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Bayesian Image Segmentation Using Local

Iso-intensity Structural Orientation
Wilbur C. K. Wong∗ and Albert C. S. Chung

Abstract— Image segmentation is a fundamental problem in
early computer vision. In segmentation of flat shaded, non-
textured objects in real-world images, objects are usually as-
sumed to be piece-wise homogeneous. This assumption, however,
is not always valid with images such as medical images. As a
result, any techniques based on this assumption may produce
less than satisfactory image segmentation.

In this work, we relax the piece-wise homogeneous assumption.
By assuming that the intensity non-uniformity is smooth in the
imaged objects, a novel algorithm that exploits the coherence
in the intensity profile to segment the objects is proposed. The
algorithm uses a novel smoothness prior to improve the quality
of image segmentation. The formulation of the prior is based
on the coherence of the local structural orientation in the image.
The segmentation process is performed in a Bayesian framework.
Local orientation estimation is obtained with an orientation
tensor. Comparisons between the conventional Hessian matrix
and the orientation tensor have been conducted.

The experimental results on the synthetic images and the
real-world images have indicated that our novel segmentation
algorithm produces better segmentations than both the global
thresholding with the maximum likelihood estimation and the
algorithm with the multi-level logistic MRF model.

Index Terms— image segmentation, Markov random fields,
maximum likelihood estimation, MAP estimation.

I. INTRODUCTION

Image segmentation is one of the fundamental problems in

early computer vision. It is a process to partition an image

into non-overlapping regions. To extract high-level information

from an image, digital image analysis systems such as indus-

trial inspection system, autonomous object recognition system

and medical image analysis system, may need to accomplish

image segmentation prior to any post-processing algorithms

[1]. As such, a tremendous amount of thorough research has

taken place on image segmentation [2]–[4].

Approaches to image segmentation can be categorized into

two different perspectives: (1) edge-based and (2) region-

based. Edge-based approaches segment an image by taking

the edge information into account. Edge pixel is denoted by

intensity discontinuity in the image. It can be detected by a

differential operator such as Sobel, Roberts, Prewitt and Lapla-

cian operators [2], [4]. An edge linking algorithm has been

employed to assemble broken edge pixels into inter-connected

boundaries, and the image is partitioned into disjointed regions

(i.e. segmented) according to these boundaries [1]. Apart from

the explicit usage of edge pixel, gradient information has been
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used to drive evolving contours with the level set method and

topologically adaptable surfaces to segment objects in images

[3], [5]–[8]. With these techniques, the evolving contours and

surfaces are attracted to locations with a high gradient, i.e.

the presence of an edge. Moreover, a watershed algorithm has

proven to be a useful tool for image segmentation with edge

information [9].

In region-based approaches, an image is divided into dif-

ferent groups of pixels (i.e. classes or regions) according to

a certain similarity criterion. For example, techniques based

on histogramming and multi-level thresholding assume that

image intensity values are independent and identically dis-

tributed (i.i.d.) and that the pixels in the same region have

similar intensity values. These techniques usually segment

an image based on some estimated intensity distributions.

Statistical mixture modeling [10], k-means algorithm [11] and

fuzzy clustering algorithm [12]–[14] are examples of these

techniques. There are other region-based techniques, namely,

region growing, split and merge algorithm, relaxation labeling,

Markov random field (MRF) based and neural network based

approaches, which partition an image with reference to both

an intensity similarity criterion and spatial information [1],

[15]–[21].

In this paper, we are interested in the binary segmentation

of a flat shaded, non-textured three-dimensional (3D) object.

This type of object in the real-world image is usually assumed

to be piece-wise constant with random white Gaussian noise

contamination [2], [4], [22]. In other words, in the noiseless

image (i.e. the truth image), pixels that belong to the same

object should have the same intensity value. The boundaries

between objects are well-defined by sharp changes in the

intensity profile. The authors of the aforementioned segmen-

tation techniques demonstrated that if the piece-wise constant

assumption is valid and the signal-to-noise ratio (SNR) is

reasonably high, their methods should be capable of giving

satisfactory image segmentation.

However, the assumption of piece-wise constant is not

always valid in the real-world image. Examples of the vi-

olation of the assumption are commonly found in medical

images such as intensity inhomogeneity in magnetic resonance

imaging1 (MRI) and low intensity vascular region in phase-

contrast magnetic resonance angiography2 (PC MRA). Pixels

1Intensity inhomogeneity in MRI may relate to poor radio frequency coil
uniformity or operating condition of the MR scanners [23].

2Intensity in the speed image of PC MRA is proportional to the speed of
the blood flow in the imaged vessels. Because of blood viscosity, the blood
flow is low near the vascular boundary and inside an aneurysm (a vascular
disease due to local abnormal dilatation of blood vessel) [24]. As a result,
image intensity values are low in these vascular regions.
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that belong to the same tissue class in an MRI may have

different intensity values owing to the intensity inhomogeneity.

Due to the low intensity profile near the vascular wall in a PC

MRA, any edges detected by a differential operator or the

Laplacian operator in the image may not delineate the true

vascular boundary.

Despite the intensity non-uniformity within the imaged

object, changes in the intensity values are usually smooth. In

other words, the image data surface (i.e. the intensity profile)

is coherent (see [25] for more information). In the literature,

several authors have exploited this property to segment images

with explicit modeling of the smooth image data surface. Besl

and Jain [25] demonstrated the application of the variable-

order surface fitting algorithm to segment objects with a set

of curved surfaces modeled by bivariate polynomials. Leclerc

[26] employed a smooth function that is defined in terms

of the Taylor coefficients in the spatial domain to describe

the data surface coherence. The author claimed that this

description is the simplest and the most stable description

that can be applied to the image partitioning problem. Tu and

Zhu [27] formulated the observation model in their Bayesian

segmentation algorithm with a 2D Bezier-spline model. This

model aims at representing an inhomogeneous pattern in an

image that corresponds to a shading effect over space. An

explicit model in the spatial domain is used to represent the

data surface coherence amongst all the approaches. As pointed

out in [25], [27], these explicit modeling techniques can be

applied to the images with sufficiently large regions (more

than 10 − 30 pixels).

