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Segmentation of Intracranial Vessels and Aneurysms
in Phase Contrast Magnetic Resonance Angiography

Using Multirange Filters and Local Variances
Max W. K. Law and Albert C. S. Chung

Abstract— Segmentation of intensity varying and low-contrast
structures is an extremely challenging and rewarding task. In
computer-aided diagnosis of intracranial aneurysms, segmenting
the high-intensity major vessels along with the attached low-
contrast aneurysms is essential to the recognition of this lethal
vascular disease. It is particularly helpful in performing early
and noninvasive diagnosis of intracranial aneurysms using phase
contrast magnetic resonance angiographic (PC-MRA) images.
The major challenges of developing a PC-MRA-based seg-
mentation method are the significantly varying voxel intensity
inside vessels with different flow velocities and the signal loss
in the aneurysmal regions where turbulent flows occur. This
paper proposes a novel intensity-based algorithm to segment
intracranial vessels and the attached aneurysms. The proposed
method can handle intensity varying vasculatures and also the
low-contrast aneurysmal regions affected by turbulent flows. It
is grounded on the use of multirange filters and local variances
to extract intensity-based image features for identifying contrast
varying vasculatures. The extremely low-intensity region affected
by turbulent flows is detected according to the topology of the
structure detected by multirange filters and local variances. The
proposed method is evaluated using a phantom image volume
with an aneurysm and four clinical cases. It achieves 0.80 dice
score in the phantom case. In addition, different components
of the proposed method—the multirange filters, local variances,
and topology-based detection—are evaluated in the comparison
between the proposed method and its lower complexity variants.
Owing to the analogy between these variants and existing vascu-
lar segmentation methods, this comparison also exemplifies the
advantage of the proposed method over the existing approaches.
It analyzes the weaknesses of these existing approaches and
justifies the use of every component involved in the proposed
method. It is shown that the proposed method is capable
of segmenting blood vessels and the attached aneurysms on
PC-MRA images.

Index Terms— Active contour models, aneurysms, intracranial,
level sets, magnetic resonance angiography (MRA), segmentation,
vessels.

I. INTRODUCTION

BRAIN aneurysms are vascular diseases caused by abnor-
mal dilation of the cerebral arteries. The presence of brain
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aneurysms is life-threatening as a burst aneurysm can lead to
severe internal bleeding. In the past decade, there has been
growing interest in the detection of brain blood vessels and
aneurysms by performing angiographic analysis. McLaughlin
and Noble proposed an algorithm [1] to automatically detect
the aneurysmal region based on delineated vessel boundaries.
Most of the studies concerning aneurysm detection focuses on
computed tomographic angiography (CTA) and 3D rotational
angiography (3DRA). Hernandez et al proposed a supervised
geodesic active region method, which employs multiscale
Gaussian derivative [2] image features and Parzen Windows to
segment aneurysms [3]. Bogunović et al [4] refined a super-
vised geodesic active region method to efficiently and robustly
segment cerebral vasculature with aneurysms. Firouzian et al
incorporated different diffusion based image smoothing in
the geodesic active contour model [5] for semi-automatic
aneurysm segmentation [6]. Furthermore, interactive aneurysm
segmentation was achieved by modeling the shape of the
normal vessel on which an aneurysm is attached [7], [8].

Whereas CTA and 3DRA offer high vessel contrast
and spatial resolutions, non-invasive acquisition techniques
which involve neither injection nor radiation are preferred
for preventive medical examination and screening of
asymptomatic aneurysms. These techniques include phase
contrast magnetic resonance angiographic (PC-MRA) images
and time-of-flight MRA (TOF-MRA) images. The flow-
sensitive PC-MRA imaging technique captures vectorial flow
velocity information. Owing to the blood movement, vascular
structures are distinguished from others tissues in PC-MRA
images. PC-MRA images yield better vessel lumen contrast
relative to the neighboring structures than TOF-MRA images,
in which the signal range of vessels is largely overlapped with
other tissues. Readers can also refer to [4] and [9] for TOF-
MRA based aneurysm segmentation methods. Nonetheless,
PC-MRA signal can significantly fluctuate due to blood flow
velocity changes. Blood typically flows faster along arteries
than inside the attached aneurysms. The aneurysmal regions
therefore exhibit a considerably lower intensity than that in
the arteries on which the aneurysms are attached.

In addition, vortex-like blood flows (turbulent flows) inside
aneurysm domes nullify PC-MRA signals. Segmentation of
aneurysms in PC-MRA is therefore extremely challenging.
Chung et al demonstrated segmenting low contrast vessels
and aneurysms by taking the flow orientation into account,
in addition to flow velocity magnitude [10]. Due to the large
shape variability, shape modeling is scarcely employed for
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saccular aneurysms [11]. This is in contrast to the detection
of fusiform aneurysms, such as abdominal aortic aneurysms
(AAA) which exhibit relatively simple geometry. For instance,
detection of AAA was modeled as an abrupt change of radius
of a vessel segment [12]. In [13], Bruijne et al described
the segmentation of AAA using intensive user interaction
along with shape modeling when training data is limited. Lin
employed shape information to sustain the disturbance induced
by AAA while performing vascular analysis [14].

In this paper, a novel method is proposed for the seg-
mentation of intracranial aneurysms in PC-MRA images. The
proposed method requires neither training nor shape assump-
tion. The former possibly leads to training data-dependent
segmentation results while the latter is possibly inflexible
to handle shape variation of aneurysms. To cope with the
aforementioned limitations of PC-MRA images, the proposed
method makes use of a new detection filter and local vari-
ances. The new detection filter and local variances, and their
previously developed variant [15] are elaborated in Section II.
The detection filter is a boundary descriptor which recognizes
the intensity changes of the vascular structure boundaries. It
complements the local variances which are regional descriptors
to reduce the effect of noise and suppress the responses
induced from high intensity vessels to avoid missing low
intensity aneurysms. In Section III, a multi-range scheme is
presented. It handles the size variations of vasculatures in
the level set based segmentation. The unsegmented aneurysm
dome under the effect of severe turbulent flows is detected
and reclaimed according to the topology of the segmented
regions. The proposed method is evaluated and compared
using an image volume acquired from a vascular phantom with
an aneurysm, and four clinical PC-MRA images. Grounded
on the proposed segmentation framework, the segmentation
performance using various combinations of intensity disconti-
nuity descriptors, local variances and topology-based detection
are compared and studied. This also leads to the comparison
between the proposed method against three existing vascular
segmentation approaches. It is shown experimentally that the
proposed method well suits the segmentation of vessels along
with the attached low contrast aneurysms in PC-MRA images.

II. INTENSITY BASED IMAGE FEATURES

In this section, the Discontinuity-Homogeneity (DH) ratio
is proposed for vascular structure detection. A discontinuity-
homogeneity ratio embodies two components, an intensity
discontinuity descriptor and a local intensity variance which
quantifies local intensity homogeneity. Section II-A introduces
the basic form of the DH ratio - Offset DH Ratio. Section II-B
describes Offset and Distilled DH ratio which is more flexible
to handle non-spherical structures than the offset DH Ratio
does. These two DH ratios are consecutive steps leading to
the development of the proposed DH ratio - final DH ratio
(Section II-C).

The DH ratios are computed based on spherical regions,
denoted as S(�x, r) which is centered at �x and has a radius r .
The radius r specifies the detection range of the DH ratios,
which return strong detection responses only when r coincides

with the distance between �x and the closest object boundary.
When r deviates from this distance, the DH ratio responses are
suppressed. The optimal range parameter at each local position
is selected by acquiring the largest DH ratio obtained using
multiple range parameter values. This multi-range detection
scheme is discussed in Section III-C.

