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Nonrigid Image Registration With Crystal
Dislocation Energy

Yishan Luo and Albert C. S. Chung

Abstract— The goal of nonrigid image registration is to find a
suitable transformation such that the transformed moving image
becomes similar to the reference image. The image registration
problem can also be treated as an optimization problem, which
tries to minimize an objective energy function that measures
the differences between two involved images. In this paper,
we consider image matching as the process of aligning object
boundaries in two different images. The registration energy
function can be defined based on the total energy associated with
the object boundaries. The optimal transformation is obtained by
finding the equilibrium state when the total energy is minimized,
which indicates the object boundaries find their correspondences
and stop deforming. We make an analogy between the above
processes with the dislocation system in physics. The object
boundaries are viewed as dislocations (line defects) in crystal.
Then the well-developed dislocation energy is used to derive
the energy assigned to object boundaries in images. The newly
derived registration energy function takes the global gradient
information of the entire image into consideration, and produces
an orientation-dependent and long-range interaction between
two images to drive the registration process. This property of
interaction endows the new registration framework with both
fast convergence rate and high registration accuracy. Moreover,
the new energy function can be adapted to realize symmetric dif-
feomorphic transformation so as to ensure one-to-one matching
between subjects. In this paper, the superiority of the new method
is theoretically proven, experimentally tested and compared with
the state-of-the-art SyN method. Experimental results with 3-D
magnetic resonance brain images demonstrate that the proposed
method outperforms the compared methods in terms of both
registration accuracy and computation time.

Index Terms— Convergence, dislocation, nonrigid registration.

I. INTRODUCTION

NON-RIGID image registration is a crucial process for
comparing or combining information available from dif-

ferent images. For medical image analysis in particular, it is a
fundamental step for experts to observe the clinical evolution
of a subject in a follow-up study or make comparison between
different subjects. The non-rigid image registration problem
can be described as follows. Given a reference image Ir and
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a moving image Im : �, where � ⊂ R
d (d is the image

dimension), the goal is to find a suitable transformation h
such that the transformed moving image Im(x + h) becomes
similar to the reference image Ir (x) [1]. Research on non-rigid
image registration can be broadly divided into three areas.

1) Transformation model. Transformation model, which
is the solution of the registration process, defines the
spatial relationship between images. Both paramet-
ric transformation models (e.g. radial basis functions,
B-splines) and non-parametric transformation models
(e.g. linear elastic model, viscous fluid flow model and
optical flow model) have been successfully applied in
the field of image registration [2].

2) Similarity metric. The similarity metric measures the
degree of alignment between images. It is usually an
energy functional, which can take various forms accord-
ing to different applications, for optimization.

3) Regularization term. The regularization term is used
to obtain more likely solutions preferentially. Different
kinds of prior knowledge are exploited to regularize the
deformation field, such as the Tikhonov regularization
term, the curvature term and the velocity field regularizer
to achieve diffeomorphic mapping.

Generally, there is no universal combination of transforma-
tion model, similarity metric and regularizer applicable for all
applications. The choice of each component is application-
specific. Among the three components, similarity metric is
probably the most critical element for a registration algorithm,
as it defines the goal of optimization and measures how well
the transformed moving image matches with the reference
image. In general, there are two categories of similarity metric,
i.e., feature-based metric and intensity-based metric.

1) Feature-based metrics rely on image features extracted
from the images either automatically or interactively.
The features can be points [3], [4], curves or surfaces
[5], [6], and derived feature vectors [7]. Once extracted,
the corresponding features are registered by minimizing
a geometrical distance between them. The performance
of feature-based metrics highly depends on the proper
choice of features for the particular application and
accurate localization of feature correspondences.

2) Intensity-based metrics are calculated directly from
intensity values in the images rather than from geo-
metric structures derived from the images. One of the
simplest intensity-based metric is the sum of squared
intensity differences (SSD), which is mainly designed
for mono-modal image registration. SSD is based on the
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assumption that with optimal registration, two images
only differ by the Gaussian noise. Because of its sim-
plicity, SSD is widely used in many literatures [8]–[13].
However, exact intensity matching and Gaussian noise
assumption are not always true in real cases, especially
in inter-subject or inter-modal image registration. A less
restrictive assumption is that corresponding intensities in
the images have a linear relationship, cross-correlation
(CC) is then applied [14], [15]. This metric helps
register images whose intensity values can be related
by a linear transformation. SSD and CC are mainly
used to register images of the same modality. Because
of the similarity of intensities in the images being
registered, the subtraction and correlation techniques
have an intuitive basis. However, in inter-modal image
registration, the intensity statistical relationship between
images is more complicated. Therefore, the information
theoretic metrics are utilized, such as mutual information
(MI) [16], [17], normalized mutual information (NMI)
[18] and so on. This kind of metrics uses entropy as
information measure and tries to maximize the amount
of shared information in aligned images. These metrics
state that the mutual information of the image intensity
values of corresponding voxels is maximal if the images
are geometrically aligned. As they make no explicit
assumption on the nature of the relationship between
intensity values in both modalities, they are widely used
for multi-modal image registration.