In this paper, a novel algorithm that exploits the image data

surface coherence is proposed. This algorithm is capable of

representing the coherence in a relatively small local region.

We follow a research line [28] in which spatial information is

incorporated into the image segmentation process as a prior

probability within an MRF framework. Our formulation of the

data surface coherence is different from the one proposed by

Tu and Zhu [27]. Instead of embedding the coherent informa-

tion in the observation model as proposed in [27], we embed

it in an MRF prior model. Furthermore, the image data surface

coherence is estimated in the Fourier domain, as opposed to

the techniques mentioned in the previous paragraph, which

used an explicit model and an error function to approximate

the surface coherence.

Because the image data surface is coherent, iso-intensity

structures may be found in the image. These structures char-

acterize the local property of the image data surface. They

are locally coherent as long as the image data surface is

coherent (see Section II-C for the illustration). The newly

proposed method exploits this local coherence to improve

the quality of the binary segmentation of an image. A new

smoothness prior model, namely, local structural orientation

smoothness prior, is proposed to provide regularization on the

image segmentation. The formulation of the prior is based on

the orientation smoothness of the iso-intensity structures in the

image. To demonstrate the applicability of the novel smooth-

ness prior model, we have tested the proposed algorithm on

both synthetic and real-world images. The binary segmentation

is approximated with a finite mixture model (FMM) and the

iterated conditional modes (ICM) in the Bayesian framework.

The rest of the paper is organized as follows. In Section II,

the Bayesian approach to the binary segmentation of objects

with smooth intensity inhomogeneity is presented. A robust

method to estimate the local structural orientation of the

coherent image data surface is described in Section III. We

also present a comparison of another conventional method

for the estimation of the local structural orientation in the

same section. The proposed image segmentation algorithm

is outlined in Section IV. Sensitivity analyses of the MRF

parameters are presented in Section V. The experimental

results on the synthetic images and real-world images are

given in Section VI, followed by a discussion of the algorithm

performance. Finally, conclusions are drawn in Section VII.

II. BAYESIAN APPROACH TO SEGMENTING OBJECTS WITH

COHERENT INTENSITY PROFILE

In this section, we formulate the binary segmentation prob-

lem in the Bayesian framework. The observation model and the

newly proposed prior model are presented. The prior model,

namely, local structural orientation smoothness prior, acts as a

contextual constraint on the segmentation of the objects with

a coherent intensity profile.

A. Problem Formulation

Assume that a problem of object binary segmentation can

be considered as a process of assigning labels from a label set

L = {background, object} to each of the voxels indexed in

S = {1, . . . , m}, where m is the total number of voxels in

an observed image ~y. Let a vector ~x be a binary segmentation

of the image ~y, then each element in the vector ~x can be

regarded as a mapping from S to L, i.e. xi : S → L. A

feasible segmentation ~x is, therefore, in a Cartesian product

Ωx of m label sets. The set Ωx is known as the configuration

space. In the Bayesian framework, the optimal solution is

given by a feasible segmentation ~x∗ of the image ~y, which

maximizes the posterior probability p (~x | ~y) ∝ p (~y | ~x) p (~x)
over the space Ωx [22]. The likelihood probability p (~y | ~x) can

be application-specific. It suggests particular label assignments

based on the intensity values in the image ~y. While the

prior probability p (~x) constrains the binary segmentation

contextually. The likelihood and the prior probabilities are also

known as the observation and the prior models in the Bayesian

segmentation framework.

In order to have a tractable constraint, the Markov random

field (MRF) theory is used. By virtue of the Hammersley-

Clifford theorem [29], the Gibbs distribution provides us with

a practical way of specifying the joint probability (i.e. the

prior probability p (~x)) of an MRF. Therefore the maximum

a posteriori (MAP) estimate ~x∗ becomes a minimum of the

summation of the likelihood energy and the prior energy

functions over the configuration space Ωx,

~x∗ = arg min
~x∈Ωx

(U (~y | ~x) + U (~x)) , (1)

where U (~y | ~x) = − log p (~y | ~x) represents the likelihood

energy function and U (~x) =
∑

c∈C Vc (~x) is the prior energy

function, which is a sum of clique potentials Vc (~x) over all

possible cliques in C ⊆ S [22].
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Fig. 1. 2D ring image. (a) The ring with a coherent intensity profile; (b)
image data surface of the ring; (c) iso-contours on the image data surface;
and (d) close-up of the square region in (a); (e) image data surface of the
close-up region; and (f) iso-contours of the close-up region.

B. The Observation Model

In practice, because of the high complexity of the random

variables ~x and ~y, it is computationally intractable to calculate

the likelihood energy U (~y | ~x) from the negative log-likelihood

(− log p (~y | ~x)). Therefore, it is usually assumed that the

intensity values in the image ~y are independent and identically

distributed (i.i.d.), and can be modeled by a finite mixture

model (FMM) [10]. The calculation of the likelihood energy

then becomes tractable and can be estimated with the FMM,

since the global likelihood is determined by local likelihoods.

The likelihood energy function can be rewritten as,

U (~y | ~x) = −
∑

i∈S

log p (yi |xi). (2)

C. The Prior Model

This paper focuses on the binary segmentation of the 3D

objects with a coherent intensity profile (i.e. smooth changes

in the intensity values) and does not consider any textured ob-

jects. Imagine the object image is inspected on a microscopic

level, within a tiny spatial window for example, we can ob-

serve iso-surfaces in the 3D image. These iso-surfaces depict

the structures with the same intensity values. For legibility,

the above idea is illustrated with a 2D ring object in Figure

1. Figure 1(a) shows the 2D ring with a coherent intensity

profile. Figure 1(b) plots the image data surface (i.e. intensity

profile) of the ring. Figure 1(c) shows the iso-contours on

the image data surface. Figure 1(d) shows the close-up of

the square region in Figure 1(a). The corresponding close-ups

of the image data surface and the iso-contours are shown in

Figures 1(e) and 1(f). It is observed that each iso-contour is

locally coherent and is as smooth as the corresponding image

data surface. This implies that the local orientation of each

iso-contour line fragment is also coherent. Similar observation

can be made in the 3D space. The local orientation of each

iso-surface planar patch is also coherent.