A. Offset DH Ratio

In the formulation of the DH ratios, the intensity disconti-
nuity descriptor provides strong responses when r coincides
with the distance between �x and an object boundary,

fS(�x,r)(I ) = 1

4πr2

∫
∂S(�x,r)

∂

∂ n̂ A
I (�x − r n̂ A)d A, (1)

where n̂ A is the inward normal sweeping across the sphere
surface ∂S(�x, r) with a radius of r and d A is the infinitesimal
area of ∂S(�x, r). The intensity variation across the boundary
of S(�x, r) induces detection responses. fS(�x;r)(I ) is positive
and negative inside bright and dark objects respectively. This
descriptor can be regarded as the computation of inward flux
of the image gradient [16], [17]. It is widely employed on
various vascular detection frameworks [16]– [21].

In the proposed method, this descriptor complements the
local intensity variance computed inside S(�x; r)(I ), denoted as
VarS(�x;r)(I ). On one hand, fS(�x,r)(I ) returns strong responses
only when the spherical surface touches an object boundary.
On the other hand, VarS(�x;r)(I ) is minor if the spherical surface
does not overshoot the object boundary. A large ratio,

fS(�x,r)(I )√
VarS(�x,r)(I )

, (2)

implies S(�x; r) barely touches an object boundary without
overshooting it and supplies strong detection responses for
vascular detection.

Evaluating the intensity discontinuity and variance in a
spherical region avoids the use of detection scale-dependent
smoothing which is commonly employed in Laplacian or
Hessian based segmentation schemes [2], [22]. This is ben-
eficial as excessive smoothing hinders the detection of low
contrast boundaries. Thus, Equations 1 and 2 remain sensitive
to weak edges of low intensity aneurysms at a large detection
scale.

An offset value is added in the denominator of the above
DH ratio, yielding the offset DH ratio,

fS(�x,r)(I )√
VarS(�x,r)(I )+ B(I, r)

, (3)

where B(I, r) is the offset value which depend on the input
image and the detection range. The offset value prevents a DH
ratio from being exaggerated by an undersized local intensity
variance. This offset value is negligible when VarS(�x,r)(I ) is
sufficiently large. The offset DH ratio is analogous to our
previous work [15] which assigns a constant value to B(I, r)
throughout the detection.

Introducing the offset term, so as to define the exaggerating
condition of the DH ratio is essential. For low contrast vascular
structure detection, the local intensity variance tends to be
smaller (i.e. the DH ratio surges) when the detection range
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Fig. 1. Image patch with fluctuating image intensity. Local region with small
detection range (solid line) is easier to avoid intensity discrepancy inside the
region than those with larger detection ranges (dotted lines).

shrinks. Consequently, the detection favors small local regions.
It lacks the robustness to deal with outlying voxels which
generates a superior response magnitude from the differential
operator fS(�x,r)(I ). A DH ratio favors small detection ranges
due to two biases, namely extrinsic bias and intrinsic bias.

1) Extrinsic Bias: The extrinsic bias occurs at the positions
where the speed-dependent vessel intensity slightly fluctuates.
The DH ratio favors a small detection range to minimize
the intensity discrepancy within the local detection region
(see Fig. 1). Simultaneously, the slight intensity fluctuation
generates intensity discontinuity responses. The DH ratio is
exaggerated and becomes over-sensitive to local intensity
fluctuation, even if that fluctuation is minor as compared to
the intensity changes across vessel boundaries. This possi-
bly results in mis-recognizing the aneurysm necks as vessel
boundaries.

We suggest to measure the intensity change across the major
vessels and their vicinity, and determine the offset values of the
DH ratio denominator accordingly. This encourages the DH
ratio to sense only the major intensity changes and suppresses
the adverse effect introduced by minor local intensity fluctu-
ation. It is achieved by performing preliminary segmentation
of the major vessels using solely the intensity discontinuity
descriptor prior to the DH ratio-based segmentation. This
procedure is elaborated in Section III-A. In the simplest case
where extrinsic bias occurs, such as at an aneurysm neck, a
local spherical region is split into two halves (hemispheres)
due to intensity fluctuation. Suppose the estimated intensity
change across the major vessels and their vicinity is ρ, the
local intensity variance is 1

2ρ
2. Other intensity changes inside

a local sphere causing a local intensity variance below the
value of 1

2ρ
2 are treated as insignificant in the computation of

the offset DH ratio. The offset value B(I, r) is defined with
the consideration of 1

2ρ
2 to prohibit any insignificant intensity

changes exaggerating the DH ratio.
2) Intrinsic Bias: The intrinsic bias is elaborated in a

statistical point of view. As described in Appendix A, the
expected value of the local intensity variance is strictly related
to the size of the local region. A small detection range encour-
ages a small variance value and thus, results in a large DH
ratio. The intrinsic bias is handled by exploiting the expected
value of the local intensity variance. Without considering any
image prior information during low level feature extraction,

suppose that the voxel intensity is independent and identi-
cally distributed (i.i.d.) variables, the expected local intensity
variance computed from n voxel samples is 1

n Var�(I ), where
� is the entire image domain. For a local region having a
volume size of 4

3πr3, the expected local intensity variance
is 3

4πr3 Var�(I ). If the local intensity variance is below its
expected value 3

4πr3 Var�(I ), the DH ratio is regarded as
exaggerated. Hence, a small local region requires a larger
variance to start penalizing the DH ratio than a large local
region does owing to the detection range dependent expected
local intensity variance.

3) Bias Removal: The extrinsic bias and the intrinsic bias
can occur simultaneously. In such a case, we assume that
the i.i.d. voxel intensity is an additive signal to the hemi-
spherical intensity pattern. The corresponding expected local
intensity variance is 3

4πr3 Var�(I ) + 1
2ρ

2 for this combined
intensity pattern. To eliminate both biases, the DH ratio at the
position �x is considered as exaggerated if the local intensity
variance is smaller than the expected one, i.e. VarS(�x;r)(I ) <

3
4πr3 Var�(I ) + 1

2ρ
2. The offset DH ratio, where the local

intensity variance is less influential when 3
4πr3 Var�(I ) +

1
2ρ

2 > VarS(�x;r)(I ), is formulated by specifying B(I, r) =√
3

4πr3 Var�(I )+ 1
2ρ

2, i.e.

fS(�x;r)(I )√
VarS(�x,r)(I )+

√
3

4πr3 Var�(I )+ 1
2ρ

2
. (4)

B. Offset and Distilled DH Ratio

In practice, the overlap between a detection spherical sur-
face and an object boundary can be minor. This weakens
the resultant magnitude of fS(�x;r)(I ). Although the sign of
fS(�x;r)(I ) reliably indicates if the local region is brighter than
its vicinity, the weakened responses are less distinctive for
detection of vasculatures. This section elaborates the distilled
intensity discontinuity descriptor, which is less sensitive to
the small overlap between object boundary and the detection
sphere surface. The DH ratio based on the distilled intensity
discontinuity descriptor is referred to as offset and distilled DH
ratio. The development of the distilled intensity discontinuity
descriptor is grounded on expanding the term of intensity
change along the sphere normal direction in Equation 1 as
�∇ I (�x − r n̂ A) · n̂ A . Denote an interested detection direction by
q̂1

�x;r and two orthogonal unit vectors which are also orthogonal
to q̂1

�x;r by q̂2
�x;r and q̂3

�x;r ,

�∇ I (�x − r n̂ A) · n̂ A =
∑

i={1,2,3}
(q̂ i

�x;r · �∇ I (�x − r n̂ A))(q̂
i
�x;r · n̂ A).