The objective of this work is to provide a new choice
of intensity-based similarity metric, which is inspired by the
dislocation theory of crystal in physics [19]. When the atoms
in a crystal are displaced from their perfect lattice sites, this
defect is described as dislocation. The resulting distortion
produces a velocity field in the crystal around the dislocation
and the dislocation carries elastic energy. We make an analogy
between object boundaries in images and the dislocations in
crystals. When the boundaries are not in the optimal positions,
an elastic field is produced, causing the boundaries to deform.
Therefore, the registration process simulates a system in which
the object boundaries of one image are deformed until they
match the object boundaries in the other image. The optimal
transformation is obtained by finding the equilibrium state,
which corresponds to the minimum of the total potential
energy associated with the boundaries in both images. The
proposed method, namely registration with crystal dislocation
energy, utilizes the elastic interaction between the two sets of
boundaries in the reference image and the moving image to
drive the registration process. In this new method, a voxel-
wise force deforming the moving image is calculated through
the integral of the image gradient information over the entire
image domain. In each iteration, the new method takes a
more global and comprehensive view to find the correspon-
dences between the reference image and the moving image,
as compared with most of the current methods. As such,
it helps find the correct correspondences and consequently
the transformation relating the correspondences with relatively
few number of iterations. Our proposed similarity metric
mainly relies on the object boundaries in images to find

the transformation between images, rendering it especially
useful for the registration of the images with clear object
boundaries or images with multiple structures, for example,
human brain images. More distinctive boundary features will
make the interaction between images much stronger, thereby
efficiently drive the registration process. Moreover, the force
driving the registration is an orientation-dependent and long-
range interaction, making it applicable for large deformation.
The proposed metric can be easily coupled with the symmetric
diffeomorphic framework to realize diffeomorphic transforma-
tion. One predominant superiority of this new similarity metric
is its fast convergence property. As the registration process
is usually a computationally expensive procedure, fast con-
vergence property thereby becomes especially important and
useful. With fast convergence property, the proposed metric
can achieve high registration accuracy within less number of
iterations as compared with other metrics, thus reducing the
computation time required for a registration process.

The rest of the paper is organized as follows.
In Section II, the image registration framework is described
based on the dislocation theory of crystal. The new method
has been experimentally validated and compared with other
related methods on real MR brain images, and results are
presented in Section III. The paper concludes in Section IV.

II. METHODOLOGY

A. Image Registration Methods Using Physics-Based Models

Many concepts originate from physics-based models of
materials which have been successfully applied in the field
of image registration, such as, linear elasticity, fluid flow,
optical flow and so on [2]. As the proposed method is also
a physics-based model (i.e., the dislocation theory of crystal),
the current physics-based models used in image registration
are first briefly reviewed in this section.

1) Linear Elasticity Theory: The theory of linear elasticity
is based on the notions of stress and strain. When a body is
subject to an external force, the internal force within the body
causes the body to deform. The body elasticity is represented
by the following Navier-Cauchy PDE:

μ�2u + (μ + λ)�(� · u) + f = 0, (1)

where u is the displacement vector, and f denotes the external
body force, which drives the registration process. Solving the
Navier-Cauchy PDE is essentially an optimization problem
that involves balancing external forces with internal stresses
and smoothness constraints. This idea was introduced into
image registration by Broit [20]. The transformation field can
be obtained by solving the PDE.

2) Fluid Flow Model: The linear elasticity model has
a major constraint that it only allows small deformations.
However, large deformations typically reside in inter-subject
registration. Then Christensen et al. [21] proposed a viscous
fluid flow model for large deformation. The fluid flow model
is based on the principle of continuum mechanics, which sat-
isfies the conservation of mass, energy and linear momentum.
Under these conditions, the Navier-Stokes equation for a
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compressible viscous fluid was derived as follows:
μ f �2v + (μ f + λ f )�(� · v) + f = 0. (2)

Here v is related with the material derivative of the displace-
ment u. The Navier-Stokes equation describes the balance of
forces acting in a given region of fluid. It characterizes an
equilibrium state where changes in momentum of the fluid
balance with the changes in pressure and dissipative viscous
forces. The fluid flow model allows large deformations, but
sometimes brings increasing registration error and intensive
computation time [22].