In this section, a new smoothness prior model that exploits

the local structural coherence of the image data surface is

presented. The prior model is used to constrain the binary

segmentation within the Bayesian framework. Smoothness

constraints have been used to solve low level vision problems,

including surface reconstruction, optical flow determination

and shape extraction. These applications demonstrate that the

generic contextual constraint is a useful prior to a variety of

low level vision problems [22]. In the MRF framework, a

contextual constraint is expressed as a prior probability or the

equivalent prior energy function U (~x) as given in Equation 1.

In the formulation of the prior energy function, the afore-

discussed local structural coherence is exploited. The prior

energy function is expressed as,

U (~x) =
∑

i∈S

∑

j∈Ni

(

1−f (xi)
)

f (xj) g (i, j)
(

β1h1 (i, j)+β2h2 (i, j)
)

,

(3)

where Ni denotes a set of voxels adjacent to voxel i with

respect to a neighborhood system N ⊆ S and f is a mapping

function defined as,

f (xi) =

{

0, xi = background,

1, xi = object;
(4)

g (i, j) measures the geometric closeness (Euclidean distance)

between voxels i and j, which defines the structural local-

ity; h1 (i, j) and h2 (i, j) measure the orientation similarities

(quantitation of the structural coherence) of the first and the

second principal directions of the iso-surface planar patch

at voxel i with respect to voxel j, respectively; β1 and β2

are positive weights, which need not sum to one and are

used to control the influence of orientation coherence in the

interactions between the adjacent voxels. The idea of applying

geometric closeness and similarity measures as constraints is

similar to the one found in the bilateral filters [30].

In this paper, the geometric closeness, g, and the orientation

similarity measures, h1 and h2, are Gaussian functions of the

magnitude of the relative position vector of voxel j from voxel

i, ‖~uij‖, and the orientation discrepancy, δ, between voxels i

and j, respectively. The geometric closeness function is given

as a decreasing function g when the distance ‖~uij‖ increases:

g (i, j) = exp

(

−‖~uij‖
2

2σ2
g

)

, (5)

where σg defines the desired structural locality between neigh-

boring voxels. The function g → 1 if voxel j is very close

to voxel i; otherwise g decreases to zero as the Euclidean

distance between voxels i and j increases. The orientation

similarity function hk is written as a decreasing function when

the orientation discrepancy δ increases:

hk (i, j) = exp





−δ2

(

~̂uij , ~̂wk

)

2σ2

h



 , (6)

where k = 1, 2, the functions h1 and h2 denote the orientation

similarities of the first and the second principal directions of

the iso-surface planar patch at voxel i with respect to voxel j,
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Fig. 2. Two label assignment scenarios. (a) Scenario 1: the voxel j is aligned
with the first or the second principal direction (arrow) of the iso-surface planar
patch at the voxel i and the label assigned to the voxel j is object (white box);
and (b) scenario 2: the label assigned to the voxel j is background (black box).

respectively. The notation ~̂u denotes the unit vector of vector

~u. The orientation discrepancy function δ is defined as,

δ (~u,~v) = 1 −
∣

∣~uT~v
∣

∣ . (7)

The vectors ~̂w1 and ~̂w2 depict the first and the second principal

directions of iso-surface planar patch at voxel i, respectively,

and the parameter σh is chosen based on the desired amount

of orientation discrepancy filtering amongst adjacent voxels. It

is noted that the function δ → 0 if vectors ~u and ~v are aligned,

i.e. the angle between ~u and ~v equals either 0◦ or 180◦. As

such, the function hk → 1 if voxel j is located along one

of the principal directions of the planar patch at voxel i, as

depicted by the vectors ~̂w1 and ~̂w2.

To summarize, the prior energy function in Equation 3

encourages piece-wise continuous object label assignment in

the segmentation. Piece-wise continuity is constrained by the

geometric closeness and the structural orientation similarity

measures. Figure 2 demonstrates two scenarios in the label

assignment process. On one hand, if the voxels i and j are

close enough, i.e. g → 1, the label assigned to the voxel j

is object, i.e. f (xj) = 1, and the voxel j is aligned with the

first or the second principal direction of the iso-surface planar

patch at the voxel i (as illustrated in Figure 2(a)), i.e. hk → 1,

k ∈ {1, 2}, it is in favor of object label assignment to the voxel

i, i.e. setting f (xi) = 1. This is because we are minimizing

the energy function in Equation 3. On the other hand, if the

label assigned to the voxel j is background, i.e. f (xj) = 0,

as indicated in Figure 2(b), the prior energy vanishes and the

label assignment to the voxel i is based solely on the likelihood

energy.

In other words, the prior model described in this section

assumes the object is smooth with respect to its iso-surfaces.

The structural coherence is not extended to the background

class because it is assumed that the background is structureless

and is contaminated by random white noise.

III. ESTIMATING LOCAL STRUCTURAL ORIENTATION BY

EIGEN DECOMPOSITION OF ORIENTATION TENSOR

As discussed in Section II, the two principal directions of

the iso-surface planar patches (i.e. ~̂w1 and ~̂w2) are exploited

to constrain the binary segmentation of a 3D object with an

MRF prior model. In this section, we describe a robust method

to estimate the two principal directions. The estimation is
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Fig. 3. A quadrature filter in a 2D space. (a) The quadrature filter in the
Fourier domain; (b) real part of the quadrature filter in the spatial domain. It
is observed that the filter responses are symmetric. It is known as a line filter
in the spatial domain; and (c) imaginary part of the quadrature filter in the
spatial domain. It is observed that the filter responses are antisymmetric. It is
known as an edge filter in the spatial domain.

obtained from an orientation tensor rather than a conventional

Hessian matrix for better performance and the robustness to

noise. Experimental results of the performance comparisons

between the two methods are presented.

