10 iterations, β1 = 2 and β2 = 1) and

236 seconds for the sub-voxel based level set method (8 iterations). Hence, the total time

was 447 seconds (watch time). Figures 6.1c and 6.1d show one of the speed images and the

contours generated by using the approach respectively. For the purpose of comparison, the

contours are overlaid on the same speed image in the left hand figure.

The dataset of volunteer 2 was scanned in an axial direction. The scan details were

as follows. The image size was 256 × 256 × 50 voxels and dimensions were 0.94 × 0.94 ×
1.2mm3. TE/TR = 11/24ms, flip angle 20o, 1 signal average, FOV: 12.8×12.8cm2, VENCS:

200mms−1 and acquisition matrix: 256× 160 pixels. The data processing window: 170× 134

pixels. Figures 6.2a and 6.2b show the maximum intensity projection of the dataset and

the corresponding view of the 3D reconstructed vasculature respectively. The individual

processing times were as follows. 1 second for the EM-based parameter estimation, 165

seconds for the computation of the 3D LPC maps, 33 seconds for the MAP-MRF algorithm

(10 iterations, β1 = 2 and β2 = 1) and 186 seconds for the sub-voxel based level set method

(8 iterations). Hence, the total time was 385 seconds (watch time). Figures 6.2c and 6.2d

show one of the speed images and the contours generated by using the approach respectively.

From Figures 6.1b and 6.2b, it is observed that all major arteries are clearly reconstructed
1Data processing window represents a region of interest (ROI), in which the integrated approach was

applied. The ROI normally included the entire cross-section of the brain. The main purpose of applying the

approach in an ROI was to shorten the computational time by not processing the non-interesting background

of the images.
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a. b.

c. d.

Figure 6.1: Volunteer 1: (a) maximum intensity projection (MIP), (b) 3D reconstruction of

the vasculature, (c) speed image and (d) contours generated by using the integrated approach.
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a. b.

c. d.

Figure 6.2: Volunteer 2: (a) maximum intensity projection (MIP), (b) 3D reconstruction of

the vasculature, (c) speed image and (d) contours generated by using the integrated approach.
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Figure 6.3: Common sites of the aneurysms in the brain.

by using the integrated approach, which are very important and useful to the diagnosis of

intracranial aneurysms because common sites of the aneurysms are normally found on the

major arteries [86, 14], as shown in Figure 6.3. It is also noted that small vessels with about

one or two voxel width are not always reconstructed successfully because their SNR values

are low and the 3D LPC measure may not give reliable information for vessels smaller than

a 3 × 3 × 3 window cube. This is an intrinsic limitation of the current approach. However,

for the treatment of aneurysms, the current approach is adequate.

It is worth noting that the computational times for the EM-based parameter estimation

and computation of 3D LPC measure are roughly the same for both scans because their

implementation times are directly proportional to the number of voxels and the two scans have

approximately the same number of processed voxels. On the other hand, the implementation

time of the level set method for volunteer 1 is slightly longer than that of volunteer 2. This

is because, in this application, the processing time of the level set method is dependent on

the total surface area of the vessels. If the area is large, then more time is needed to initialise

the signed distance level set surface in each iteration. Similar observations will be found in

subsequent studies described later.
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6.3 Phantom study

To illustrate the improvements obtained when the speed and flow coherence information

are combined in the reconstruction process, the integrated approach was applied to an in-

vitro silicon aneurysm phantom (Middle Cerebral Artery Bifurcation Aneurysm - MCA with

one inlet (internal carotid artery) and three outlets (anterior cerebral, middle cerebral and

posterior communicating arteries), as shown in Figure 6.4. This phantom was kindly provided

by the Department of Neuroradiology, University Hospital of Geneva, Switzerland.

6.3.1 Setup and methods

Figure 6.4: Top view of the phantom and the perspex box. The arrow points to the middle

cerebral aneurysm of the phantom.

Pulsatile flow induces serious motion artifacts in the phantom. To alleviate this, it was

firmly mounted inside a tailor-made, MR compatible perspex box2 completely filled with

gelatine, as shown in Figure 6.4. The working fluid was whole blood obtained from expired
2This perspex box was made in the Oxford University Engineering Department Workshop.
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stocks of the blood bank of The Royal Free Hospital, London, and was pumped by a pulsatile

blood pump (Harvard Apparatus Inc.). The flow rate was measured by an electromagnetic

blood flow and velocity meter (MDL-1401). The mean flow rate was set to 300ml/min for

this study [54].

The phantom was scanned using a PC-MRA protocol on a 1.5T GE MR scanner at

the Department of Neuroscience, King’s College London, London. The scan details were

as follows. The data volume size was 256 × 256 × 23 voxels with a voxel dimension of

0.8 × 0.8 × 1mm3. Axial scan, TE/TR = 6.8/18ms, flip angle 20o, 1 signal average, FOV:

22 × 22cm2, VENCS: 400mms−1, acquisition matrix: 256 × 160 pixels. The data processing

window: 91 × 105 pixels. The individual processing times were as follows. 1 second for the

EM-based parameter estimation, 64 seconds for the computation of the 3D LPC maps, 12

seconds for the MAP-MRF algorithm (10 iterations) and 13 seconds for the sub-voxel based

level set method (8 iterations). Hence, the total time was 90 seconds (watch time).

6.3.2 Results

a. b. c.

Figure 6.5: Aneurysm phantom: (a) maximum intensity projection, (b) 3D reconstruction

using speed information alone and (c) 3D reconstruction using speed and flow coherence

information. The arrow points to the aneurysm.

To show the advantage of incorporating flow coherence information, the integrated ap-

proach using speed and flow coherence information was compared with an approach using

the speed information alone.

Figures 6.5a and 6.6a show a maximum intensity projection of the phantom dataset and

a closeup of the aneurysm respectively (the aneurysm is pointed to by an arrow in Figure

6.5a). In these two figures, the feeding (middle cerebral) vessel can be clearly seen because of

its high intensity, whereas, the shape of the aneurysm is not obviously displayed because the
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a. b. c.

Figure 6.6: A closeup of the aneurysm phantom: (a) maximum intensity projection, (b) 3D

reconstruction using speed information alone and (c) 3D reconstruction using speed and flow

coherence information.

flow rate inside is low and hence the intensity inside the aneurysm is low. 3D reconstructions

of the vasculature and aneurysm based on the speed information alone are depicted in Figures

6.5b and 6.6b respectively. Observe that although the vessels are clearly reconstructed, the

aneurysm is not well reconstructed due to its low intensity.