3) Optical Flow: Optical flow model [23] has been widely
used in computer vision and image processing to track
small motions in time sequences of images. This is based
on the principle of intensity conservation between image
frames. The most well-known application of optical flow in
image registration is the Demons algorithm proposed in [13].
It relates the displacement u to the change of intensity between
the moving and fixed images and the spatial derivative of
intensity in the fixed image, as follows:

u = (Im − Ir )�Ir

(�Ir )2 + (Im − Ir )2 . (3)

B. Numerical Framework of Nonrigid Image Registration

In general, the objective of non-rigid image registration is
to find the optimal transformation model h that maps each
voxel in the moving image Im(x) to the reference image Ir (x),
so that the energy function which measures the difference
between the moving image and the reference image can be
minimized. The determination of the transformation model is
a classic ill-posed problem and requires an additional regu-
larization constraint. The solution to the non-rigid registration
problem can be computed by optimizing the following energy
function:

E =
∫

�
Esim(Im(x + h), Ir (x))d� + Ereg . (4)

The first term is the similarity metric and the second is the
regularization term. In this paper, we focus on the first term
and develop a new intensity-based similarity metric for mono-
model image registration, which is proved to outperform the
widely used SSD and CC metrics in terms of both registration
accuracy and efficiency.

C. Derivation of the Proposed Method

The objective of non-rigid image registration in our concern
is to match the corresponding objects of different images.
The object boundaries, which are critical features to differ-
entiate objects, take an important role during the registration
process, as solving non-rigid image registration problem can
be also considered as finding the corresponding features in
two images. The object boundaries in the moving image are
iteratively deformed towards the same object boundaries in the
reference image until the two sets of boundaries are matched
with each other in terms of both gradient magnitude and
direction. In view of physics, if we treat object boundary
as some elastic material, when the boundaries are not in the

Fig. 1. 2-D image in the z = 0 plane with the constraint that the integral∫
C w · dl = 1 along any curve C enclosing γ (s).

optimal positions, the resulting distortion produces an elastic
field. The boundaries in the elastic field carry some elastic
potential energy. When placing the two sets of boundaries in
a common space, according to the principle of minimum total
potential energy, the boundaries move and interact so that the
total energy associated with these boundaries is minimized and
the equilibrium state is reached.

The proposed method is inspired by the dissipative dynam-
ics of dislocations (line defects) in crystals of superconductiv-
ity, where the elastic energies are stored in the displacement
field of the dislocations. These lines can move and interact
to minimize the total energies until equilibrium. We use a
2D case to illustrate the idea. For a 2D image, the bound-
aries of the objects are curves (or line elements/segments).
We define an energy associated with the curve similar to
those in the dislocations. To facilitate the derivation of the
new formulation, we place the plane containing the 2D images
(the x − y plane) into the z = 0 plane of the 3D space, as
shown in Figure 1. Considering a parameterized curve γ (s) in
3D space, the elastic potential energy associated with γ (s) is
defined as,

E(γ ) = min
∫

�

1

2
‖w(x, y, z)‖2dxdydz, (5)

subject to the constraint enforced in the domain �,

� × w(x, y, z) = δ(γ )τ , (6)

where w, defined in the 3D space, is the stress acted on the
curve and proportional to the elastic deformation of the curve.
τ is the unit tangent vector of γ (s), δ(γ ) is the delta function
of γ (s) which is zero anywhere except on γ (s), � × w is
the curl of w. The meaning of Equation 6 is that the integral∫

C w·dl = 1 along any curve C enclosing γ (s). This constraint
indicates the elastic field formed by the dislocations is a non-
conservative field as the curve always stores some potential
energy. The energy term in Equation 5 is defined based on
the principle of minimum total potential energy, which is
a fundamental concept used in physics, chemistry, biology
and engineering. It asserts that a structure shall deform or
displace to a position that minimizes the total elastic potential
energy (i.e.,

∫
�

1
2‖w(x, y, z)‖2dxdydz in our case) to reach

the equilibrium state. Equations 5 and 6 represent a simplified
version of elasticity system associated with dislocations in
solids [19], [24].
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To solve the system, we apply the Lagrange method, the
energy function then becomes,

E (γ ) =
∫

�

[
1

2
‖w(x, y, z)‖2 + λ · (� × w(x, y, z)

−δ(γ )τ )

]
dxdydz, (7)

where the Lagrange multiplier λ = (λx , λy, λz) is a vector
function.