A. Orientation Tensor

The use of an orientation tensor for local structure descrip-

tion was first presented in Knutsson’s work [31]. The work was

motivated by the need to find a continuous representation of

local orientation. Knutsson formulated the orientation tensor

by combining outputs from a number of directional polar

separable quadrature filters.

A quadrature filter is constructed in the Fourier domain. It

is a complex valued filter in the spatial domain. The real and

the imaginary parts of the complex value give the symmetric

and the antisymmetric filter responses, respectively. Therefore,

a quadrature filter can be viewed as a pair of filters in

the spatial domain: (1) a line filter that corresponds to the

symmetric response and (2) an edge filter that corresponds to

the antisymmetric response. Furthermore, the quadrature filter

is orientation-specific. This implies that the filter is sensitive

to lines and edges that are orientated in the filter direction.

Figure 3 shows a 2D quadrature filter in the Fourier domain

as well as its real and imaginary parts in the spatial domain.

In Knutsson’s formulation, the orientation tensor T in a 3D

space is defined, based on six quadrature filters, as follows,

T =
6
∑

k=1

qk(
5

4
~̂nk~̂n

T

k −
1

4
I), (8)

where qk is the modulus of the complex valued response

from the quadrature filter in the direction ~̂nk and I is the

identity tensor. For further details and the definitions of the

six quadrature filters, see [31] or Chapter 6 in [32].

B. Local Orientation Estimation

Estimation of local structural orientation is performed via

eigen decomposition of the orientation tensor T at each voxel

in an image [32]. To calculate the tensor T, the image

should be convolved with the six quadrature filters. After the

convolutions, there are six moduli of the complex valued filter

responses associated with each voxel, qk, k = 1, 2, . . . , 6.

Then the tensor is computed as stated in Equation 8.
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Fig. 4. Flow diagram of the local orientation estimation process.

Let λ1, λ2 and λ3 be the eigenvalues of the tensor T in

descending order (λ1 ≥ λ2 ≥ λ3 ≥ 0) and ~̂ei (i = 1, 2, 3) be

the corresponding eigenvectors, respectively. The estimation

of the local structural orientation can be based on one of the

following three cases. (a) Planar case: λ1 ≫ λ2 ≃ λ3, ~̂e2

and ~̂e3 represent the estimates to the principal directions of

the planar structure; (b) linear case: λ1 ≃ λ2 ≫ λ3, ~̂e3 is an

estimate to the principal direction of the linear structure; and

(c) isotropic case: λ1 ≃ λ2 ≃ λ3, no specific orientation.

As outlined in Section II-C, we exploit the first and the

second principal directions of the iso-surface planar patches

in the MRF prior model (i.e. ~̂w1 and ~̂w2 in Equation 6).

With the eigen decomposition of the orientation tensors, we

can then approximate the two principal directions with the

eigenvectors ~̂e3 and ~̂e2, respectively. Figure 4 summarizes the

local orientation estimation process in a flow diagram.

C. Comparison of Orientation Tensor with Hessian Matrix

Using an orientation tensor is not the only approach to esti-

mating local structural orientation. A Hessian matrix (defined

as in [33]) can also be used for the estimation (see [34],

[35]). In this section, we compare the performance of the two

aforementioned approaches.

A synthetic ring torus image with a parabolic3 intensity

profile (peak intensity equals 255 at the center of the tube)

in a volume of size 64 × 64 × 64 voxels has been built. The

radius from the center of the hole to the center of the torus

tube is 20 voxels and the radius of the tube is 10 voxels.

A complete 3D surface model of the torus image is shown

in Figure 5(a) and a clipped torus model is shown in Figure

5(b). The clipped model is cut vertically at the 21st slice for

a better illustration of the corresponding slice image and its

3A parabolic model is used because of its simplicity to model coherent
intensity profile within a tubular object in a 3D space.

(a) Complete model (b) Clipped model (c) Noiseless

(d) Truth (e) Noisy

Fig. 5. A 3D synthetic image, ring torus. (a) Complete 3D surface model of
the torus image, (b) clipped 3D surface model cut vertically at the 21

st slice,
(c) the 21st slice image of the torus, its corresponding (d) truth segmentation
and (e) noisy image with SNR equal to 5.

segmentation. Figures 5(c) and 5(d) show the 21st slice image

of the torus and its truth segmentation.

We have compared the performance of the orientation

tensor and the Hessian matrix approaches (hereafter referred

to as “OT” and “HESSIAN”, respectively) on the truth (i.e.

noiseless) torus and noisy toruses at different levels of additive

white Gaussian noise. Signal-to-noise ratio (SNR) is defined

as the ratio of the peak intensity value to the sample standard

deviation of the noise. Figure 5(e) shows the 21st slice image

of the noisy torus with SNR equal to 5 (i.e. the sample standard

deviation equals 51 in the Gaussian noise). Comparison is

based on the orientation discrepancy (function δ in Equation

7) between the estimated and the truth iso-surface normals4.

In all the experiments on the performance comparison, the

following configurations have been used: In OT, a 5 × 5 × 5
filter window with relative bandwidth B equals 2 and center

frequency ρ equals π

2
√

2
has been used (relative bandwidth

B and center frequency ρ control the characteristics of the

quadrature filters, see [32] for further details). This configu-

ration of the quadrature filters is taken from [32], since the

optimization of the filter parameters is not the focus of this

work. A 3×3 Gaussian kernel with σ = 1 has been employed

for tensor averaging (for further details, see Chapter 6 in [32]).

The Gaussian kernel accords with the size of the orientation

tensor in the 3D space, which is a 3×3 matrix. In HESSIAN,

a 5 × 5 × 5 Gaussian kernel with σ = 5

3
and the central

finite difference approximation have been used. For the sake

of adequate comparison, the size of this Gaussian kernel is

chosen to match the quadrature filter window size employed

in OT.