Figures 6.5c and 6.6c show the 3D reconstruction of vasculature and a closeup of the

aneurysm based on the approach using speed and flow coherence information approach. The

figures reveal that the shapes of the vessels and aneurysm are well delineated.

Figures 6.7a and 6.8a show two speed images of the phantom dataset, in which the cross-

sections of the MCA aneurysm is pointed to by the arrows. As illustrated in Figures 6.7b

and 6.8b, the contours generated by using speed information alone are drawn. Although the

contours correctly delineate the large vessel (internal carotid) with high intensity in the right,

the aneurysm is not well delineated.

Figures 6.7c and 6.8c show the local phase coherence (LPC) maps, in which the intensity

value is directly proportional to the degree of flow coherence. Note that the regions inside

the aneurysm are enhanced. As discussed in Chapter 4, flow coherence can provide addi-

tional and complementary information to flow magnitude in the segmentation process. As

compared with Figures 6.7b and 6.8b, a significant improvement in delineating and detect-

ing the aneurysms is achieved when the speed and flow coherence information are combined

(Figures 6.7d and 6.8d). Note that, in this case, we set β1 = 3 and β2 = 1 in the MAP-MRF

model to enhance the interactions between coherent vessel voxels. This is because the initial

segmentation based on speed information alone is not very good (see Figures 6.7b and 6.8b),
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a. b.

c. d.

Figure 6.7: Aneurysm phantom: (a) speed image, (b) contours generated by using the speed

information alone, (c) LPC map and (d) contours generated by using the speed and flow

coherence information.
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a. b.

c. d.

Figure 6.8: Aneurysm phantom: (a) speed image, (b) contours generated by using the speed

information alone, (c) LPC map and (d) contours generated by using the speed and flow

coherence information.
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and the aneurysm is large3 in size (15mm diameter).

As shown in Figures 6.7d and 6.8d, the contours in the middle of the aneurysm enclose

regions with very low flow rate as well as the singular point of the velocity field, where the

flow rate is almost zero. These inner contours could be easily removed. However, they can

also be a useful feature because they indicate to a neuroradiologist the regions of very low

flow and positions of stagnant flow inside the aneurysm.

6.4 Clinical cases

This section presents results obtained by using the integrated approach based on speed and

flow coherence information on clinical data. The focus of this section is to assess the de-

tectability of the method on five datasets. The approach was applied to five clinical cases:

two patient datasets were obtained from the Department of Neuroscience, King’s College

London, London (Section 6.4.1), one patient dataset from the Department of Radiological

Sciences, Guy’s Hospital, London (Section 6.4.2), and two patient datasets were obtained

from the Department of Radiology, Radcliffe Infirmary, Oxford (Section 6.4.3). These were

chosen to show that the approach works on a variety of different commercial machinery and

hence different SNR conditions.

6.4.1 Patients 1 and 2

Patients 1 and 2 were scanned on the GE 1.5T Signa MR scanner at the Department of

Neuroscience, King’s College London, London. Patient 1 presented with a middle cerebral

artery aneurysm. Figures 6.9a and 6.9b show the maximum intensity projection and the

corresponding view of the 3D reconstructed vasculature respectively, in which the aneurysm

is clearly shown and pointed to by the arrows in both images. The scan details were as

follows. The image size was 256×256×28 voxels and dimensions were 0.78×0.78×1.1mm3 .

Axial scan, TE/TR = 8/22ms, flip angle 18o, 1 signal average, FOV: 20 × 15cm2, VENCS:

300mms−1 and acquisition matrix: 256× 160 pixels. The data processing window: 248× 184

pixels. The individual processing times were as follows. 1 second for the EM-based parameter

estimation, 182 seconds for the computation of the 3D LPC maps, 35 seconds for the MAP-
3According to [86], a small aneurysm has a diameter less than 12mm, a large aneurysm has a diameter

ranging between 12mm and 25mm, and a giant aneurysm has a diameter greater than 25mm.
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a. Patient 1: MIP. b. Patient 1: 3D reconstructed vasculature.

c. Patient 2: MIP. d. Patient 2: 3D reconstructed vasculature.

Figure 6.9: The maximum intensity projections (MIP) and 3D reconstructed vasculature of

patients 1 and 2.
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a. b.

c. d.

Figure 6.10: Patient 1: (a) speed image, (b) contours generated by using the speed informa-

tion alone, (c) LPC map and (d) contours generated by using the speed and flow coherence

information.
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MRF algorithm (10 iterations, β1 = 2 and β2 = 1) and 52 seconds for the sub-voxel based

level set method (8 iterations). Hence, the total time was 360 seconds (watch time).

Patient 2 presented with a basilar artery aneurysm. The maximum intensity projection

of the dataset and the corresponding view of the 3D reconstructed vasculature are shown in

Figures 6.9c and 6.9d respectively. The aneurysm can be clearly observed and is pointed to by

the arrows in both images. The scan details were as follows. The image size was 256×256×28

voxels and dimensions were 0.86×0.86×0.9mm3. Axial scan, TE/TR = 7.3/20ms, flip angle

18o, 1 signal average, FOV: 22×16cm2, VENCS: 300mms−1 and acquisition matrix: 256×160

pixels. The data processing window: 251 × 185 pixels. The individual processing times were

as follows. 1 second for the EM-based parameter estimation, 203 seconds for the computation

of the 3D LPC maps, 32 seconds for the MAP-MRF algorithm (10 iterations, β1 = 2 and

β2 = 1) and 220 seconds for the sub-voxel based level set method (8 iterations). Hence, the

total time was 456 seconds (watch time).

As shown in Figure 6.10, an improvement in segmentation is obtained when the speed and

flow coherence information are used so that the aneurysm is well represented. Figure 6.10a

shows one of the PC-MRA speed images in patient 1 dataset. Figures 6.10d and 6.10b show

the contours generated by using the integrated approach and an approach using the speed

information alone respectively, whereas, Figure 6.10c illustrates the corresponding LPC map.

It is noted that the ghosting artifacts are apparent in the speed images, especially in

Figure 6.9c (along the middle horizontal direction in the image), and have sometimes been

reconstructed as parts of the vasculature, as shown in Figure 6.9d. This artifact is mainly

caused by the pulsatility of the blood vessels, and could affect the quality of reconstructing

if the artifact occurs in the region of interest, e.g. aneurysms or main arteries. Measures to

reduce ghosting artifact by altering the k-space sampling order [56], or by auto-focus methods

[55] have been proposed to overcome this but were not applied to the data presented in this

thesis. For the purpose of visualisation and diagnosis, to minimise this problem, a region of

interest enclosing the detected aneurysm and avoiding the ghosting artifacts can be drawn

manually after the reconstruction.