After taking variation with respect to w and λ, we have,{
∂E
∂w = w + � × λ = 0,
∂E
∂λ

= � × w − δ(γ )τ = 0.
(8)

The first equation is equivalent to � · w = 0, and the second
one is the constraint in Equation 6. This system for w can be
solved analytically as [24],

w = − 1

4π

∫
γ

r × dl
r3 , (9)

where r = (x −x(s), y− y(s), z−z(s)) is the vector between a
point (x, y, z) in the 3D space and a point (x(s), y(s), z(s)) on
the curve γ (s), r =√

(x − x(s))2 + (y − y(s))2 + (z − z(s))2

is the distance between them and dl is a line element of the
curve. Then the total energy associated with the curve is,

E = 1

8π

∫
γ

∫
γ ′

dl · dl′

r
, (10)

where γ ′ is the curve γ using another parameter s′.
Using the relationship dl = τδ(γ )dxdydz, we have

E = 1

8π

∫
�

δ(γ )dxdydz
∫

�

τ · τ ′

r
δ(γ ′)dx ′dy ′dz′, (11)

where r = (x − x ′, y − y ′, z − z′) and τ (or τ ′) is the unit
tangent vector of γ (or γ ′).

In line with the dislocation properties, if γ (s) is a single
loop or line, the energy is proportional to its length, as
shown in Equation 10; if γ (s) consists of multiple loops
or lines, besides the energy proportional to the length, there
is another contribution to energy because of the interaction
of different loops or lines, i.e., the interaction between the
elastic fields of different dislocations. As an example for the
interaction energy, consider two curves γ1 and γ2, the total
energy is,

E = 1

8π

∫
γ1∪γ2

∫
γ ′

1∪γ ′
2

dl · dl′

r
,

= 1

8π

∫
γ1

∫
γ ′

1

dl1 · dl′1
r

+ 1

8π

∫
γ2

∫
γ ′

2

dl2 · dl′2
r

+ 1

4π

∫
γ1

∫
γ2

dl1 · dl2
r

, (12)

where γ ′
1 and γ ′

2 are γ1 and γ2 using other sets of parameters,
dl1 and dl2 are respectively line elements of γ1 and γ2. The
first two terms are self-energies of the two curves, which are
proportional to their lengths. The third term is the interaction
energy between them, which depends on their line directions,
relative positions and lengths. The interaction energy between

any two points on the two curves is proportional to 1/r ,
indicating the interaction will decay slowly as r goes to infinity
and may still interact between two long curves even if they are
far from each other. In this sense, the interaction has a long
capture range. Furthermore, the interaction is also orientation-
dependent as the curves are attractive when they have opposite
directions and repulsive when they have the same direction.
In summary, if two curves interact with each other, they move
to minimize the total energy which is a combination of their
self-energy and the interaction energy.

These formulations are developed based on the elasticity
system associated with dislocations in crystals and this concept
has been applied to solving image segmentation problem
in [25]. As we have stated, non-rigid image registration
can be considered as two sets of object boundaries moving
and interacting to minimize the total associated energies, we
use similar energy as above to achieve the goal of non-
rigid image registration. We treat the object boundaries of
the 2D image as the set of curves. Originally, within one
image, each object interacts with other objects and deforms
to find an equilibrium state. When the equilibrium state is
reached, all objects stop deforming and produce objects with
different shapes. When registering two images, the two images
placed in a common space form a new elasticity system.
The object boundaries of the two images interact with each
other to reach a new equilibrium state. In such equilibrium
state, the boundaries of the same object in the two involved
images match each other in terms of boundary magnitude and
direction.

Now we adapt the above dislocation energy formulation
to solve the image registration problem. The object bound-
aries can be obtained from the gradient map of the gray-
level images. The directions of the object boundaries of the
reference image and the moving image are redefined as,

τr = �Ir

|�Ir | × k, (13)

τm = − �Im

|�Im | × k, (14)

where k = (0, 0, 1) is the unit vector in z direction. The
direction of the object boundary in the moving image is chosen
to be opposite to that of the reference image. Thus the two
images are attracted to match each other.

Using the dislocation interaction energy, together with the
boundary directions defined for image registration as above,
the new energy function for the registration problem is formu-
lated as Equation 15. A detailed derivation for this formulation
is provided in Appendix A.

E = 1

8π

∫
�

dx
∫

�

�(Ir (x)− Im(x + h)) · �(Ir (x′)− Im(x′+h′))
r

dx′,

(15)

where � is the whole image domain and r = |x − x′|, which
is the Cartesian distance between two points in �. x and
x′ are two coordinate representations in �. This framework
can also be extended for 3D images, in which the object
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(a) (b) (c)

Fig. 2. (a) Reference disc object and the moving curve. The force acted on the moving curve is shown with arrows. (b) Normal velocity field generated by
the reference image. (c) Normal velocity extracted from the line passing through the center of the disc (y = 50).