(5)

The intensity discontinuity descriptor stated in Equation 1 is
decomposed into three orientation sensitive descriptors,

fS(�x;r)(I )= fS(�x;r)(I ; q̂1
�x;r )+ fS(�x;r)(I ; q̂2

�x;r )+ fS(�x;r)(I ; q̂3
�x;r ),

where

fS(�x;r)(I ; q̂) = 1

4πr2

∫
∂S(�x;r)

(
q̂ · �∇ I (�x −r n̂ A)

)
(q̂ · n̂ A)d A.

(6)
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Among all possible orientations, interested detection direction
is the most contributive one which yields the strongest discon-
tinuity response magnitude, i.e.

q̂1
�x;r = arg max

q̂
| fS(�x;r)(I ; q̂)|. (7)

Considering only the most contributive orientation, the
response of the intensity discontinuity descriptor fS(�x;r)(I ) is
distilled into fS(�x;r)(I ; q̂1

�x;r ). This descriptor is referred to as
the distilled intensity discontinuity descriptor,

f ′
S(�x;r)(I ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
4πr2 max

q̂

(∫
∂Sr

(
∂
∂ q̂ I (�x − r n̂ A)

)
(q̂ · n̂ A)d A

)
,

if fS(�x;r)(I ) > 0,
0, if fS(�x;r)(I ) = 0,

1
4πr2 min

q̂

(∫
∂Sr

(
∂
∂ q̂ I (�x − r n̂ A)

)
(q̂ · n̂ A)d A

)
,

if fS(�x;r)(I ) < 0.
(8)

The dot product term q̂ · n̂ A in Equation 6 allows the
distilled descriptor fS(�x;r)(I ; q̂1

�x;r ) to focus on the region
where q̂1

�x,r is aligned along n̂ A . It omits or suppresses the less
contributive intensity discontinuity responses, which occur on
∂S(�x; r) with large discrepancy between q̂1

�x;r and n̂ A . The
less contributive responses are handled by fS(�x;r)(I ; q̂2

�x;r ) and
fS(�x;r)(I ; q̂3

�x;r ). The distilled intensity discontinuity descriptor
response computed at a position inside a non-spherical object
or distant from the object boundary remains strong. It is more
flexible to return responses for handling vasculatures of vary-
ing shapes and sizes than the spherical intensity discontinuity
descriptor does. Based on the sign of fS(r;�x)(I ), the strongest
response is chosen as Equation 8. The offset and distilled DH
ratio is formulated as,

f ′
S(�x;r)(I )√

VarS(�x,r)(I )+
√

3
4πr3 Var�(I )+ 1

2ρ
2
. (9)

C. Final DH Ratio

This section revises the offset and distilled DH ratio and
devises the corresponding analytical form for computation on
discrete images. This leads to the development of the final DH
ratio. For discrete image signals, the spherical region in the
formulation of f ′

S(�x;r) and VarS(�x;r) is represented as a slightly
smoothed spherical step function. It is defined as,

dr (�x) = (g ∗ d ′
r )(�x) and d ′

r (�x) =
{

1, if |�x | ≤ r,
0, otherwise,

(10)

where g is Gaussian with a scale factor of 1 voxel length and ∗
is the convolution operator. Using the smoothed step function,
VarS(�x;r) is calculated analogous to weighted local intensity
variance [23]. Denote the local intensity variance computed
from the smoothed step function by wr (�x), defined as,

wr (�x) = 3

4πr3

∫
�

I 2(�x + �v)dr (�v)d �v

−
(

3

4πr3

∫
�

I (�x + �v)dr (�v)d �v
)2

,

= 12πr3dr ∗ I 2(�x)− 9(dr ∗ I (�x))2
16π2r6 . (11)

The local intensity variance can be computed using the Fourier
domain technique. Denote the frequency (in cycle-per-image)
in the Fourier domain by �u, F and F−1 are respectively
the fast Fourier transform and inverse fast Fourier transform
operators, i.e. F{I }(�u) is the Fourier coefficient of I at the
frequency �u and F−1{F{I }}(�x) ≡ I (�x). Equation 11 is
evaluated in the Fourier domain, as stated in Equation 12.

wr (�x)
= 12πr3F−1{F{dr }(�u)F{I 2}(�u)}(�x)−9(F−1{F{dr }(�u)F{I }(�u)}(�x))2

16π2r6 ,

(12)

where by the Hankel transform [24], F{dr }(�u) =
e−2π2|�u|2 2r3 sin(2rπ |�u|)−4r4|�u| cos(2rπ |�u|)

3π |�u|3 .

Along the same line, the distilled intensity discontinuity
descriptor is reformulated using the smoothed step function
(Appendix B). Based on this reformulation, the distilled inten-
sity discontinuity descriptor is computed as the eigenvalues of
a 3-by-3 tensor. The eigenvalues of the tensor are represented
as λ1

�x,r , λ2
�x,r and λ3

�x,r , where λ1
�x,r ≤ λ2

�x,r ≤ λ3
�x,r . The terms

λ3
�x,r and λ1

�x,r correspond to the resultant values of the case of
fS(�x;r)(I ) > 0 and the case of fS(�x;r)(I ) < 0 (the first and the
third rows) in Equation 8 respectively. Equation 8 becomes,

hr (�x) =

⎧⎪⎨
⎪⎩
λ3

�x,r , if λ1
�x,r + λ2

�x,r + λ3
�x,r > 0,

0, if λ1
�x,r + λ2

�x,r + λ3
�x,r = 0,

λ1
�x,r , if λ1

�x,r + λ2
�x,r + λ3

�x,r < 0.
(13)

Finally, the offset and distilled DH ratio, with the smoothed
local spherical region (so as the Fourier domain implementa-
tion), is

Rr (�x) = hr (�x)√
wr (�x)+

√
3

4πr Var�(I )+ 1
2ρ

2
. (14)

The intensity based image features and the associated DH
ratios are summarized in Table I.

III. LEVEL SET BASED DEFORMABLE MODELS

This section elaborates three active contour models. The first
model devised in Section III-A utilizes the lowest complexity
version of the proposed descriptor - the spherical intensity
discontinuity descriptor. It offers a preliminary segmentation
of the target vasculature in order to estimate the parameter ρ
for the final DH ratio. Based on the estimated parameter, the
second model presented in Section III-B segments the normal
vessels and most of the aneurysmal regions using the final
DH ratio. Inside aneurysm domes, where severe turbulent
flows happen, regions missed by the DH ratio based active
contour model are handled by the third deformable model.
This procedure is referred to as topology refinement and is
elaborated in Section III-D.