Figure 6(a) shows the statistics of the orientation discrep-

4We may think of the tube-axis-symmetric intensity in the torus image as
the sliding of a series of concentric tubes in different intensity values. The
iso-surface normals are referred to as the surface normals of these concentric
tubes.
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Fig. 6. (a) Statistics of the orientation discrepancy estimated by the orienta-
tion tensor approach (”OT”) and the Hessian matrix approach (”HESSIAN”)
on the noiseless ring torus. (b) and (c) Orientation discrepancies showed on a
slice image. Orientation discrepancy is computed based on the function δ in
Equation 7 between the estimated and the truth iso-intensity surface normals.
The surface normals are obtained from (b) OT and (c) HESSIAN. White pixel
denotes discrepancy equals 1, i.e. the largest discrepancy.

ancy estimated by the two approaches on the truth torus. It

is observed that OT produces most of the estimations which

fall into the minor discrepancy region (left-hand-side of the

vertical dotted line in the graph, δ < 0.5, i.e. < 60◦ angular

difference with the truth iso-surface normal). HESSIAN, on

the other hand, gives most of the estimations which fall onto

the major discrepancy region (right-hand-side of the vertical

dotted line in the graph).

Figures 6(b) and 6(c) show the orientation discrepancies

obtained from OT and HESSIAN, respectively, on a slice

image (bright voxel indicates the location of large orientation

discrepancy). It is evident that HESSIAN gives large discrep-

ancies throughout the ring torus. Conversely, OT only produces

large discrepancies near the center of the torus tube, where the

local structural orientations are hard to be determined because

of the close-to-constant intensity profile at the tube center5.

These experimental results have shown that the orientation

estimated by HESSIAN is less than satisfactory. It may be

due to the application of the (first order neighborhood) central

finite difference approximation in HESSIAN. On the contrary,

OT demonstrates adequate orientation estimations by taking

the advantage of estimation in the Fourier domain.

Figures 7(a) and 7(b) show the orientation discrepancies

amongst ring toruses with different noise levels, SNR =
2, 5, 10, for OT and HESSIAN, respectively. It is noted that OT

is more robust to noise than HESSIAN. OT is capable of giving

most of the estimations within the minor discrepancy region

even for the image corrupted by severe noise (i.e. SNR = 2).

All these experimental results demonstrate that the ori-

entation tensor approach to the local structural orientation

estimation exhibits better performance as compared with the

conventional Hessian matrix approach.

IV. MAIN ALGORITHM

The estimation of the model parameters and local structural

orientation, and the approximation to the optimal solution are

discussed in this section. The initialization of the approxima-

tion algorithm follows. As a summary, Algorithm 1 outlines

the binary segmentation algorithm proposed in this paper.

5If a 3D image has a constant intensity profile, it is unable to determine
the orientation of any iso-surface planar patches in the image. This is because
the image itself is structureless.
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Fig. 7. Statistics for the discrepancy of the orientation estimated with (a)
OT and (b) HESSIAN on the ring torus with noise at different levels, SNR =

2, 5, 10.

Algorithm 1 Main algorithm

1: Estimate the local structural orientation with an orientation

tensor, compute ~̂e3 and ~̂e2 (i.e. ~̂w1 and ~̂w2) and the

likelihood probability p (yi |xi) at each voxel

2: Initialize the algorithm with the ML estimate ~x0, k ⇐ 0
3: repeat

4: k ⇐ k + 1
5: for all i in the set S do

6: Eo ⇐ − log p (yi | object)

7: Eb ⇐
∑

j∈Ni
f
(

xk−1

j

)

g (i, j)
(

β1h1 (i, j) +

β2h2 (i, j)
)

− log p (yi | background)

8: if Eo > Eb then

9: xk
i ⇐ background

10: else

11: xk
i ⇐ object

12: end if

13: end for

14: until convergence

15: Return the final segmentation ~xk

A. Parameters Estimation

There are several free parameters in the segmentation algo-

rithm presented in Section II. In the observation model (i.e.

the likelihood energy function U (~y | ~x) in Equation 2), the

free parameters are dependent on the choice of FMM, which

is application-specific. In this paper, the FMM employed in

the experiments presented in Sections VI-A and VI-B are the

Gaussian-uniform (GU) and the Maxwell-Gaussian-uniform

(MGU) mixture models, respectively (see the corresponding

section for further details). The FMM free parameters can be

estimated by the expectation-maximization (EM) algorithm as

discussed in [10].

On the other hand, in the MRF prior model (i.e. the prior

energy function U (~x) in Equation 3), there are four free pa-

rameters, viz. σg , σh, β1 and β2, namely the MRF parameters.

In general, there are two approaches to estimating the MRF

parameters [22]: (1) supervised estimation with labeled data

and (2) unsupervised estimation with unlabeled data.

The term ”supervised” refers to the fact that the solution of

the problem is known and is used to estimate the unknown

parameters. In the context of this paper, this means the binary

segmentations (i.e. the labeled data) of the images are em-
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ployed in the estimation. From the viewpoint of machine learn-

ing, such supervised estimation is a learning with training data.

Pseudo-likelihood approximation scheme, the coding method,

mean field approximation, least squares fit procedure and

Markov Chain Monte Carlo (MCMC) methods can be used in

this kind of supervised estimation (see Chapter 6.1 in [22] for

detailed discussions). In the case of unsupervised estimation,

several authors have adopted an iterative labeling-estimation

strategy [36]–[40]. In their approaches, segmentation and free

parameters estimation are performed alternately. In this work,

the MRF parameters are found empirically. The sensitivity

of the MRF parameters in image binary segmentations is

analyzed and will be presented in Section V.

B. Estimating Local Structural Orientation

To estimate the local structural orientation with an orien-

tation tensor, as outlined in Section III, six quadrature filters

of a window size 5 × 5 × 5, relative bandwidth B equal to 2
and center frequency ρ equal to π

2
√

2
are used. A 3D image

is convolved with the filters to obtain six moduli of complex

valued responses at each voxel. Then the orientation tensor is

computed as given in Equation 8. The eigen decomposition of

the orientation tensor is performed and the two eigenvectors

~̂e2 and ~̂e3, which approximate the principal directions of the

iso-surface planar patch, are obtained at each voxel.