(a) (b) (c)

Fig. 3. (a) Two discs placed in the same space. (b) Normal velocity field. (c) Normal velocity along the line passing the center of the disc (y = 50).

boundaries become surfaces. For 3D images, the form of
energy is,

E =
∫

�
dx

∫
�

�(Ir (x)− Im(x+h)) · �(Ir (x′)− Im(x′ + h′))
r2 dx′.

(16)

For the concern of simplicity, all the following illustrations
will still be presented with 2D example.

D. Interaction Properties

In this section, we use a synthetic example to show how
the dislocation interaction drives the registration process.
As shown in Figure 2(a), a disc object, which is darker inside
(object with lower intensity values than background), is treated
as the reference image and placed on the x − y plane. We
first show the normal velocity (force) field generated by the
reference image alone by removing the contribution of the
moving image in Equation A7, which is

v = − 1

4π

∫
�

r · �Ir

r3 dx. (17)

Figures 2(b) and (c) show the normal velocity field and the
normal velocity along the line passing through the center of
the disc. The magnitude of the velocity field is positive inside
the disc and negative outside. If the moving curve is placed
in the same plane as the reference disc, the force acted on the
moving curve will attract it gradually towards the reference

boundary, as illustrated in Figure 2(a). Positive v means that
the force is in the outward normal direction of the moving
curve, i.e., − �Im|�Im | . This indicates the interaction is orientation
dependent. It can also be observed that the magnitude of
velocity is strong near the object boundary and decays but
never zero away from the boundary. This reflects the long-
range property of the interaction, which still has effect on
attracting the moving curve even when it is far from the
reference curve. We also observe the interaction between two
objects when they are placed in the same space with certain
distance in between. Both the normal velocity field generated
by the two objects and the normal velocity along the central
line are shown in Figure 3. With Equation A7, we can see the
interaction has two important features. The first is the inter-
action is stronger between more distinctive boundaries (larger
gradient magnitude). This property is important in registration
as it indicates that more distinctive features (boundaries in
our case) contribute more than less distinctive features in
driving the registration. We illustrate this property in Figure 4,
where we increase the intensity difference between the object
and the background so as to increase the gradient magnitude.
Compared with Figure 3, the force magnitude is increased, as
shown in Figures 4(b) and (c). Another important property of
the interaction is that the force is proportional to 1/r as stated
in Section II-C. It means that the force is stronger when the
two curves are closer. To show this property, we shorten the
distance between two objects and obtain the velocity field,
as shown in Figure 5. It is obvious that the velocity field is
getting stronger as compared with Figure 3, which will make
the two objects attract to each other in a much faster pace.
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(a) (b) (c)

Fig. 4. (a) Two discs with larger gradient magnitude than those in Fig. 3. (b) Normal velocity field. (c) Normal velocity along the line passing the center
of the disc (y = 50).

(a) (b) (c)

Fig. 5. (a) Two discs that are closer than those in Fig. 3. (b) Normal velocity field. (c) Normal velocity along the line passing the center of the disc (y = 50).

E. Symmetric Diffeomorphic Registration With Dislocation
Energy

Diffeomorphism is a vigorously studied topic in the current
image registration framework [12], [26], [27]. It promises
to provide a differentiable transformation map with a differ-
entiable inverse, making the transformation more physically
reasonable and preserving properties such as smoothness of
curves, surfaces or other features associated to anatomy. One
of the most popular algorithms to solve diffeomorphic regis-
tration problem is Large Deformation Diffeomorphic Metric
Matching (LDDMM) [11]. Diffeomorphism is represented as
end point of paths parameterized by time-varying vector field
defined on the tangent space of a convenient Riemannian man-
ifold. It estimates the optimal transformation by constraining
the transformation in the space of smooth velocity vector field
V on domain � with the following form:

arg min
v:ḣ=vt (h)

(∫ 1

0
‖vt‖2

V dt + |Im(x + h) − Ir (x)|2
)

. (18)

This variational problem can be solved by using the Euler-
Lagrange method. One superiority of LDDMM is its solid
foundation in the mathematical framework. The existence
of a solution is guaranteed by the integrability condition
established for diffeomorphic image registration [28].