A. Preliminary Segmentation and Estimation of Parameter ρ

The preliminary segmentation extracts the major vessels in
order to estimate the parameter ρ for handling the external
bias which adversely affects the DH ratio based detection.
The spherical intensity discontinuity descriptor (Equation 1)
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TABLE I

SUMMARY OF THE INTENSITY BASED IMAGE FEATURES AND THE ASSOCIATED DH RATIOS

Intensity based image features Ratios derived from the intensity based image features

Spherical Distilled Local Offset DH ratio Offset and distilled Final DH ratio

intensity intensity intensity DH ratio

discontinuity discontinuity variance

descriptor descriptor

(1) (7) (11) (4) (9) (14)

� � � � Detect intensity changes

inside S(�x, r)
� � � � � Detect intensity changes

at ∂S(�x, r)
� � � Avoid small variances

exaggerating the ratio

� � � Less restrictive detection

for non-spherical objects

� Analytical formulation for

discrete images

resembles the normalized discrete Laplacian operator proposed
in Flux maximizing geometric flows [16], [17]. Although it
is possibly unsuitable to segment low contrast aneurysms
(discussed in Section IV-B), it well extracts strong intensity
major vessels. The preliminary segmentation follows the flux-
based contour evolution equation described in [16], [17],

dψFLUX

dt

∣∣∣∣
ψFLUX=0

= f ′
S(�x;rFLUX)

(I )| �∇ψFLUX|

+ κ ′ �∇ · �∇ψFLUX

| �∇ψFLUX|
,

where rFLUX = arg max
r∈R

| f ′
S(�x;r(�x))(I )|, (15)

where ψFLUX is a level set function, of which the zero level sur-
face represents the evolving surface [25]. The value of κ ′ gov-
erns the smoothness of the resultant contour. It determines the
strength of the curvature regularization force which restrains
the contours from overshooting the structure boundary. This
parameter is 0.2 in all the experiments. The initial level set
function for preliminary segmentation is acquired by thresh-
olding the voxels exhibiting the highest 0.01% intensity among
all voxels. Other parameters to solve the above differential
equation are set according to the descriptions in [26] and the
implementation is grounded on [27]. The evolution of the level
set function is stopped when the accumulated per-voxel update
of the level set function is less than 10−5 for 10 iterations.
Subsequent to the preliminary segmentation, the value of ρ
is estimated as the difference between the averaged intensity
inside the segmented region, and the averaged intensity of
the region within a distance of 2 voxel-length outside the
segmented region. This estimation returns a value which
roughly represents the intensity contrast between the major
vessels and their vicinity.

B. Active Contour Model Based on the Final DH Ratio

Denote the enclosed evolving surface by C, the resultant
surface of this active contour model is found by maximizing

an energy functional E(C), i.e. arg max
C
(E(C)) and

E(C) = −
∫

Volume(C)
Rr(C(�s))(C(�s))d�s − κ

∫
Area(C)

d �w, (16)

where κ specifies the strength of the surface smoothness
constraint, r(C(�s)) is the desired detection range at the position
C(�s) and is discussed in the next section, �s and �w are
respectively the parameterization of the enclosed volume of
C and the surface of C. Denote the level set function is ψ(�x)
which represent C, the dynamic of the level set function is,

dψ(�x)
dt

∣∣∣∣
ψ=0

= Rr(�x)(�x)| �∇ψ(�x)| + κ

(
�∇ · �∇ψ(�x)

| �∇ψ(�x)|

)
. (17)

κ is 0.05 in all experiments to maintain surface smoothness.
The evolving contour is expanded by positive values Rr(�x)(�x)
inside strong intensity vasculatures. It is negative in the vicin-
ity of these vasculatures and in the regions affected by severe
turbulent flows, where the contour is shrunk to avoid leakages.
Owing to the surged local intensity variance, the magnitude
of Rr(�x)(�x) is minor at vessel boundaries. In this situation, the
dynamic of the evolving contour is mainly governed by the
smoothness term.

C. Detection Range Selection

In the computation of Rr(�x)(�x), the value of r(�x) specifies
the size of the local spherical region. A proper value is the
distance from the local voxel to the closest object boundary.
It allows the sphere surface to reach the object boundary to
induce a significant detection response in order to reliably
guide the evolving surface.

An undersized r disallows the sphere surface touching the
object boundary, in which the computation result of the inten-
sity discontinuity descriptor and the DH ratio are unreliable.
Meanwhile, if the sphere overshoots the object boundary,
a large local intensity variance is given, and consequently
penalizes the ratio based measure response. The radius that
gives the largest negative final DH ratio obtained among a
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2.0
1.0
0.0

ψ̃ < 0

(a)

0.0

(b)
2.0
0.0

(c) (d)

Fig. 2. For illustration only, an 2-D concave-cavity example. (a)–(c) Numbers
represent the contour isovalues of the function ψ̃(�x), which is the signed
distance function of the DH ratio based active contour segmentation result [i.e.
evolution result of (17)]. (b) Dotted line is the valley of ψ̃(�x) separating the
concave-concavity and the background. (c) Shaded region is the marker found
by performing erosion and connectivity analysis on ψ̃(�x), i.e.,

⋃
i 	=q2

Ci,ψ̃ (�x)>2,

where q2 = arg max
i

|Ci,ψ̃ (�x)>2|. (d) Dotted line is the contour of the

reclaimed concave-cavity by expanding the marker shown in (c) along with
the level set evolution function (19).

predefined detection range set R is chosen. This set com-
prises the distances ranged from the smallest voxel-length to
the size of the largest part of the target structure (the size
of the aneurysm). This allows Rr(�x)(�x) to convey negative
responses to expand contours inside the entire vasculature.
Meanwhile, the selected range should also deliver positive
detection response in the smallest detection range to shrink
the evolving contour when it starts overshooting the structure
boundaries. Therefore,

r(�x) =
{

l, if Rl(�x) > |Rr−(�x)(�x)|,
r−(�x), otherwise.

where r−(�x) = arg max
r∈R

| min(Rr (�x), 0)|. (18)

The detection range set R contains the distances ranged from
the smallest voxel-length (denoted as l) to at least the size
of the aneurysm for every voxel-length. The final DH ratio
computed from oversize ranges is penalized by a large local
intensity variance, the range set R can contain values larger
than the actual size of the desired objects. In practice, it is
possible to make use of a large detection range set to cope
with different images with structures having various sizes.

D. Topology Refinement

Inside an aneurysm domes, the blood flows in a vortex-like
pattern [10], [28], [29]. It sharply reduces the flow-sensitive
voxel intensity inside a dome, particularly around the center of
the turbulent flow. As a result, the segmentation scheme using
the intensity based features misses the interior of the dome.
This creates unsegmented regions in aneurysm domes and
either becomes isolated unsegmented regions (referred to as
holes hereafter), or create unsegmented concave-cavities in the
intensity feature-based segmentation result. A hole is a group
of voxels which are disconnected from the background region.
A concave-cavity is connected with the background region,
through one or more openings on the segmented structure
surrounding that concave-cavity. The widths of the openings
are relatively small compared to the minimum width of the
corresponding concave-cavity.

The major intracranial arteries captured by PC-MRA images
are rarely closely packed or twisted to entirely enclose a
small region to form an isolated (a hole) or almost-isolated
(a concave-cavity) background region. Hence, by identifying

(a)

(b)

(c) (d)

Fig. 3. Experiment on the vascular phantom. (a) Perspective maximum
intensity projection images of the phantom image volume (voxel size: 0.86 ×
0.86×1.00 mm3, image dimension: 100×192×56). (b) Segmentation result.
(c) Reclaimed holes and concave-cavities, which also suggest the aneurysm
position. (d) Zoomed-in image of the aneurysmal region. The segmentation
result is obtained by using R = {0.86, 1.72, 2.58, 3.44, 4.30, 5.16} mm, D =
{0.43, 0.86, 1.29, 1.72, 2.15, 2.58, 3.01, 3.44} mm. The initial seed points of
the level set function ψ are obtained by thresholding the brightest 0.1% voxels.

the holes or the concave-cavities, the algorithm can reclaim the
regions where the flow-sensitive intensity is severely reduced
by the turbulence flows and undetected by the DH ratio based
segmentation scheme.