6.4.2 Patient 3

Patient 3 presented a middle cerebral artery aneurysm and was scanned on the Philips 1.5T

ACS Gyroscan MR scanner at the Department of Radiological Sciences, Guy’s Hospital,
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a. b.

Figure 6.11: Patient 3: (a) maximum intensity projection and (b) 3D reconstruction of the

vasculature.
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a. b.

c. d.

Figure 6.12: Patient 3: (a) speed image, (b) contours generated by using the speed informa-

tion alone, (c) LPC map and (d) contours generated by using the speed and flow coherence

information.
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London. The scan details were as follows. The image size was 256 × 256 × 36 voxels and

dimensions were 0.86×0.86×1mm3. Axial scan, TE/TR = 8.1/16ms, flip angle 20o, 1 signal

average, FOV: 22×22cm2, VENCS: 200mms−1 and acquisition matrix: 256×192 pixels. The

data processing window: 250 × 171 pixels. The individual processing times were as follows.

1 second for the EM-based parameter estimation, 248 seconds for the computation of the 3D

LPC maps, 44 seconds for the MAP-MRF algorithm (10 iterations) and 54 seconds for the

sub-voxel based level set method (8 iterations). Hence, the total time was 347 seconds (watch

time). Similarly to the phantom dataset, we set β1 = 3 and β2 = 1 in the MAP-MRF model

because, as shown in Figure 6.12b, the initial segmentation is not very good and the size of

the aneurysm is giant (28.4mm measured from the MRA speed image).

A maximum intensity projection of the dataset was generated and shown in Figure 6.11a.

Due to the large size and low flow rate of the aneurysm, its shape cannot be obviously

seen (pointed to by an arrow). Note that the ghosting artifact is observed as a horizontal

band in the middle right of the image. Figure 6.11b shows the corresponding view of the

3D reconstructed vasculature and also the segmented ghost. In this case, the aneurysm is

detected and depicted clearly in Figure 6.11b and pointed to by an arrow. Figure 6.12 shows

an example of the individual slices. Note that although the cross-section of the aneurysm does

not exhibit high intensity for the detection (Figure 6.12a), the regions inside the aneurysm are

greatly enhanced (Figure 6.12c) so the aneurysmal surface can be extracted (Figure 6.12d).

6.4.3 Patients 4 and 5

Patients 4 and 5 were scanned on the 1.5T Magnetom Vision Siemens MR scanner at the

Department of Radiology, Radcliffe Infirmary, Oxford. Patient 4 presented a regrowth of the

middle cerebral artery aneurysm, which has been coiled before. The scan details were as

follows. The image size was 256×256×38 voxels and dimensions were 0.78×0.78×1.5mm3 .

Axial scan, TE/TR = 9/81ms, flip angle 10o, 1 signal average, FOV: 19.9×19.9cm2, VENCS:

400mms−1 and acquisition matrix: 256× 256 pixels. The data processing window: 225× 156

pixels. The individual processing times were as follows. 1 second for the EM-based parameter

estimation, 199 seconds for the computation of the 3D LPC maps, 15 seconds for the MAP-

MRF algorithm (10 iterations, β1 = 2 and β2 = 1) and 107 seconds for the sub-voxel based

level set method (8 iterations). Hence, the total time was 322 seconds (watch time).

A maximum intensity projection of the dataset is shown in Figure 6.13a, in which the



6.4. Clinical cases 126

a. Patient 4: MIP. b. Patient 4: 3D reconstructed vasculature.

Figure 6.13: (a) A maximum intensity projection of the dataset is shown, in which the re-

growth of the aneurysm is pointed to by an solid arrow and the vertical ghosting artifacts are

pointed to by the dotted arrows. (b) The regrowth of the aneurysm was successfully detected by

the segmentation algorithm and its geometrical shape is clearly shown in the 3D reconstructed

vasculature. Note that parts of the ghosts are reconstructed and are attached to the top of the

internal carotid arteries. However, the detection of aneurysm is not affected in this case.
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a. b.

c. d.

Figure 6.14: Patient 4: (a) speed image, (b) contours generated by using the speed informa-

tion alone, (c) LPC map and (d) contours generated by using the speed and flow coherence

information.
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regrowth of the aneurysm is pointed to by an solid arrow and the vertical ghosting artifacts are

pointed to by the dotted arrows. The regrowth of the aneurysm was successfully detected by

the segmentation algorithm and its geometrical shape is clearly shown in the 3D reconstructed

vasculature (Figure 6.13b). Note that parts of the ghosts are reconstructed and are attached

to the top of the internal carotid arteries. However, the detection of aneurysm is not affected

in this case.

Similar to the previous cases, as shown in Figure 6.14, the LPC map (Figure 6.14c) offers

a useful explanation for the detection of low flow vascular regions and helps the reconstruction

of aneurysm (Figure 6.14d) as compared to the reconstruction using speed information alone

(Figure 6.14b). The aneurysm is pointed to by the arrows in the figures.

a. Patient 5: MIP. b. Patient 5: 3D reconstructed vasculature.

Figure 6.15: Patient 5: (a) shows the maximum intensity projection (MIP) of the dataset

and (b) shows the corresponding view of the 3D reconstructed vasculature. The aneurysm was

small and not readily visible in the MIP (top view of the dataset). The dotted arrows in (a)

point to the ghosting artifacts

Finally, patient 5 presented with an internal carotid artery aneurysm. The scan details

were as follows. The image size was 256 × 256 × 33 voxels and dimensions were 0.86 ×
0.86 × 1.44mm3. Axial scan, TE/TR = 8/81ms, flip angle 10o, 1 signal average, FOV:
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Figure 6.16: Patient 5: a closeup of the aneurysm. The aneurysm is clearly detected and its

relationship with the vessels at the vicinity of the aneurysm is clearly shown.

21.9 × 21.9cm2, VENCS: 400mms−1 and acquisition matrix: 256 × 256 pixels. The data

processing window: 211 × 157 pixels. The individual processing times were as follows. 1

second for the EM-based parameter estimation, 160 seconds for the computation of the 3D

LPC maps, 12 seconds for the MAP-MRF algorithm (10 iterations, β1 = 2 and β2 = 1) and

118 seconds for the sub-voxel based level set method (8 iterations). Hence, the total time

was 291 seconds (watch time).