Avants et al. [15] extended the LDDMM framework to
form a symmetric image normalization method (SyN). Their
algorithm favors the natural symmetry in the path from Im

to Ir and Ir to Im , which makes the results independent
of the choice of reference image and moving image. In a
recent evaluation of image registration algorithms [29], the

SyN method’s performance ranks high among the compared
algorithms.

The variational optimization problem in SyN is defined as:

E =
∫ 0.5

t=0
(‖vm(x, t)‖2

L + ‖vr (x, t)‖2
L)dt

+
∫

�
|Im(x + hm) − Ir (x + hr)|2d�, (19)

subject to each hi ∈ Di f f0 (i = m, r ) the solution
of: dhi (x, t)/dt = vi (hi (x, t), t) with hi (x, 0) = Id and
h−1

i (hi ) = Id, hi (h
−1
i ) = Id. The functional norm, ‖· ‖L ,

induces regularity on the velocity field via a linear differential
operator, as explained in [15].

By taking variation of this function with respect to hm at
time 0.5 and hr at time 0.5, two Euler-Lagrange equations can
be derived to solve the optimization problem as:

Fm = �hm(x,0.5)E

= 2Lvm(x, 0.5) − 2(Ir (x + hr)

−Im(x + hm)) |Dhm|�Im(x + hm), (20)

Fr = �hr (x,0.5)E

= 2Lvr (x, 0.5) + 2(Ir (x + hr)

−Im(x + hm)) |Dhr|�Ir (x + hr). (21)

As stated in [15], this SyN framework is flexible enough
to adapt to different similarity metrics. With this SyN frame-
work, our proposed similarity energy function is extended to
make the transformation diffeomorphic. The proposed energy
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function is extended to Equation 22

E =
∫ 0.5

t=0
(‖vm(x, t)‖2

L + ‖vr (x, t)‖2
L)dt + 1

8π

∫
�

dx
∫

�

�(Ir (x+hr)−Im(x+hm))·�(Ir (x′+h′
r)−Im(x′+h′

m))

r
dx′.

(22)

The driving forces applied to the images to minimize the total
energy, which follow the derivation in Appendix A, are shown
as follows,

Fm = �hm(x,0.5)E

= 2Lvm(x, 0.5)− 1

4π

∫
�

r · �(Ir (x+hr)− Im(x+hm))

r3 dx

× |Dhm| �Im

|�Im | , (23)

Fr = �hr (x,0.5)E

= 2Lvr (x, 0.5)+ 1

4π

∫
�

r · �(Ir (x+hr)− Im(x+hm))

r3 dx

× |Dhr| �Ir

|�Ir | . (24)

Regarding the implementation, smoothing using the
Gaussian kernel can be applied on the images to smear
out some noise. Hereinafter, without explicit specification,
the image gradient in this paper is taking the gradient after
smoothing by the Gaussian filter. The optimal solution of the
energy function with respect to the velocity can be iteratively
calculated by a standard gradient descent scheme. In the kth
iteration, the velocity is updated by:

vk+1
i = vk

i − tFi . (25)

It can be perceived from these formulas that the
force driving the deformation in our proposed method
(Equation 23(24)) is not only related to the similarity (in the
numerator), but also the distance (in the denominator). It is
actually driving the object boundary of the moving image to
the closest and most similar object boundary in the reference
image. Such a force can be viewed as a comprehensive force
taking the global information of the entire image domain into
consideration, which greatly enlarges the capture range.

As the force is computed through the integral over the
entire image domain, computation of the force can bring a
major computational issue. However, this computational issue
can be solved by using the fast Fourier transform (FFT).
The integral part of the force can be considered as the
convolution of the two vector functions �(Ir − Im) and � 1

r
with a factor 1

4π . Using FFT, the convolution of two vector
functions can be transformed into the multiplication of the
two Fourier transformed vector functions. This can greatly
reduce the computational complexity in the implementation.
The numerical implementation details of this transformation
can be found in [25].

F. Comparison Between Different Similarity Metrics

Within the registration framework, several similarity metrics
can be chosen as discussed in the introduction. The SSD metric

accumulates the intensity difference of each voxel between two
involved images and produces the driving force for each voxel.
The CC metric is a slightly less restrictive metric which allows
a linear relationship between the corresponding intensities. The
CC depends on the estimates of the local image average and
variance in a local region. It can enlarge the captured region
as compared with SSD. However, it is still confined in a local
neighborhood region. Comparatively, the MI metric is a global
metric based on the joint intensity histogram of two involved
images. MI metric is not a voxel-wise similarity metric, thus
in most cases can only be computed globally. In order to
make it applicable for non-rigid registration, some methods
find the deformation on a local scale [30], [31] with the
help of control points and parameterized deformation model.
However, with the locality in the MI estimate increases, its
statistical reliability decreases. As investigated in [32], the MI
metric can perform well in affine registration, but it is still
not optimal for non-rigid registration as compared with SSD
and CC metrics. The proposed metric in this paper produces
voxel-wise force like SSD and CC, but the force of each voxel
computed by Equation 23(24) is an integration of the gradient
information within the entire image domain. The new metric
can be considered as a metric that can produce the voxel-
wise force with a global view. This property helps achieve the
largest possible capture region, and thus reduce the time spent
finding correspondences. We also provide a theoretical proof
for explaining the fast convergence property of the proposed
metric in Appendix B.