Denote the resultant level set function of the DH ratio based
segmentation scheme (i.e. the evolution result of Equation
17) is ψ̃(�x), the segmented and unsegmented structures are
respectively the regions {ψ̃(�x) < 0} and {ψ̃(�x) ≥ 0} (see
Fig. 2(a)). Adjacent voxels are regarded as connected if they
belong to the same region type in the 26-neighborhood system.
By performing connectivity analysis, we define Ci,ψ̃ (�x)>0 as
the set of the voxels of the i th connected component of the
region {ψ̃(�x) > 0}. The holes are found as the unsegmented
voxels, which are disconnected from background (the unseg-
mented component of the largest number of voxels), i.e.

⋃
i 	=q

Ci,ψ̃ (�x)>0,

where q = arg max
i

|Ci,ψ̃(�x)>0|.
A concave-cavity is defined as a group of unsegmented

voxels, surrounded by a segmented structure with one or more
small openings on that surrounding structure. The openings on
that structure are a few low intensity voxels located at the outer
parts of the aneurysm having fluctuating intensity. The width
of an opening caused by voxel intensity fluctuation is assumed
to be smaller than that of the concave-cavity corresponding to
the vortex-like turbulent flow center.

For illustration only, Fig. 2 presents a 2D example of a
concave-cavity. The concave-cavity connects with the back-
ground through a relatively small opening (the dotted line in
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Fig. 4. Experiment on the vascular phantom. The final segmentation results
(20) of different methods based on the phantom image volume [Fig. 3(a)] are
depicted: (a) FLUXLV; (b) OOF; and (c) FLUX. (d) Manual segmentation,
prepared independently using the ITK-SNAP Slice-by-Slice manual segmen-
tation tool. (e) Zoomed-in image of the aneurysmal region of various methods
after topology refinement is applied.

Fig. 5. Experiment on the vascular phantom. The images depicted are
zoomed-in images of the segmentation results of different methods based on
the phantom image volume (Fig. 3) before topology refinement is performed.

Fig. 2(b)) on the surrounding segmented region. Inside the
concave-cavity, there are some positions where the values of
the signed distance function ψ̃(�x) are larger than those values
at all the positions on the small opening (see Fig. 2(a)). Across
the small opening, a local valley on the function ψ̃(�x) is
observed. This local valley is one of the features found across
the openings associated with concave-cavities.

0 1 2 3
0

100

200

300

# 
of

 v
ox

el
s

Distance (in voxel-length)
4 0 1 2 3 4

0

100

200

300

(a) (b)

Fig. 6. Histograms of (a) distances from the false negative voxels to the
closest segmented region boundary and (b) false positive voxels to the closest
ground truth boundary.

The recovery of the concave-cavities is accomplished by
using a two stage procedure. In the first stage, markers
are identified in each concave-cavity by performing con-
nectivity analysis on a set of eroded unsegmented regions,⋃
d∈D

⋃
i 	=qd

Ci,ψ̃(�x)>d , where qd = arg max
i

|Ci,ψ̃(�x)>d | and D

is a set of erosion distances. Given an erosion distance d
is larger than the widths of the openings but smaller than
the associated concave-cavities, the small openings between
sealed (see the example in Fig. 2(c)). A sealed concave-
cavity becomes an unsegmented component isolated from the
unsegmented background and thus, can be identified by the
connectivity analysis.

The erosion distance set D is different from the previously
introduced detection range set R. The best choice of the
distances in D contains only the widths of the openings which
connect the unsegmented concave-cavities to the unsegmented
background. It ensures that the concave-cavities are properly
recognized, and simultaneously avoids the background being
surrounded by multiple vessel branches from being misclassi-
fied as a concave-cavity. In Fig. 2(c), a marker is identified by
finding the isolated region of {ψ̃ > 2}. In practice, we suggest
employing distances ranged from 0.5 voxel-length, in every
0.5 voxel-length, to the radius of the major vessels.

In the second stage, the markers are evolved as deformable
surfaces. The surfaces expand until they reach their surround-
ing valleys of ψ̃(�x). It is achieved by evolving another level
set function φ(�x). The zero level of this function represents
the boundaries of the deforming surfaces of the reclaimed
regions. The initial level set function (denoted as φ0(�x)) is
acquired by assigning −1 to the positions of the markers and
1 to the background. The implementation of the evolution of
this level set function is the same as that of the previous one.
The dynamic of φ(�x) is described by

∂φ(�x)
∂ t

∣∣∣∣
φ=0

= �∇ψ̃(�x) · �∇φ(�x). (19)

This drives the reclaimed region to the valleys of ψ̃(�x) to fill
up the unsegmented concave-cavity (see Fig. 2(d)).

Finally, the identified holes and filled concave-cavities
(denoted as {φ̃(�x) < 0}), together with the segmented region
using intensity based features {ψ̃(�x) < 0}, are the final
segmented vasculature,

⋃ ⎧⎨
⎩{φ̃(�x) < 0}, {ψ̃(�x) < 0},

⋃
i 	=q

Ci,ψ̃(�x)>0

⎫⎬
⎭. (20)
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Fig. 7. (a)–(c) Histograms of the distances from the false negative voxels to the closest segmented region boundary (left in each subfigure) and the false
positive voxels to the closest ground truth boundary (right in each subfigure).

Fig. 8. Experiment on the first clinical case, an aneurysm at the
basilar artery. (a) PC-MRA image volume (voxel size: 0.4 × 0.4 ×
1.0 mm3, image dimension: 386 × 377 × 66 voxels) used in the
clinical data experiment. First row: sagittal and axial projections; sec-
ond row: coronal projection. (b) Segmentation result. (c) Reclaimed
holes and concave-cavities, which also suggest the aneurysm position.
(d) Zoomed-in images of the aneurysmal region. The segmentation result
is obtained by using R = {0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2} mm, D =
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2} mm.
The initial seed points of the level set function 1% are obtained by thresh-
olding the brightest 1% voxels.

This final segmented region consists of both the normal vessels
and the aneurysmal region.

IV. EXPERIMENT

A. Experiment Settings

The proposed method has been evaluated on 5 PC-MRA
volumetric images. The first image volume has a large
aneurysm which was scanned using a PC-MRA protocol on

a 1.5T GE MR scanner at the Department of Neuroscience,
King’s College London, London. The rest of the volumes are
clinical PC-MRA images, which were acquired on a Philips
3T ACS Gyroscan MR scanner at the University Hospital of
Zurich. The image intensity was scaled to the range within
[0, 1]. Through visual inspection, the parameters of the pro-
posed method - the detection range set R and erosion distance
set D were specified for each case. As mentioned in Sections
III-B and C, R and D are assigned with the consideration of
the smallest voxel-length, the size of the aneurysm and the
radius of the major vessels. The largest values in R and D
are defined slightly larger than the actual sizes of all target
vessels to ensure these structures are properly considered. The
level set function ψ is initialized by selecting a proportion of
voxels with the highest intensity. The proportion is manually
specified to each case to ensure that there is at least one seed
point in each component of the desired vascular structures,
while keeping all seed points out of the image background.

B. Methods for Comparison

In the experiments, the segmentation performance is studied
using the same segmentation framework (with and without
topology refinement), but utilizing three lower complexity
variants of the proposed final DH ratio. Prior to topology
refinement, these variants are closely related to three exist-
ing approaches. Thus, this performance study also reveals
the advantageous performance of the proposed method over
three existing intensity feature-based segmentation approaches.
Based on the notation shown in Table I, these three
variants are,

1) Spherical intensity discontinuity descriptor (the first
column of Table I). The segmentation method based on
this descriptor is the same procedure as described in
Equation 15, so as Flux maximizing geometric flows
[16] (FLUX).