C. Approximation to the Optimal Solution

As shown in [41], the energy minimization problem given

in Equation 1 is NP-hard. It is inefficient to compute the

global minimum. Therefore, we opt for a fast approximation

to the optimal solution with local minimum. In the literature,

a variety of optimization algorithms have been demonstrated

to approximate the solution in energy minimization problems.

These algorithms include simulated annealing (SA) algorithm6

[42], iterated conditional modes (ICM) [29], graduated non-

convexity (GNC) [43], mean field annealing (MFA) algorithm

[28], [44], [45], maximizer of the posterior marginals (MPM)

estimator [46], graph cuts algorithm [41], [47] and inference

algorithm on quadtree [38] (see Chapters 8 and 9 in [22] for

further discussions).

However, not all the aforementioned optimization algo-

rithms are capable of optimizing arbitrary energy functionals.

For example, in the graph cuts algorithm [41], [47], the

energy functionals should be metric or semimetric (see [41]

for the definition of metric and semimetric), whereas in the

inference algorithm on quadtree [38], the functionals should

be formulated on a Markov chain.

Furthermore, although most of the authors have demon-

strated that their optimization algorithms are applicable to a

wide range of functionals [28], [43]–[46], there has been very

limited attention given to the optimization of non-symmetrical

6Theoretically, simulated annealing (SA) algorithm is capable of converging
to the global minimum. Geman and Geman [42] proved the existence
of annealing schedules which guarantee such convergence. However, these
annealing schedules have practical weakness — they are too slow to be used
— as pointed out by the authors. In practice, heuristic and faster schedules are
employed instead, which may lead SA converges to a local minimum [22].

inhomogeneous energy functionals. The functional proposed in

this paper (see Equation 3) is one of these kinds. To the best

of our knowledge, SA and ICM are two of the optimization

algorithms that are competent to optimize the newly proposed

functional.

ICM is chosen to solve the minimization problem because of

its fast convergence to the solution approximation. Moreover,

our observation and prior models are entirely based on local

information (see Sections II-B and II-C for details), and our

initial estimate of the binary segmentation can be very close

to the optimal solution. These make ICM more preferable to

other optimization algorithms, particularly in time-critical ap-

plications (for instance, medical image analysis applications).

D. Algorithm Initialization

To initialize the ICM algorithm, a natural choice is the

maximum likelihood (ML) estimate, as suggested in [22].

Given the fact that the parameters of the observation model

are known, the initial binary segmentation ~x0 is obtained as

follows,

~x0 = {argmax
xi∈L

p (yi |xi) | ∀i ∈ S}. (9)

V. SENSITIVITY ANALYSES OF THE MRF PARAMETERS

There are four free parameters in the MRF prior model

presented in Section II-C, namely, σg in Equation 5, σh in

Equation 6, β1 and β2 in Equation 3. The parameters σg and

σh define the desired structural locality and the amount of

orientation discrepancy filtering amongst neighboring voxels,

respectively. Plausible values of the parameters σg and σh

are suggested in this paragraph. To compromise between the

computational speed and the robustness of the algorithm, a 3×
3×3 neighborhood system is used in the ICM algorithm. This

leads to a justifiable choice to set σg = 1. For the orientation

discrepancy filtering, we suggest σh = 0.2. This implies that

the algorithm has a 95% cut-off at a discrepancy measure

which equals 2σh = 0.4. In other words, the algorithm filters

out neighboring voxels that are located outside the capture

range of the filter, ±53◦ deviation from the two principal

directions of the iso-surface planar patch at each voxel, i.e.

~̂w1 and ~̂w2.

In addition, the relationship between the parameters β1 and

β2 has been studied. To recapitulate, β1 and β2 control the

influence of orientation coherence in the interactions amongst

neighboring voxels. The orientation is depicted by the first

and the second principal directions of the iso-surface planar

patch at each voxel. Figures 8(a) and 8(b) show the two

approximated principal directions of the noiseless synthetic

torus, i.e. ~̂w1 and ~̂w2, respectively.

In the study, the synthetic torus image (i.e. the torus men-

tioned in Section III-C) with the additive white Gaussian noise

at SNR equal to 5 has been tested with the proposed algorithm.

The Gaussian-uniform (GU) mixture model is employed in the

observation model. The Gaussian component aims to model

the background intensity values, while the uniform component

is used to model the object intensity values, which corresponds

to a parabolic intensity profile. The algorithm with parameters

configuration: σg = 1, σh = 0.2 and the different values of
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(a) ~̂w1 (b) ~̂w2

Fig. 8. Local structural orientation estimated. (a) The first principal directions
of the iso-surface planar patches, aka the directions of minimum curvature,

~̂w1 and (b) the second principal directions of the iso-surface planar patches,

aka the directions of maximum curvature, ~̂w2.
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Fig. 9. Sensitivity analyses. (a) Parameter (β1 and β2 varying) sensitivity
analysis and (b) noise sensitivity analysis with parameters σg = 1, σh = 0.2,
β1 = 3 and β2 = 2 for the ring toruses in different tube radii 1 voxel (lowest
curve at SNR equal to 5), 3, 5, 7 and 10 voxels.

β1 and β2 (from 0 to 10 with a step size of 0.5) have been

tested.

Figure 9(a) presents the study findings. The vertical axis

of the graph shows the Jaccard similarity coefficient (JSC)

between the estimated and the truth segmentations. JSC is

defined as the ratio of the size of the intersection volume to

the size of the union volume of the two given segmentations

[48]. It is used to quantify the accuracy of an estimated

segmentation. JSC gives value 1 if the estimated segmentation

equals the truth segmentation. From the figure, it is observed

that the parameters β1 and β2 complement each other.

In further studies, our algorithm (parameters σg = 1,

σh = 0.2, β1 = 3 and β2 = 2) has been tested on the

synthetic images of toruses in different radii (1 voxel, 3, 5, 7
and 10 voxels) corrupted by different levels of additive white

Gaussian noise (SNR = 1, 2, . . . , 10). The experimental results

are presented in Figure 9(b). It is evident that the algorithm

is robust to noise (for SNR ≥ 3) over a wide range of object

sizes (5 − 10 voxels in radius). For small objects with radius

of 3 voxels, the algorithm can give a satisfactory estimation

if SNR ≥ 4, whereas the segmentation of tiny objects (i.e. 1
voxel in radius) is fair.