Figures 6.15a and 6.15b show the maximum intensity projection (MIP) of the dataset

and the corresponding view of the 3D reconstructed vasculature respectively. The aneurysm

was small and not readily visible in the MIP (top view of the dataset). The dotted arrows in

Figure 6.15a point to the ghosting artifacts, which are close to the true vasculature in this

case. However, as illustrated in a closeup of the aneurysm (Figure 6.16), the aneurysm is

clearly detected and its relationship with the vessels at the vicinity of the aneurysm is clearly

shown.

6.5 Summary

In this chapter, we have demonstrated the applicability of the integrated approach to vessel

and aneurysm segmentation based on both speed and flow coherence information. The ap-
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proach was applied to two volunteers, one aneurysm phantom and five patient datasets. In

the case of the aneurysm and patient datasets, it was found that the use of flow coherence

information improves the reconstruction quality and detection of the aneurysm, especially

when the size of aneurysm is large. The total computational time, on average for all volun-

teer and patient cases, is about 5-6 mins, which is acceptable for pre-operative planning or

post-operative evaluation procedures.

Ghosting artifacts (present in all standard PC-MRA protocols) did not significantly affect

the detection of aneurysms in the cases considered. However, their effect should be taken

into account in general. On-going work is looking into how to reduce the ghosting artifacts

possibly by using the altered k-space sampling order [56], or by auto-focus methods [55].



Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we have presented a new approach to reconstructing vessels and aneurysms

in phase contrast magnetic resonance angiograms (PC-MRA). The main focus has been to

show how speed and flow coherence information extracted from a PC-MRA dataset can be

combined to detect and reconstruct normal vessels and aneurysms with relatively low signal-

to-noise ratio (SNR) and low flow rate.

Our contributions have been both in the area of understanding PC-MRA imaging physics

and also in vascular (vessel and aneurysm) segmentation. We began in Chapter 2 by analysing

the statistical characteristics of vascular and background signals in PC-MRA speed images

based on knowledge of image formation and a laminar blood flow assumption. The analysis

led to the development of the Maxwell-Gaussian mixture model for modelling the background

signals, and utilisation of a uniform distribution to model the vascular signals. We proposed

to estimate the parameters in the Maxwell-Gaussian-uniform (MGU) mixture model by the

Expectation-Maximisation (EM) algorithm and derived the update equations for the MGU

model. Experimental results using a MAP global thresholding method revealed that the

MGU model worked satisfactorily in classifying the background and vessel voxels. However,

for relatively low SNR and low flow rate vessel regions, e.g. inside aneurysm, we found that

it was hard to distinguish vessel voxels from the background voxels because of their low

intensity values.

To deal with this problem, in Chapter 3 we proposed to incorporate a new flow coherence

measure, namely local phase coherence (LPC) measure, into the segmentation process as an

131
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additional local constraint. Experiments on synthetic data suggested that the LPC measure

was better than prior coherence measures because it incorporates the spatial correlations

between neighbouring flow vectors in the coherence measure.

A Bayesian framework was employed in Chapter 4 to integrate PC-MRA speed and flow

coherence information. The (Maximum A-Posteriori) MAP-based framework encodes knowl-

edge of the PC-MRA speed image formation process and physical characteristics of blood

flow through the likelihood functions of the vessel and background, i.e. the MGU model;

and enhances the local relationships between the voxels through the prior probability, i.e.

the Markov Random Field (MRF) and Gibbs distributions, based on the LPC measure and

current states of the voxels. Experimental results on synthetic and clinical data showed

that the MAP-MRF method outperforms segmentation using either speed or flow coherence

information alone, and gives a better segmentation quality at both low and high SNR values.

In Chapter 5, we link together all the key ideas developed in Chapters 2-4. In this

Chapter, we present a sub-voxel based level-set method to extract the vascular surface in

the posterior probability maps estimated by the Bayesian framework presented in Chapter

4. The resulting level-set MAP-MRF method is evaluated on a geometric accurate straight

tube. The experimental results show that the surface boundary extracted by the sub-voxel

based method is clearly defined according to the probabilities of vessel and background, and

smoother than the voxel-based equivalent method; and the accuracies of the sub-voxel based

method and the voxel resolution method are comparable. We also show that the sub-voxel

level-set MAP-MRF method is more accurate than a sub-voxel let-set intensity gradient-based

approach by an average 33.23%.

Finally, in Chapter 6 the performance of the sub-voxel level-set MAP-MRF method was

evaluated on an aneurysm phantom and 7 clinical datasets. Testing on the datasets showed

that the vasculature and aneurysms were reconstructed and detected by the new approach. In

particular, the results also revealed that the new approach performs better than the approach

using speed information alone in detecting aneurysms.
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7.2 Future work

This section outlines some directions of future work.

First of all, as discussed in Chapter 6, image quality of PC-MRA images can be improved if

ghosting artifacts can be reduced by using the altered k-space sampling order [56], or by auto-

focus methods [55]. In addition, we have measured the accuracies of the proposed method

on a geometrically accurate flow phantom (straight tube) data using PC-MRA. With the

advance in 3D X-ray angiographic techniques, vasculature of a patient can be reconstructed

in 3D by using a rotating C-arm and sequence of DSA images during the treatments. The

X-ray based 3D angiography have higher spatial resolution than PC-MRA, and therefore

could provide an alternative and accurate way of evaluating performance of the new methods

in-vivo.

a. b. c.

Figure 7.1: (a) Digital subtraction angiogram (DSA), (b) initial registration and (c) final

registration, which shows that the DSA image and projection of the 3D vasculature are well

matched.

As mentioned in Chapter 1, during an endovascular treatment of an aneurysm, a neuro-

radiologist guides a catheter through blood vessels, while viewing its progress using real-time

2D X-ray images, as shown in Figure 7.1a. Registration between the 2D X-ray images and 3D

vasculature (2D-3D registration) can provide useful information about the current position

of the catheter and help understanding of the spatial relationships between vessels and the

aneurysm during the treatment. We have performed preliminary experiments using the 3D

segmentation and reconstruction methods developed in this thesis to provide 3D model used

in 2D-3D registration [59], Figure 7.1. Figure 7.1b shows a projection of 3D reconstructed
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vessels and aneurysm on a DSA image before registration, and the result after registration is

shown in Figure 7.1c.

Finally, the methods developed in this thesis can not only be used for detecting aneurysms,

but could also be used in other clinical contexts such as the analysis of endovascular treatment

results of brain arteriovenous malformations (AVM) [63]. Moreover, the methods could also

be used in the field of computational fluid analysis (CFD) for simulating the changes of flow

pattern inside the vasculature so that the effect of treatment could be predicted and assessed.