2) Offset DH ratio (the fourth column of Table I). The
offset DH ratio segmentation is closely related to our
previous work [15]. It can be regarded as combining
Flux maximizing geometric flows [16] and local inten-
sity variances (FLUXLV).

3) Distilled intensity discontinuity descriptor (the second
column of Table I). As discussed in Section II-C and
Appendix B, this discontinuity descriptor is tangential to
estimating the oriented flux along the optimal direction,
as described in optimally oriented flux [30] (OOF).
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TABLE II

SEGMENTATION RESULT EVALUATION OF THE PROPOSED SEGMENTATION METHOD FOR THE VASCULAR PHANTOM EXPERIMENT

Phantom

Vessel Background

Segmented True positive (TP) False positive (FP) Positive predictive value

Segmentation voxels 4913 1489 TP
TP+FP = 76.74%

result Unsegmented False negative (FN) True negative (TN) Negative predictive value

voxels 960 1067838 TN
TN+FN = 99.91%

Sensitivity Specificity Dice coefficient [31]
TP

TP+FN = 83.65% TN
FP+TN = 99.86% 2TP

2TP+FN+FP = 0.8004

Fig. 9. Experiment on the first clinical case. The final segmentation
results (20) of different methods based on the image volume [Fig. 8(a)] are
depicted: (a) FLUXLV; (b) OOF; and (c) FLUX. (d) Zoomed-in images of the
aneurysmal region of various methods, topology refinement cannot segment
additional region for FLUXLV, OOF and FLUX in this case.

The level set evolution equation for FLUXLV (ψFLUXLV) is
obtained by replacing the term Rr (�x) in Equations 17 and 18
using the offset DH ratio (see Equation 4). The corresponding
offset parameters and the curvature regularization parameter
follow those used by the proposed method. Analogously,
the OOF level set evolution equations (ψOOF) is acquired
as replacing the spherical intensity discontinuity descriptor
f ′
S(�x;rOOF(�x))(I ) in Equation 15 using the distilled discontinuity

descriptor fS(�x;rOOF(�x))(I ). According to our experiments, κ ′ =
0.2 segment the most vascular regions by OOF and FLUX

Fig. 10. Experiment on the second clinical case, an aneurysm at
the anterior cerebral artery-anterior communicating artery (ACA-ACoA)
junction. (a) PC-MRA image volume (voxel size: 0.4 × 0.4 × 1.0 mm3,
image dimension: 512 × 512 × 45 voxels) used in the clinical data
experiment. First row: sagittal and axial projections; second row: coronal
projection. (b) Segmentation result. (c) Reclaimed holes and concave-
cavities, which also suggest the aneurysm position. (d) Zoomed-in
images of the aneurysmal region. The segmentation result is obtained
by using R = {0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2} mm, D = {0.2, 0.4,
0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2} mm and
ρ = 0.0272. The initial seed points of the level set function 0.5% are
obtained by thresholding the brightest 0.5% voxels.

without observable leakage among the results obtained in a
set of values, ranged from 0 to 1 in a 0.05 interval. Topology
refinement is applied on the level set evolution results of
ψ̃FLUXLV, ψ̃OOF and ψ̃FLUX, similar to the proposed method. For
those evolution results where neither concave-cavity nor hole
is found, the evolution results and the corresponding topology
refinement results are identical. The latter is therefore not
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Fig. 11. Experiment on the second clinical case. The final segmentation
results (20) of different methods based on the image volume [Fig 10(a)] are
depicted: (a) FLUXLV; (b) OOF; and (c) FLUX. (d) Zoomed-in images of
the aneurysmal region of various methods.

presented in this paper. For each individual case, the detection
range set R, erosion distance set D and initial contours of all
methods are the same.

C. Experimental Results

In the first experiment, the image volume with a large
aneurysm was employed (Fig. 3(a)). The segmentation result
of the proposed method is shown in Fig. 3(b). The zoom-
in image slices are displayed in Fig. 3(d), where the final
segmentation result, markers, reclaimed holes and concave-
cavities are presented together. The position of the aneurysm is
indicated as the reclaimed hole and concave-cavity in Fig. 3(c).
The final DH ratio helps the contour propagate from the vessel
to the aneurysmal region. Inside the aneurysm dome, where the
turbulent flow sharply reduces the voxel intensity, the topology
refinement scheme recovers the region which is undetected
by the DH ratio based active contour model. The proposed
method gives a promising segmentation result (see Table II) as
compared to the ground truth segmentation. The corresponding
Dice similarity measure is 0.8004, which is the best among
0.7439 (FLUXLV), 0.7843 (OOF) and 0.7578 (FLUX) as
shown in the lower right entry of each corresponding sub-table

Fig. 12. Experiment on the second clinical case. The images depicted are
zoomed-in images of the segmentation results of different methods based on
the clinical PCMRA image volume [Fig. 10(a)], before topology refinement
is performed.

in Table III. Compared to the results obtained by FLUXLV,
OOF and FLUX (see Figs. 4(a)–(c)), the segmentation result of
the proposed method (Fig. 3(b)) is the closest to the manually
segmented vasculature shown in Fig. 4(d). Before the topology
refinement step, the proposed method can generally capture
more aneurysmal region than FLUXLV, OOF and FLUX do
(compare the first column against the second to the fourth
columns in Fig. 5). As such, after the topology refinement
step, the segmented aneurysmal region of the proposed method
(the first column of Fig. 3(d)) gives the best match to the
manual segmentation (the first column of Fig. 5) as compared
to FLUXLV, OOF and FLUX (the second to fourth columns
of Fig. 5)).

Segmentation error is further evaluated by investigating
the distance from the false negative voxels to the closest
segmented region boundary, and the distance from the false
positive voxels to the closest ground truth vessel boundary.
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TABLE III

SEGMENTATION RESULT EVALUATION OF FLUXLV, OOF, AND FLUX FOR THE VASCULAR PHANTOM EXPERIMENT

FLUXLV

Phantom

Vessel Background

Segmented True positive (TP) False positive (FP) Positive predictive value

Segmentation voxels 4499 1723 TP
TP+FP = 72.31%

result Unsegmented False negative (FN) True negative (TN) Negative predictive value

voxels 1374 1067604 TN
TN+FN = 99.87%

Sensitivity Specificity Dice coefficient [31]
TP

TP+FN = 76.60% TN
FP+TN = 99.84% 2TP

2TP+FN+FP = 0.7439

OOF

Phantom

Vessel Background

Segmented True positive (TP) False positive (FP) Positive predictive value

Segmentation voxels 5498 2649 TP
TP+FP = 67.48%

result Unsegmented False negative (FN) True negative (TN) Negative predictive value

voxels 375 1066678 TN
TN+FN = 99.96%

Sensitivity Specificity Dice coefficient [31]
TP

TP+FN = 93.61% TN
FP+TN = 99.75% 2TP

2TP+FN+FP = 0.7843

FLUX

Phantom

Vessel Background

Segmented True positive (TP) False positive (FP) Positive predictive value

Segmentation voxels 5363 2919 TP
TP+FP = 64.75%

result Unsegmented False negative (FN) True negative (TN) Negative predictive value

voxels 510 1066408 TN
TN+FN = 99.95%

Sensitivity Specificity Dice coefficient [31]
TP

TP+FN = 91.32% TN
FP+TN = 99.73% 2TP

2TP+FN+FP = 0.7578

The former distance reveals how far the resultant contour
overshoots the vessel boundary. The latter one quantifies the
degree of under-segmentation. Either one of these distances
is computed for each false positive voxel and each false
negative voxel. The corresponding histograms are shown in
Fig. 6. Due to the presence of the partial volume effect, the
false positive or false negative cases with distance less than
1 voxel-length can be considered as satisfactory. From Fig. 6,
over half of the false negative and the false positive cases
occur within 1 voxel-length. The proposed method is therefore
able to effectively segment the vessel and also the attached
aneurysm. Analogous observation can be found on the distance
histograms of FLUXLV, OOF and FLUX in Fig. 7(a)–(c).
However, the histograms of FLUXLV, OOF and FLUX show
more false negative voxels with distances larger than 2 voxel
length. These false negative voxels correspond to the unseg-
mented aneurysmal regions.