III. EXPERIMENTAL RESULTS

A. Database and Implementation Issues

In this section, we evaluate the proposed method on 3D
magnetic resonance (MR) brain images. All MR images were
obtained from the Internet Brain Segmentation Repository
(IBSR V2.0) which includes the T1-weighted MR brain
images of 18 normal subjects, available at1. The 18 brain
scans have been positionally normalized into the Talairach
orientation and have been processed by the CMA bias field
correction routines. The resolution of each scan is 256 ×
256 × 128 voxels. The voxel size is 0.9375 × 0.9375 ×
1.5mm3 for 8 scans, 1.0 × 1.0 × 1.5mm3 for 6 scans
and 0.8371 × 0.8371 × 1.5mm3 for 4 scans. Besides the
T1-weight scans, the brain structure segmentation results are
also provided from IBSR. These segmentation results serve as
the ground truths for our experiment validation. In the follow-
ing sections, the registration accuracy, convergence property
and computation time are experimentally compared between
the proposed method and the SyN method with SSD metric
and CC metric. For the SyN method, the source code is avail-
able on the website [33]. The implementation of our method
is based on the registration framework of SyN. The FFTW
library obtained from [34] is used for fast FFT computation
in our method. All the experiments were implemented on a
PC with Intel(R) Core(TM) 2 Duo CPU and 4 GB RAM.

1Available at http://www.cma.mgh.harvard.edu/ibsr/.
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(a)

(b)

(c)

(d)

(e)

Fig. 6. 2-D slices obtained from the 3-D MR brain image experiments. Each column shows one pair of registration experiment using different methods.
(a) Reference image. (b) Moving image. Registered images obtained by (c) SyN SSD method, (d) SyN CC method, and the (e) proposed method. The obvious
mismatched regions are highlighted by arrows.

B. Registration Accuracy

To quantitatively and qualitatively evaluate the registration
accuracy and show the convergence property and compu-
tation time of the proposed method, 3D image registration
experiments were conducted on the 18 subject MR brain
scans. Among the 18 brain volumes, one was served as the
reference and the other 17 subjects were moving images.
We performed 9 sets of experiments on the 18 subjects.
We randomly chose 9 data sets in the IBSR database to
serve as the reference images one-by-one and performed the
pairwise registrations on the remaining 17 subjects. In the
3D experiments, affine registration was applied first. Then each
method was applied with an four-level multi-resolution scheme
for non-rigid registration. We allowed 100 iterations at the first
three levels and 20 iterations at the full resolution. All methods
were implemented using the same optimization framework.
The gradient time steps were set to 0.5 and the regularization is

Gauss[3,0], which indicates that the velocity field is smoothed
by a Gaussian filter with variance of 3× the image spacing.
Figure 6 shows three examples of registration results for visual
inspection. For illustration, 2D slices extracted from the reg-
istered 3D volumes obtained by the three compared methods
together with the corresponding reference images and moving
images before registration are shown. Each column represents
one pair of example. It can be observed that the registered
subject images using the proposed method (the bottom row in
Figure 6) are most similar to the reference images, although
there are still some misaligned structures, especially sulci and
gyri. It is mainly due to their high similarities between the
nearby structures.

Apart from a visual inspection, a quantitative evaluation was
also conducted based on the volume overlap between the struc-
ture volumes of reference images and the transformed structure
volumes of moving images and the distance error between
the structure surfaces of the reference image and transformed
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TABLE I

EACH ROW LISTS THE MEAN AND STANDARD DEVIATION VALUES OF THE VOLUME OVERLAP MEASUREMENTS OF WM, GM, CSF, VEN, Pu, Th,

AND Cu OF THE REMAINING 17 3-D NONRIGID IMAGE REGISTRATION EXPERIMENTS BASED ON ONE REFERENCE IMAGE. A, B, C, AND D

REPRESENTING THE RESULTS BEFORE REGISTRATION, USING SYN SSD METHOD, SYN CC METHOD AND OUR PROPOSED METHOD, RESPECTIVELY

Ref WM GM CSF Ven Th Pu Cu

A B C D A B C D A B C D A B C D A B C D A B C D A B C D

1
0.45 0.66 0.70 0.74 0.49 0.67 0.72 0.74 0.34 0.67 0.71 0.74 0.21 0.39 0.49 0.51 0.64 0.65 0.70 0.75 0.47 0.44 0.67 0.68 0.41 0.56 0.64 0.67