Figure 10(a) shows the binary segmentation of the noisy

(SNR equals 5) ring torus produced by our algorithm with

σg = 1, σh = 0.2, β1 = 3 and β2 = 2, as compared to

the segmentation obtained if either the parameter β1 or β2

is vanished (shown in Figures 10(b) and 10(c), respectively).

The segmentation presented in Figure 10(a) contains low

(a) β1 = 3, β2 = 2 (b) β1 = 0, β2 = 2 (c) β1 = 3, β2 = 0

Fig. 10. Noisy (SNR equals 5) ring torus segmentation. Segmentation
produced by our novel algorithm with parameters (a) β1 = 3, β2 = 2,
(b) β1 = 0, β2 = 2 and (c) β1 = 3, β2 = 0.

intensity regions of the torus (i.e. regions that are close to

the edge of the torus), which are partially left out in the other

two segmentations. This suggests that ignoring the orientation

coherence in either direction will adversely affect the quality

of segmentation. For this particular synthetic image, setting β1

to zero has a greater degeneration of the binary segmentation.

Because of the complementary behavior of the two free

parameters β1 and β2, we suggest that they should be assigned

to comparable non-zero values, in order to yield satisfactory

binary segmentation.

VI. EXPERIMENTS AND DISCUSSION ON THE

PERFORMANCE OF THE ALGORITHM

In this section, the experimental results on the synthetic and

the real-world medical images are presented. A discussion on

the performance of the algorithm follows.

A. Experiments on Synthetic Images

We have compared the proposed algorithm (parameters

configuration: σg = 1, σh = 0.2, β1 = 3 and β2 = 2)

with the global thresholding based on ML estimation (i.e.

without any smoothness prior) and the algorithm with the

multi-level logistic (MLL) MRF model (i.e. with only simple

all-directional smoothness constraint). The noisy ring torus

with SNR equal to 5 is used in the study. Figure 11 shows

the segmentations obtained from our method and the other

two algorithms. Figure 11(a) shows an image slice of the seg-

mented torus produced by our novel algorithm. The JSC value

equals 0.87 with respect to the ground truth. Figures 11(b) and

11(c) show the segmentations of the ring torus obtained from

the global thresholding and the algorithm with the MLL MRF

model, respectively. Compared with our algorithm, their JSC

values are relatively low, which are both equal to 0.39 only.

It is observed that the segmentation produced by the global

thresholding contains quite a few holes, especially in the low

intensity regions of the ring torus, whereas the algorithm with

the MLL MRF model is unable to segment the low intensity

regions from the background.

B. Experiments on Real-world Medical Images

In addition to the experiments on the synthetic images,

the novel algorithm has been tested on real-world images.

It has been applied to two medical images obtained from
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(a) With orientation (b) Global

thresholding

(c) MLL MRF Model

Fig. 11. Noisy (SNR equals 5) ring torus segmentation. Segmentation
produced by (a) our novel algorithm, (b) the global thresholding with the
ML estimation and (c) the algorithm with the MLL MRF model.

the Department of Diagnostic Radiology and Organ Imaging,

Prince of Wales Hospital, Hong Kong. The two images are

phase-contrast (PC) magnetic resonance angiography (MRA)

intracranial scans that were acquired from a Siemens7 1.5T

Sonata imager. The data volume is 256 × 176 × 30 voxels

with a voxel size of 0.9 × 0.9 × 1.5mm3.

PC MRA is one of the non-invasive imaging modalities that

can provide accurate 3D vascular information of a patient. It is

one of the most widely available vascular imaging techniques

in the clinical environment. The speed image of PC MRA

provide information of the patients’ blood flow. The intensity

values in the image are proportional to the flow velocity.

Because of the blood viscosity, frictional force slows down the

blood flow near the vascular wall [24]. As such, the intensity

profile is non-uniform within the vascular structures. The

intensity value is relatively low at the boundary of vessels in

the angiogram, while the intensity value is high near the center

of the vessels. The intensity inhomogeneity is a challenge if

the vascular segmentation is to be robust.

Figures 12 and 13 show the 15th and 16th slice images

of the two PC MRA datasets, respectively. For each figure,

subfigure (a) shows a slice image, subfigure (b) shows the

close-up of the square region in subfigure (a). The intensity

profile along the straight line in subfigure (b) is shown in sub-

figure (c). It is observed that there is intensity inhomogeneity

within the vascular structures in the angiograms, especially in

the low blood regions near the vascular boundary and inside

the aneurysms.

Segmentation of the PC MRA speed images can facilitate

an effective and efficient diagnostic review of the vascular

information in an angiogram, which helps the physician to

define the character and extent of a vascular disease, thereby

aiding diagnosis and prognosis. Moreover, segmentation is

the first step for other post-processing routines or analyses,

such as visualization, volumetric measurement, quantitative

comparison and image-guided surgery [49]. Therefore, we are

interested in the application of our segmentation algorithm to

the PC MRA speed images.

Experimental results on the two PC MRA datasets are

shown in Figures 14 and 15, respectively (with the regions

of interest are defined). For each figure, subfigure (a) shows a

volume rendered image of the corresponding dataset with the

7Siemens Medical Solutions, Siemens AG.
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Fig. 12. PC MRA dataset 1. The 15th and 16th slice images. (a) A slice
image; (b) close-up of the square region in (a); and (c) intensity profile along
the line in (b).
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Fig. 13. PC MRA dataset 2. The 15
th and 16

th slice images. (a) A slice
image; (b) close-up of the square region in (a); and (c) intensity profile along
the line in (b).

aneurysm highlighted by the arrow. Subfigures (b)-(e) show the

segmentations obtained from the global thresholding with the

ML estimation, the algorithm with the MLL MRF model, the

proposed algorithm and a manual delineation by a consultant

interventionist who has 15 years’ experience in endovascular

treatments. By treating the manual delineations of the vessels

as the truth segmentations, JSC values of the aforementioned

former three segmentations are calculated. On average, the

JSC value equals 0.84 for the proposed algorithm, 0.51 for

the global thresholding and 0.43 for the algorithm with the

MLL MRF model. It is noticed that the global thresholding

and the algorithm with the MLL MRF model cannot segment

some of the major vessels and the aneurysms, which are the

radiologists’ objects of interest.