Appendix A

Derivation of the Maxwell-Gaussian

mixture model

This appendix describes a derivation of the Maxwell-Gaussian mixture model for the back-

ground signal in PC-MRA speed images. Recall from Section 2.3.2, that a speed image is

obtained by applying a modulus operation to the three corresponding magnitude-weighted

phase shifts in the phase images (orthogonal directional components) voxel by voxel. Assume

that, in background regions, the three magnitude-weighted phase values M̄∆φx, M̄∆φy and

M̄∆φz are represented by statistically independent random variables, px, py and pz, re-

spectively and each PDF of the magnitude-weighted phase values consists of a zero-mean

Gaussian (located at the centre) and two non-zero mean Gaussian distributions (located at

each side) (Section 2.3.4). As such, the PDF fpk
of each magnitude-weighted phase value is

approximated by a triple Gaussian model, which is given by

fpk
(pk) =

wl√
2πσl

· e
−(pk−µl)

2

2σ2
l +

wc√
2πσc

· e
−p2

k
2σ2

c +
wr√
2πσr

· e
−(pk−µr)2

2σ2
r , (A.1)

where subscripts l, c and r represent left, central and right Gaussian distributions respectively;

k = {x, y, z}; wl, wc and wr are the weights attached to the respective distributions, and are

summed to unity; µl and µr are the means; σl and σr are the standard deviations of the

left and right Gaussian distributions respectively. The main reason to use a triple Gaussian

model is to reduce the error in fitting each background magnitude-weighted phase value [58],

as discussed in Section 2.3.4.

Therefore, in PC-MRA speed images, a signal m is determined by the modulus of the

135
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three random variables, i.e.

m =
√

p2
x + p2

y + p2
z. (A.2)

The characteristic function of p2
k is given by

Φp2
k
(t) = E[eitp2

k ], (A.3)

=
∫ ∞

−∞
eitp2

k · fpk
(pk) · dpk, (A.4)

where i =
√−1, and k = {x, y, z}. Therefore,

Φp2
k
(t) =

wle

−µ2
l

2σ2
l√

2πσl

·
∫ ∞

−∞
e
(

µl
σ2

l

)pk

e
−( 1

2σ2
l

−it)p2
k
dpk +

wc√
2πσc

·
∫ ∞

−∞
e
−( 1

2σ2
c
−it)p2

kdpk +

wre
−µ2

r
2σ2

r√
2πσr

·
∫ ∞

−∞
e
(µr

σ2
r
)pk

e
−( 1

2σ2
r
−it)p2

kdpk (A.5)

According to the Fourier transforms1 [44], the characteristic function Φp2
k
(t) in Equation A.5

is given by

Φp2
k
(t) =

wl√
1 − 2itσ2

l

· e
itµ2

l
1−2itσ2

l +
wc√

1 − 2itσ2
c

+
wr√

1 − 2itσ2
r

· e
itµ2

r
1−2itσ2

r . (A.6)

Let Tl, Tc and Tr be the first, second and third terms on the right hand side of Equation A.6.

Since the characteristic functions of the sum of independent variables is the product of

their separated characteristic functions [39, Ch 2], the characteristic function of q, where q is

a random variable and q = p2
x + p2

y + p2
z, is then given by

Φq(t) = Φp2
x
(t) · Φp2

y
(t) · Φp2

z
(t), (A.7)

= T 3
c + 3T 2

c (Tl + Tr)︸ ︷︷ ︸
first order

+ 3Tc(T 2
l + T 2

r + 2TlTr)︸ ︷︷ ︸
second order

+ T 3
l + 3T 2

l Tr + 3TlT
2
r + T 3

r︸ ︷︷ ︸
third order

,(A.8)

where the equation consists of first, second and third order terms of Tl and Tr.

Firstly, we consider T 3
c in Equation A.8. By using the inversion formula of the character-

istic function [69], the PDF of T 3
c is obtained as

fT 3
c
(q) =

1
2π

·
∫ ∞

−∞
T 3

c (t) · e−itq · dt, (A.9)

=
1
2π

·
∫ ∞

−∞
w3

c

(1 − 2itσ2
c )

3
2

· e−itq · dt. (A.10)

1According to [44], the Fourier transform of a function f(t) and its inverse transform are given by f̂(w) =∫∞
−∞ e−iwxf(x)dx and f(x) = 1

2π

∫∞
−∞ eiwxf̂(w)dw respectively. If f(x) = e−ax2

, then according to the Fourier

transform table in [44],
∫∞
−∞ e−iwxe−ax2

dx =
√

π
a
e

−w2
4a . For the first term in the right hand side of Equation

A.5, let −iw = µl

σ2
l

and a = 1
2σ2

l

− it, the result in Equation A.6 can be obtained. The same applies to the

third term in the right hand side of Equation A.5.
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Let s = 1 − 2itσ2
c , and then Equation A.10 can be re-expressed as

fT 3
c
(q) =

w3
c · e

−q

2σ2
c

2σ2
c

· 1
2πi

·
∫ 1+i∞

1−i∞
e

(
q

2σ2
c

)
s · 1

s
3
2

· ds. (A.11)

Applying inverse Laplace transforms2 gives,

fT 3
c
(q) =

w3
c ·

√
q√

2πσ3
c

· e
−q

2σ2
c . (A.12)

We then consider one of the first order terms T 2
c Tl in Equation A.8. Similarly, by using

the inversion formula of the characteristic function [69], the PDF can be obtained and is

given by

fT 2
c Tl

(q) =
1
2π

·
∫ ∞

−∞
T 2

c Tl(t) · e−itq · dt, (A.13)

=
1
2π

·
∫ ∞

−∞
w2

cwl

(1 − 2itσ2
c )
√

1 − 2itσ2
l

· e
itµ2

l
1−2itσ2

l · e−itq · dt. (A.14)

Let s = 1 − 2itσ2
l . Equation A.14 can be rewritten as

fT 2
c Tl

(q) =
w2

cwl

2σ2
c

· e
−(µ2

l
+q)

2σ2
l · 1

2πi
·
∫ 1+i∞

1−i∞
e

(
q

2σ2
l

)
s

· 1(
σ2

l
σ2

c
− 1

)
+ s︸ ︷︷ ︸

f1(s)

· 1√
s
· e

(
µ2

l
2σ2

l

)
1
s

︸ ︷︷ ︸
f2(s)

·ds. (A.15)