The segmentation results of the four clinical PC-MRA
images are studied in Figs. 8–16, analogous to the segmen-
tation result of the vascular phantom shown in Figs. 3–5.
In these clinical cases, the aneurysms locate at various posi-
tions and have different sizes and shapes. In Figs. 8(d),
10(d), 13(d), and 15(d), the dimmest parts of the aneurysm
domes are identified as the markers (middle columns) and
subsequently recovered by the topology refinement process

(right columns). The proposed method is capable of recovering
the entire vascular structures, despite the contrast variation of
vessels and the averse effect introduced by the turbulent flow
inside aneurysms. Comparing the sagittal, axial and coronal
views of the source images (Figs. 8(a), 10(a), 13(a) and
15(a)) and those of the segmentation result (Figs. 8(b), 10(b),
13(b) and 15(b)), the proposed method delivers promising
segmentation results. On the contrary, the topology refinement
process cannot locate any marker, hole or concave-cavity on
the level set evolution results of FLUXLV, OOF and FLUX in
the first, third and fourth cases. Comparing the first columns
against the first to the third columns in Figs. 9(d), 14(d),
and 16(d), FLUXLV, OOF and FLUX can capture notice-
ably smaller aneurysmal regions than the proposed method
does. The evolving contours are halted undesirably inside the
vasculatures. This creates large openings around the location
where turbulent flows take place. It consequently prohibits
any marker or hole to be discovered to reclaim the concave-
cavity in the topology refinement process. Nonetheless, if
FLUXLV, OOF and FLUX segment enough voxels around the
turbulent flow affected region, these three methods are capable
of segmenting the aneurysms with the help of the topol-
ogy refinement step. It is exemplified in their segmentation
results in the aneurysmal regions of the second clinical case
(see Fig. 12).
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Fig. 13. Experiment on the third clinical case, an aneurysm at the distal
second segment of the anterior cerebral artery (distal ACA-2). (a) PC-
MRA image volume (voxel size: 0.4 × 0.4 × 0.9 mm3, image dimension:
512×512×33 voxels) used in the clinical data experiment. First row: sagittal
and axial projections; second row: coronal projection. (b) Segmentation
result. (c) Reclaimed holes and concave-cavities, which also suggest the
aneurysm position. (d) Zoomed-in images of the aneurysmal region. The
segmentation result is obtained by using R = {0.4, 0.8, 1.2, 1.6, 2.0, 2.4} mm,
D = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4} mm. The initial
seed points of the level set function ψ are obtained by thresholding the
brightest 0.5% voxels.

D. Result Discussion

Though the comparison between the proposed method
against its lower complexity variants and the existing
approaches, several observations are worth being discussed
here.

1) Offset DH Ratio and Intensity Discontinuity Descriptors:
The offset DH ratio is the foundation of the development
of the proposed final DH ratio. Without the use of intensity
variances, the plain intensity discontinuity descriptor based
methods (OOF and FLUX) tend to give slightly wider seg-
mented vessels than those involving offset DH ratios do (the
proposed method and FLUXLV). This is visually observable
by comparing.

1) Figs. 3(b) and Fig. 4(c) against Fig. 4(a) and (b);
2) Figs. 8(b) and 9(c) against Fig. 9(a) and (b);
3) Figs. 10(b) and 11(c) against Fig. 11(a) and (b);
4) Figs. 13(b) and 14(c) against Fig. 14(a) and (b).

It is also mirrored in the quantitative study of the segmentation
results of the vascular phantom, in which OOF and FLUX
exhibit more false-positive cases (Table III) than the proposed
method and FLUXLV do (Tables II and III).

Fig. 14. Experiment on the third clinical case. The final segmentation
results (20) of different methods based on the image volume [Fig 13(a)] are
depicted: (a) FLUXLV; (b) OOF; and (c) FLUX. (d) Zoomed-in images of the
aneurysmal region of various methods, topology refinement cannot segment
additional region for FLUXLV, OOF and FLUX in this case.

At an object boundary, the detection responses of the
discontinuity descriptors based on a small detection region are
weak because the intensity change occurs merely at the center
of the region. The multiscale detection employed by OOF
and FLUX as suggested in [16] and [30] in turn favors large
detection region in order to search for strong intensity changes.
The enlarged detection region possibly captures the intensity
changes occurred across the vessel boundary (especially for
a high contrast vessel boundary) in the vicinity of the local
voxel, instead of the intensity changes at the local voxel. With-
out the use of local intensity variance to penalize an oversized
detection sphere, the discontinuity descriptors of OOF and
FLUX are more likely to report the voxels around the vessel
boundaries as inside the vessels. This causes OOF and FLUX
slightly overshoot the object boundary in 1 or 2 voxel-length.

2) Distilled Intensity Discontinuity Descriptor and Spheri-
cal Intensity Discontinuity Descriptor: Recognizing intensity
changes across a spherical region boundary is one of the
major components of the four examined approaches. In the
proposed method, the distilled intensity discontinuity descrip-
tor is chosen over its spherical counterpart for detection of
non-spherical objects, such as aneurysms and vessels. The
examined methods can be categorized as “distilled intensity
discontinuity descriptor based methods” (the proposed method
and OOF) and “spherical intensity discontinuity descriptor
based methods” (FLUXLV and FLUX). The latter methods are
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Fig. 15. Experiment on the fourth clinical case, an aneurysm at the
internal carotid artery (ICA). (a) PC-MRA image volume (voxel size:
0.4 × 0.4 × 0.8 mm3, image dimension: 512 × 512 × 62 voxels) used in
the clinical data experiment. First row: sagittal and axial projections; second
row: coronal projection. (b) Segmentation result. (c) Reclaimed holes and
concave-cavities, which also suggest the aneurysm position. (d) Zoomed-in
images of the aneurysmal region. The segmentation result is obtained by
using R = {0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8} mm, D =
{0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2} mm. The
initial seed points of the level set function ψ are obtained by thresholding the
brightest 0.1% voxels.

specifically designed to penalize deviations from tubularity and
eccentric positions, and are thus well adapted to frameworks
such as centerline detection and tracking. However, its major
shortcoming is its consideration of intensity changes across the
entire detection region boundary. It reduces detection response
magnitude when vessel intensity drops along the structure.
This can discourage contours propagating into intensity fluc-
tuating vasculatures, such as aneurysms.

This observation is reflected by the fact that the distilled
intensity discontinuity descriptor based methods can segment
more vessels than their counterparts in some cases, for
example.

1) The true positive values of the proposed method
(Table II) is higher than that of FLUXLV (Table III),
and the true positive values of OOF is higher than that
of FLUX (Table III);

2) OOF segments significantly more vessels than FLUX
does in the first, the second and the third clinical cases
(compare Fig. 9(b) against Fig. 9(a), Fig. 11(b) against
Fig. 11(a) and Fig. 14(b) against Fig. 14(a));

Fig. 16. Experiment on the fourth clinical case. The final segmentation
results (20) of different methods based on the image volume [Fig. 15(a)] are
depicted: (a) FLUXLV; (b) OOF; and (c) FLUX. (d) Zoomed-in images of the
aneurysmal region of various methods, topology refinement cannot segment
additional region for FLUXLV, OOF, and FLUX in this case.