In the experiments, the parameter configurations were: σg =
1, σh = 0.2 and β1 = β2 = 2.5. The Maxwell-Gaussian-

uniform (MGU) mixture model was used as the observation

model, as suggested in [50]. On average, the algorithm takes
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(a) VR image (b) Global

thresholding

(c) MLL MRF model

(d) With orientation (e) Manual

Fig. 14. PC MRA dataset 1. (a) Volume rendered image, the aneurysm
is highlighted by an arrow; segmentations obtained from (b) the global
thresholding with the ML estimation, (c) the algorithm with the MLL MRF
model, (d) the proposed algorithm and (e) a manual delineation by an
experienced consultant radiologist.

(a) VR image (b) Global

thresholding

(c) MLL MRF model

(d) With orientation (e) Manual

Fig. 15. PC MRA dataset 2. (a) Volume rendered image the aneurysm
is highlighted by an arrow; segmentations obtained from (b) the global
thresholding with the ML estimation, (c) the algorithm with the MLL MRF
model, (d) the proposed algorithm and (e) a manual delineation by an
experienced consultant radiologist.

42 sec., needs < 20 iterations to converge and consumes <

100MB of memory to segment the two PC MRA datasets on

a 2.66GHz PC.

C. Discussion on the Performance of the Algorithm

In the experiments on both the synthetic and real-world

medical images, we found that the segmentations produced

by the newly proposed algorithm are in a high degree of

agreement with the truth segmentations. On the contrary, the

global thresholding with the ML estimation and the algorithm

with the MLL MRF model give less than satisfactory results.

They have difficulties in segmenting the low intensity regions

in the images.

One may observe that there is a few single voxel mis-

classifications on the background in Figure 11(a), which can

also be found in the segmentation obtained with the global

thresholding. The reason for the mis-classifications is that

the structural smoothness constraint is not extended to the

background class, as discussed in Section II-C. Owing to

the fact that the background is structureless, only piece-

wise continuous object label assignment is encouraged in the

formulation of the prior model (see Equation 3).

In the approximation of the voxel label assignments, the

sum of the likelihood and the prior energy functions have to

be minimized. As shown in Section II-C, the prior energy term

in Equation 1 vanishes if all the neighbors’ labels are assigned

to background. As a result, the label assigned to the voxel

becomes solely dependent on the likelihood energy function.

As such, in the case of a high intensity noise that stands out on

the background, a single voxel mis-classification is expected.

However, this type of mis-classification can be removed easily

with a connectivity filter. Therefore, we believe that the single

voxel mis-classification on the background is not a problem.

On the contrary, it is a big problem if the low intensity region

can not be segmented in an angiogram. As compared with the

other two algorithms, the experiments on real-world images

have demonstrated that our novel method is robust to the low

intensity region and is capable of segmenting the region in the

angiograms.

A few (2 − 3 voxels in diameter) dim vascular structures

are left out in the segmentations obtained with our algorithm

(see Figures 14(d) and 15(d)) as compared with the manual

segmentations (see Figures 14(e) and 15(e)). However, these

dim vascular structures correspond to the non-major vessels,

which is not the radiologists’ primary interest at the current

work. According to the radiologists’ feedback, these results are

good enough for clinical applications. The objects of interest

(i.e. aneurysms) are well segmented in the segmentations

produced by our algorithm.

We have demonstrated that dim vascular structure with

coherent intensity profile (e.g., an aneurysm or the boundary of

vessel) can be segmented in an angiogram with the application

of the proposed structural smoothness constraint. It is worth

mentioning that the dim vascular structure usually occupies

only a few voxels in the angiogram, which poses difficulties

if one wants to model the coherence in image data surface

explicitly. As has been pointed out in [25], [27], the explicit
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modeling technique requires a large region (more than 10−30
pixels) for the modeling to be robust. This makes our approach

more preferable to the explicit modeling approach as proposed

in [25]–[27].

VII. CONCLUSIONS

We have presented a novel image segmentation technique

to segment the objects with coherent image data surface. The

method that we have proposed uses a new smoothness prior,

which exploits the coherence of the local structural orientation

in the image to constrain the segmentation process. The prior

is expressed as a function of geometric closeness and structural

orientation similarity measures. We have also described a

method to estimate the local structural orientation with an

orientation tensor. This method is demonstrated to be more

robust than the conventional Hessian matrix. The experiments

on the synthetic images have shown that the orientation tensor

approach outperforms its conventional counterpart in terms of

estimation accuracy and robustness to noise.

Our algorithm has been applied to synthetic images and

real-world medical images. The experimental results have

indicated that the new method produces better segmentations

than the global thresholding with the maximum likelihood

(ML) estimation and the algorithm with the multi-level logistic

(MLL) Markov random field (MRF) model. Moreover, the

segmentations in the real-world medical images obtained by

our method are comparable to the manual segmentations from

an experienced consultant radiologist.

In this work, we have introduced an application of the local

structural orientation smoothness prior to the segmentation of

3D medical images. We expect the application of this prior to

be extended naturally to other areas such as image restoration

with edge-preserving or coherent-enhancing capability (see

[51], [52] and references therein), scientific image segmen-

tation [39] and object extraction from video [53].

Several possible improvements to the proposed method are

of interest for future research. An extension to the scale-

space is worth studying because a multi-scale analysis of

the local structural orientation may allow the algorithm to

produce robust segmentations of objects in a variety of scales.

Furthermore, a coarse to fine strategy for image segmentation

is possible if the Bayesian segmentation is performed in a

multi-grid fashion. This may further increase the algorithm’s

robustness to noise and improve the efficiency of the proposed

method.
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