Applying the Laplace transform convolution theorem to the functions f1 and f2 in Equation

A.15 [2], we get

fT 2
c Tl

(q) =
w2

cwl

2σ2
c

· e
−(µ2

l
+q)

2σ2
l · F1 ⊗ F2

(
q

2σ2
l

)
, (A.16)

where F1 ⊗ F2(t) indicates convolution3 and F1 and F2 are the inverse Laplace transformed

functions, which are given by

F1(t) = L−1{f1(s)} = e

(
1−σ2

l
σ2

c

)
t

and (A.17)

F2(t) = L−1{f2(s)} =
1√
πt

· cosh
(

µl

√
2t

σl

)
. (A.18)

2According to [2], the Laplace transform of a function f(t) and its inverse transform are given by f̂(s) =∫∞
0

e−stf(t)dt and f(t) = 1
2πi

·
∫ c+i∞

c−i∞ etsf̂(s)ds respectively. According to the table of Laplace transforms in

[2], if f̂(s) = s−
3
2 , then f(t) = 2

√
t
π
. Therefore, we let t = q

2σ2
c

and c = 1 in Equation A.11. The result in

Equation A.12 can then be obtained.
3
∫ t

0
F1(t − τ )F2(τ ) · dτ
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As such, the PDF of the first order term is given by

ffirst order(q) = 3(fT 2
c Tl

(q) + fT 2
c Tr

(q)), (A.19)

where fT 2
c Tl

(q) is defined in Equation A.16, and the PDF of T 2
c Tr in Equation A.8 is obtained

by replacing µl and σl with µr and σr respectively in Equation A.16. Similarly, by applying

inverse Fourier transforms and the Laplace transform convolution theorem, the PDFs of the

other third order terms, fsecond order(q) and fthird order(q), can be derived accordingly.

For example, the PDF of TcT
2
l , fTcT 2

l
, is given by

fTcT 2
l
(q) =

wcw
2
l

2σcσl
· e

−(2µ2
l
+q)

2σ2
l · F ′

1 ⊗ F
′
2

(
q

2σ2
l

)
, (A.20)

where F
′
1 ⊗ F

′
2(t) =

∫ t
0 F

′
1(t − τ)F

′
2(τ) · dτ , and F

′
1 and F

′
2 are given by

F
′
1(t) =

1√
t
· e

(
1−σ2

l
σ2

c

)
t

and (A.21)

F
′
2(t) = I0

(
2µl

√
t

σl

)
, (A.22)

where I0 is the modified Bessel function of the first kind. Also, the PDF of T 3
l , fT 3

l
, is given

by

fT 3
l
(q) =

w3
l√

6πσlµl

· e
−(3µ2

l
+q)

2σ2 · sinh

(√
3qµl

σ2
l

)
. (A.23)

Let fsecond order(q) and fthird order(q) be

fsecond order(q) = 3(fTcT 2
l
(q) + fTcT 2

r
(q) + 2fTcTlTr(q)), and (A.24)

fthird order(q) = fT 3
l
(q) + 3fT 2

l
Tr

(q) + 3fTlT 2
r
(q) + fT 3

r
(q). (A.25)

Then, the PDF of q is given by

fq(q) =
1
2π

·
∫ ∞

−∞
Φq(t) · e−itq · dt, (A.26)

= fT 3
c
(q) + ffirst order(q) + fsecond order(q) + fthird order(q), (A.27)

where Φq(t) is defined in Equation A.8.

Finally, since m2 = q, the PDF of signal m in a speed image is given by

fm(m) = 2mfq(q = m2), (A.28)

= 2mfT 3
c
(q = m2) + 2mffirst order(q = m2) +

2mfsecond order(q = m2) + 2mfthird order(q = m2), (A.29)
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where m is the signal (intensity) value in a speed image, and

2mfT 3
c
(q = m2) = w3

c · 2m2

√
2πσ3

c

· e
−m2

2σ2
c , (A.30)

which is the Maxwell distribution [5].

We used Monte Carlo simulations to validate the signal PDF fm in Equation A.29. Using

the Monte Carlo simulation, the values of the three magnitude-weighted phase variables px,

py and pz in Equation A.2 were generated according to the statistical distribution described in

Equation A.1. The signal m in a speed image is equal to the modulus of the three magnitude-

weighted phase variables voxel-by-voxel in a 256 × 256 image. We set the parameter values

based on typical experimental results. As shown in Figure A.1, the average values of the

parameters in Equation A.1 are as follows: wl = 0.117 ± 0.029, wc = 0.782 ± 0.047, wr =

0.101±0.024, σc = 28.102±1.739, µl = −41.354±3.761, σl = 19.161±2.51, µr = 41.182±3.843

and σr = 18.683 ± 2.29.

Figure A.2a shows the histogram of the simulated data (dotted) and the histogram

of the theoretical distribution fm(m) (solid) , which gives an absolute difference error of

3.12%. Figure A.2b shows the individual histograms of the Maxwell (2mfT 3
c
(m)), first order

(2mffirst order(m)), second order (2mfsecond order(m)) and third order (2mfthird order(m))

terms according to Equation A.29.

To illustrate the statistical characteristics of the first order term (2mffirst order(m)) , we

assume that µ = µl = µr and σ = σl = σr because, in practice, the values of µl and µr, and

the values of σl and σr are very close to each other, as shown in Figure A.1c. We plot the

changes of the first order term in Figure A.3a, in which the signal-to-noise ratios (SNR = µ
σ ,

and σ = 19, which is fixed. As such, the value of SNR is changed only when the value of µ

is changed.) were increased from 0 to 3. This figure shows (a) that when the SNR was equal

to 0, the distribution of the first order term is reduced closely to the Maxwell distribution,

and (b) that the distribution of the first order term changed smoothly from the Maxwell

distribution to the Gaussian distribution as the SNR was increased. This smooth transition

is modelled as a linear combination of the Maxwell and Gaussian distributions.

The change in the statistical characteristics of the second order term (2mfsecond order(m))

are plotted in Figure A.3b, in which the SNR is increased from 0 to 3. A similar smooth

transition from the Maxwell distribution to Gaussian distribution was observed. Therefore,

the distribution of the second order term is also modelled as a linear Maxwell and Gaussian

mixture. The same observation was obtained for the third order term. Therefore, all terms,
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a. Weights: wl (solid), wc (dashed) and wr

(dotted). Averages: wl = 0.117 ± 0.029,

wc = 0.782 ± 0.047 and wr = 0.101 ± 0.024.

b. Means: µl (solid), µc (dashed) and µr

(dotted). Averages: µl = −41.354 ± 3.761,

µc = 0 and µr = 41.182 ± 3.843

c. Standard deviations: σl (solid), σc

(dashed) and σr (dotted). Averages:

σl = 19.161 ± 2.51, σc = 28.102 ± 1.739 and

σr = 18.683 ± 2.29

Figure A.1: Average parameter values of the triple Gaussian mixture model.
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a. Simulated data (dotted) and the theoretical

distribution (solid). Absolute difference

error=3.12%.

b. Simulated data (dotted) and the individual

distributions (solid and dashed).