3) the proposed method captures noticeably more vessels
than FLUXLV does in the third and the fourth clinical
cases (compare Figs. 13(b) against 14(c) and Figs. 15(b)
against 16(c)).

3) DH Ratio Without Offset: Severe contour leakages are
found when the DH ratio without offset (Equation 2) is
employed in the segmentation framework. As discussed in
Section II-A, it is over-sensitive to small intensity fluctuation.
The leaked contours are not assessable and they are therefore
not presented in this paper.

4) Summary: The distilled intensity discontinuity descriptor
is less restrictive in the detection of spherical structures. It is
therefore more flexible to handle shape variation of aneurysms.
On the other hand, the offset DH ratio helps avoid contour
leakages. It also suppresses the responses induced by the
intensity changes inside aneurysms to facilitate the discovery
of the aneurysmal regions. Employing both of them yields the
best image features for intensity based segmentation of vessels
and aneurysms in PC-MRA images. Therefore, the proposed
method exhibits all advantages shown in Sections IV-D.1 and
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IV-D.2. It is noted that the subsequent refinement for turbulent
flow affected regions consider no intensity information. An
accurate refinement solely relies on the fact that the vicinity
of those regions has been well discovered by the preceding
segmentation procedure. A satisfactory intensity based seg-
mentation algorithm is extremely crucial for the success of
the topology refinement.

V. CONCLUSION

We have presented a novel approach to segmenting intracra-
nial vessels and intracranial aneurysms on PC-MRA image
volumes. The proposed method comprises two intensity based
image features - the intensity discontinuity descriptor and local
intensity variance to handle the low contrast structures. They
jointly deliver the intensity discontinuity-homogeneity (DH)
ratio for the identification of vasculatures. The final DH ratio
(the offset and distilled DH ratio) is robust against vascular
structures of varying sizes and shapes, and voxel intensity
fluctuation. A subsequent topology refinement mechanism is
devised to recover the turbulent flow-affected aneurysmal
regions that are undetected by the DH ratio based segmentation
scheme.

Considering the limited spatial resolution, low signal-to-
noise ratio, flow orientation-dependent sensitivity (less sen-
sitive to flows along the in-plane direction), the presence
of ghost artifacts and turbulent flow of the current PC-
MRA technique, retrieving quantitative measures of aneurysms
from PC-MRA images are challenging. With the aid of the
proposed segmentation method, clinicians will be able to
perform preliminary and non-invasive diagnosis using PC-
MRA images. Nonetheless, it is necessary to obtain more
datasets along with corresponding manual segmentation to
clinically validate the proposed method. Therefore, additional
clinical data acquisition for extensive evaluation is the utmost
important future direction of this research. Furthermore, in
practice, small distal vessels might be out of interest for
arterial aneurysm detection. When the small vessels which
are disconnected from the major arteries can be omitted, an
automatic initialization scheme is realized by thresholding a
very small portion (for instance, 0.01%) of highest intensity
voxels from the PC-MRA image. This automatic scheme
will ensure that there are seed points only inside the vessel
component connected to the major high intensity arteries.
Studying the clinical relevance of the segmentation results
produced from this automatic initialization scheme will be
another interesting direction of this work.

In this study, the proposed method is evaluated by utilizing
an image volume with vascular phantom, and four clinical
cases. Based on the same segmentation framework, various
components of the proposed method - spherical intensity dis-
continuity descriptor, distilled intensity discontinuity descrip-
tor, the associated DH ratios and topology refinement are
examined. The proposed method is also compared against
three existing vascular segmentation techniques. We inspect
the weaknesses of the existing techniques and reason every
component involved in the development of the proposed
method. It is demonstrated that the proposed model is capable

of selecting low intensity aneurysms of various sizes and
shapes along with the blood vessels. It has experimentally
shown that the proposed method can deliver promising results
in the segmentation of aneurysms in PC-MRA images.

APPENDIX

A. Expected Value of the Local Intensity Variance

Given the voxel intensity is an i.i.d. variable, and xi is the
i th voxel sample in a local region consist of n voxels. Without
loss of generality, each voxel sample has a weight αn(i) for the
computation of the local intensity variance where

∑n
i αn(i) =

1. The expected value of the local intensity variance is,

E

⎛
⎝ n∑

i

αn(i)x
2
i −

(
n∑
i

αn(i)xi

)2
⎞
⎠

= E(x2)

⎛
⎝1 −
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i

n∑
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αn(i)αn( j)

⎞
⎠. (21)

If all n voxel samples receive the same weight, i.e. αn(i) =
n−1,∀i ∈ [1, n], the expected local intensity variance is strictly
monotonic increasing with respect to the sample size n.

B. Computation of the Distilled Discontinuity Descriptor

By the divergence theorem, the response of the dis-
tilled intensity discontinuity descriptor with a smoothed step
function is,

1

4πr2

∫
�

dr (�v)
[

�∇ ·
(

q̂1
�x,r

∂

∂ q̂1
�x,r

I (�x + �v)
)]

d �v. (22)

This equation can also be evaluated in the Fourier domain.
The optimal direction q̂1

�x,r is also computed analytically. It
is accomplished by realizing the relation between hr (�x) to
the work of Optimally Oriented Flux [30]. Their relation is
revealed by rewriting the right hand side of Equation 22 as,

1

4πr2

∫
∂S(�x,r)

(
( �∇(g ∗ I )(�x − r n̂ A) · q̂1

�x;r )q̂
1
�x;r

)
· n̂ Ad A.

(23)

The maximal and minimal operations taken in Equation 8 are
equivalent to the evaluation of optimally oriented flux and are
calculated analytically by performing eigen-decomposition in
a 3-by-3 symmetric tensor for each voxel in each detection
range. Denote i th basis vector in the three dimensional space
by ŷi and i, j ∈ {1, 2, 3}, the element of the symmetric tensor
at the i th row- j th column is,

1

4πr2

∫
∂Sr

( �∇(g ∗ I )(�x − r n̂ A) · ŷi

)
(n̂ A · ŷ j )d A. (24)

The above equation represents six independent components
for a symmetric 3-by-3 tensor. The construction of this ten-
sor is accomplished as convolution operations in the spa-
tial domain and computed in the Fourier domain [30]. It
is analogous to the computation of Equation 12. Our FFT
implementation employs the FFTW library [32]. Input images
are mirror-padded by �2r/Voxel-size voxels on each border
(i.e. 2 × �2r/Voxel-size voxels along each dimension).



LAW AND CHUNG: SEGMENTATION OF INTRACRANIAL VESSELS AND ANEURYSMS 859

REFERENCES

[1] R. McLaughlin and J. Noble, “Demarcation of aneurysms using the seed
and cull algorithm,” in Proc. Int. Conf. Med. Image Comput. Comput.
Assisted Intervent., 2002, pp. 419–426.

[2] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi1, S. Yoshida, T. Koller,
G. Gerig, and R. Kikinis, “Three-dimensional multi-scale line filter
for segmentation and visualization of curvilinear structures in medical
images,” Med. Image Anal., vol. 2, no. 2, pp. 143–168, 1998.

[3] M. Hernandez and A. Frangi, “Non-parametric geodesic active regions:
Method and evaluation for cerebral aneurysms segmentation in 3DRA
and CTA,” Med. Image Anal., vol. 11, no. 3, pp. 224–241, 2007.
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