Figure A.2: Histogram of the simulated data, the theoretical distribution, and distributions of

the Maxwell, first order, second order and third order terms.

including the Maxwell, first order, second order and third order terms, can be approximated

by a combination of the Maxwell and Gaussian distributions.

a. First order term 2mffirst order(m). b. Second order term 2mfsecond order(m).

Figure A.3: Histograms of the first and second order terms at different SNRs.

When the SNR is equal to zero, the sum of all terms closely follows the Maxwell dis-

tribution, whereas when the SNR is equal to 3, the sum of all terms follows a Gaussian

distribution. These transitions are illustrated in Figures A.4a and A.4b. Consequently, the

PDF of m, fm(m), can then be approximated by a mixture of Maxwell fM and Gaussian fG
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a. Histograms of the fitted Maxwell

distribution (solid), and the sum of all terms

(dashed), including the Maxwell, first order,

second order and third order terms, when

SNR = 0.

b. Histograms of the fitted Gaussian

distribution (solid), and the sum of all terms

(dashed), including the Maxwell, first order,

second order and third order terms, when

SNR = 3.

Figure A.4: Histograms of the sum of all terms at different SNRs.

distributions, given by

fm(m) = wMfM(m) + wGfG(m), (A.31)

where wM and wG are weights assigned to the Maxwell and Gaussian distributions respec-

tively, and

fM (m) =
2m2

√
2πσ3

M

· e
−m2

2σ2
M and (A.32)

fG(m) =
1√

2π · σG

· e
−(m−µG)2

2σ2
G , (A.33)

Here σM is the standard deviation of the Maxwell distribution, and µG and σG are the mean

and standard deviation of the Gaussian distribution respectively. As plotted in Figure A.5a,

the Maxwell and Gaussian mixture was fitted to the same simulated data as above and gave

an absolute difference error of 3.65%, which was comparable to the theoretical distribution

(Equation A.29). The Maxwell and Gaussian distributions are separated in Figure A.5b to

demonstrate their relative contributions to the model.

A detailed comparison between a Maxwell and Gaussian mixture model, and the Maxwell

distribution for modelling the background signal in PC-MRA speed images is given in Section

2.5.
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a. Simulated data (dotted) and the Maxwell

and Gaussian mixture (solid). Absolute

difference error=3.65%.

b. Simulated data (dotted) and the individual

distributions (solid and dashed). wM = 0.7,

wG = 0.3, σM = 30.4, µG = 60.0 and

σG = 17.5.

Figure A.5: Histogram of the simulated data, the Maxwell and Gaussian mixture, and indi-

vidual distributions.



Appendix B

Derivation of update equations for

the MGU model

This appendix shows how the parameters of the Maxwell-Gaussian-uniform (MGU) model

can be estimated by using the EM algorithm. Recall from Equation 2.13 that, given a mixture

model, consisted of Maxwell, Gaussian and uniform distributions, there are six parameters:

wM , wG, wU , σ2
M , µG and σ2

G, which need to be estimated. The overall probability density

function f(i) of an MRA speed image is given by Equation 2.13, where

f(i) = wMfM(i) + wGfG(i)︸ ︷︷ ︸
Background Signal

+ wUfU(i)︸ ︷︷ ︸
V ascular Signal

,

and wM +wG +wU = 1. The Maxwell distribution fM(i) is defined in Equation 2.10 and the

Gaussian distribution fG(i) is defined as

fG(i) =
1√

2π · σG

· e
−(i−µG)2

2σ2
G , (B.1)

and the uniform distribution is defined as

fU(i) =
1

Imax
, (B.2)

where Imax is the maximum intensity in the observed frequency histogram.

The EM algorithm is an iterative procedure that can be used to estimate the parameters by

maximising the log-likelihood of the mixture distribution at each iteration [10]. The iterative

procedure terminates when the change in log-likelihood or the parameters is sufficiently small.

144
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Let the log-likelihood function be L =
∑Imax

i=0 h(i) · log f(i), where h(i) is the observed

frequency histogram and f(i) is the mixture PDF in Equation 2.13. The change in log-

likelihood function is given by

Lk+1 − Lk =
Imax∑
i=0

h(i) · log
(

fk+1(i)
fk(i)

)
, (B.3)

where index k represents the kth iteration step. We aim to maximise the change of log-

likelihood Lk+1 − Lk until the change is sufficiently small. Suppose that, given an intensity

i, the posterior probabilities of the Maxwell, Gaussian and uniform distributions are p(M |i),
p(G|i) and p(U |i) respectively. Then p(M |i) = wMfM (i)

f(i) . The same form applies to p(G|i)
and p(U |i). Also p(M |i) + p(G|i) + p(U |i) = 1. Equation B.3 can be rewritten as

Lk+1−Lk =
Imax∑
i=0

h(i)·log
(

pk(M |i) wk+1
M fk+1

M (i)
fk(i)pk(M |i) + pk(G|i)w

k+1
G fk+1

G (i)
fk(i)pk(G|i) + pk(U |i)w

k+1
U fk+1

U (i)
fk(i)pk(U |i)

)
(B.4)

We use Jensen’s inequality,

log(λ1x1 + λ2x2 + λ3x3) ≥ λ1log x1 + λ2log x2 + λ3log x3, (B.5)

where λ1 + λ2 + λ3 = 1. Let λ1 = pk(M |i), λ2 = pk(G|i) and λ3 = pk(U |i). By expanding

fk+1(i) and multiplying by both numerator and denominator pk(M |i), pk(G|i) and pk(U |i),
then from Equation B.4, we have

Lk+1 − Lk ≥
Imax∑
i=0

h(i) ·
[
pk(M |i)log

(
wk+1

M fk+1
M (i)

fk(i)pk(M |i)

)
+ pk(G|i)log

(
wk+1

G fk+1
G (i)

fk(i)pk(G|i)

)
+

pk(U |i)log
(

wk+1
U fk+1

U (i)
fk(i)pk(U |i)

)]
. (B.6)

Therefore, maximising the right-hand-side of the inequality in Equation B.6 is equivalent

to ensuring the maximal lower bound to the change in log-likelihood is achieved until the

log-likelihood converges to a stationary point.

Maximisation with respect to wk+1
M , wk+1

G and wk+1
U : the right-hand-side of Equation

B.6 can be rearranged to isolate the terms related to wk+1
M , wk+1

G and wk+1
U . Let

Qw =
Imax∑
i=0

h(i) · (pk(M |i) · log wk+1
M + pk(G|i) · log wk+1

G + pk(U |i) · log wk+1
U ). (B.7)

Then we need to maximise Qw under the constraint wk+1
M + wk+1

G + wk+1
U = 1, i.e. maximise

Qw + λ · (1 − wk+1
M − wk+1

G − wk+1
U ), (B.8)
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where λ is the Lagrange multiplier. Setting the derivatives with respect to wk+1
M , wk+1

G and

wk+1
U to zero gives,

λ · wk+1
M =

Imax∑
i=0

h(i) · pk(M |i),

λ · wk+1
G =

Imax∑
i=0

h(i) · pk(G|i) and

λ · wk+1
U =

Imax∑
i=0

h(i) · pk(U |i). (B.9)

Summing Equation B.9 gives λ = n, where n is the total number of voxels. Hence, we obtain

wk+1
M =

1
n
·

Imax∑
i=0

h(i) · pk(M |i),

wk+1
G =

1
n
·

Imax∑
i=0

h(i) · pk(G|i) and

wk+1
U =

1
n
·

Imax∑
i=0

h(i) · pk(U |i). (B.10)

Maximisation with respect to σ2
M : the right-hand-side of Equation B.6 can be rear-

ranged to isolate the terms related to σ2
M , giving

QM =
Imax∑
i=0

h(i) · pk(M |i) · log fk+1
M (i). (B.11)

Setting the derivatives of QM with respect to σ2
M to zero gives

Imax∑
i=0

h(i) · pk(M |i)
[
i2 − 3(σ2

M )k+1
]

= 0. (B.12)

Therefore, we obtain

(σ2
M )k+1 =

∑Imax
i=0 h(i) · pk(M |i) · i2

3 ·∑Imax
i=0 h(i) · pk(M |i) . (B.13)

Maximisation with respect to µG and σ2
G: the right-hand-side of Equation B.6 can

be rearranged to isolate the terms related to µG and σ2
G, giving

QG =
Imax∑
i=0

= h(i) · pk(G|i) · log fk+1
G (i). (B.14)

Setting the derivatives of QG with respect to µG and σ2
G to zero gives

Imax∑
i=0

h(i) · pk(G|i) · (i − µk+1
G ) = 0 and (B.15)

Imax∑
i=0

h(i) · pk(G|i) ·
[
(i − µk+1

G )2 − (σ2
G)k+1

]
= 0. (B.16)
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Therefore, we obtain

µk+1
G =

∑Imax
i=0 h(i) · pk(G|i) · i∑Imax

i=0 h(i) · pk(G|i) and (B.17)

(σ2
G)k+1 =

∑Imax
i=0 h(i) · pk(G|i) · (i − µk+1

G )2∑Imax
i=0 h(i) · pk(G|i) . (B.18)

Note that the same derivation and update equations can be easily re-applied when the

combination of distributions in the mixture is altered, e.g. a mixture of the two Gaussian

distributions (Section 4.4).



Appendix C

Derivation of the equation of

motion in 3D

This appendix shows the evolution equation derivation for the 3D geodesic flow using the

divergence theorem. Let

H(t) =
∫ ∫ ∫

Rxyz

f(x, y, z) dV, (C.1)

where Rxyz is a volumetric region in the Euclidean space, H(t) is a volumetric integral of a

functional f(x, y, z) and dV = dxdydz is a volume element in the Euclidean space.

Furthermore, let

L(x, y, z) =
1
3
·
∫ x

0
f(τ, y, z) dτ, (C.2)

M(x, y, z) =
1
3
·
∫ y

0
f(x, τ, z) dτ and (C.3)

N(x, y, z) =
1
3
·
∫ z

0
f(x, y, τ) dτ (C.4)

such that the condition

f(x, y, z) =
∂L

∂x
+

∂M

∂y
+

∂N

∂z
(C.5)

is satisfied. Then, from Equation C.1 we obtain,

H(t) =
∫ ∫ ∫

Rxyz

div(L,M,N) dV, (C.6)

where ’div’ denotes the divergence operator. By applying the divergence theorem in 3D, we

have

H(t) =
∫ ∫

Sxyz

(L,M,N) · n̂ dσ, (C.7)
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where Sxyz is a closed surface that encloses the region Rxyz, n̂ is an unit surface normal and

dσ is a surface element in the Euclidean space. The parametric form of the surface Sxyz is

given by

x = x(u, v, t), y = y(u, v, t) and z = z(u, v, t), (C.8)

where u, v ∈ [0, 1] denote the space parameters and t ∈ [0,∞) denotes the time parameter.

Now, the unit normal vector n̂ is given by

n̂ =
	p1 × 	p2

|	p1 × 	p2| , (C.9)

where 	p1 =
(

∂x
∂u , ∂y

∂u , ∂z
∂u

)T
and 	p2 =

(
∂x
∂v , ∂y

∂v , ∂z
∂v

)T
, and the surface element dσ is given by

dσ =
√

EG − F 2 dudv, (C.10)

where E =
∣∣∣∂S∂u

∣∣∣2, G =
∣∣∣∂S∂v

∣∣∣2 and F = ∂S
∂u · ∂S

∂v . Hence, Equation C.7 can be re-written as,

H(t) =
∫ 1

0

∫ 1

0
(L,M,N) · (	p1 × 	p2) dudv. (C.11)

The derivative of Equation C.11 with respect to t gives

dH(t)
dt

=
∫ 1

0

∫ 1

0
(
∂x

∂t
,
∂y

∂t
,
∂z

∂t
) · f (	p1 × 	p2) dudv, (C.12)

where we have written f = f(x, y, z) for simplicity of notation. Hence,

dH(t)
dt

=
∫ ∫

Sxyz

∂S
∂t

· (f n̂) dσ. (C.13)

Then, the following evolution equation should be solved in order to find the local minimum

of H(t),
∂S
∂t

= −f n̂. (C.14)

This forms the evolution equation of geodesic flow and shows the direction in which H(t) is

decreased most rapidly.
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