0.04 0.08 0.04 0.03 0.06 0.10 0.05 0.05 0.09 0.07 0.03 0.03 0.08 0.08 0.03 0.04 0.05 0.10 0.07 0.03 0.10 0.20 0.04 0.04 0.10 0.10 0.05 0.04

2
0.44 0.69 0.69 0.73 0.45 0.69 0.70 0.73 0.28 0.64 0.65 0.68 0.23 0.58 0.60 0.63 0.89 0.67 0.65 0.71 0.53 0.57 0.69 0.70 0.46 0.57 0.62 0.67

0.04 0.09 0.07 0.07 0.06 0.10 0.08 0.07 0.07 0.10 0.10 0.09 0.13 0.10 0.09 0.08 0.07 0.10 0.12 0.06 0.12 0.17 0.08 0.07 0.09 0.16 0.09 0.09

3
0.45 0.65 0.67 0.72 0.47 0.61 0.63 0.69 0.31 0.57 0.65 0.67 0.22 0.50 0.60 0.63 0.64 0.56 0.67 0.72 0.54 0.31 0.64 0.68 0.43 0.45 0.60 0.65

0.05 0.09 0.08 0.07 0.08 0.12 0.10 0.07 0.09 0.11 0.08 0.08 0.16 0.13 0.10 0.10 0.05 0.12 0.08 0.04 0.12 0.18 0.10 0.09 0.08 0.16 0.09 0.08

4
0.40 0.61 0.71 0.71 0.39 0.66 0.69 0.69 0.22 0.65 0.67 0.68 0.25 0.56 0.58 0.58 0.53 0.69 0.70 0.76 0.38 0.63 0.64 0.69 0.32 0.59 0.60 0.66

0.06 0.12 0.09 0.09 0.08 0.09 0.11 0.08 0.08 0.10 0.09 0.09 0.12 0.13 0.16 0.16 0.08 0.09 0.07 0.04 0.14 0.14 0.15 0.11 0.10 0.13 0.12 0.08

5
0.43 0.62 0.72 0.72 0.45 0.64 0.70 0.70 0.32 0.63 0.75 0.76 0.24 0.47 0.62 0.64 0.64 0.64 0.73 0.76 0.51 0.58 0.72 0.72 0.46 0.55 0.65 0.68

0.05 0.12 0.07 0.08 0.07 0.09 0.09 0.07 0.09 0.10 0.08 0.08 0.08 0.20 0.07 0.14 0.07 0.10 0.05 0.04 0.14 0.16 0.10 0.09 0.10 0.16 0.09 0.10

6
0.44 0.68 0.69 0.72 0.47 0.73 0.72 0.75 0.31 0.67 0.67 0.71 0.28 0.60 0.61 0.64 0.65 0.73 0.73 0.75 0.52 0.67 0.75 0.75 0.43 0.61 0.61 0.65

0.04 0.08 0.08 0.06 0.06 0.09 0.10 0.07 0.06 0.10 0.09 0.09 0.10 0.11 0.10 0.09 0.07 0.10 0.10 0.06 0.12 0.14 0.09 0.08 0.09 0.13 0.12 0.09

7
0.39 0.64 0.68 0.70 0.42 0.67 0.70 0.73 0.22 0.51 0.54 0.56 0.26 0.55 0.62 0.63 0.66 0.71 0.71 0.76 0.49 0.60 0.69 0.72 0.41 0.56 0.48 0.52

0.04 0.09 0.08 0.07 0.08 0.12 0.10 0.07 0.05 0.09 0.11 0.09 0.09 0.14 0.09 0.09 0.07 0.11 0.11 0.09 0.10 0.16 0.08 0.07 0.08 0.16 0.16 0.16

8
0.35 0.61 0.66 0.67 0.34 0.68 0.67 0.70 0.22 0.65 0.66 0.67 0.21 0.54 0.57 0.59 0.55 0.70 0.71 0.77 0.30 0.60 0.61 0.70 0.35 0.57 0.56 0.63

0.06 0.07 0.07 0.07 0.10 0.06 0.06 0.06 0.07 0.10 0.07 0.06 0.07 0.16 0.11 0.10 0.09 0.12 0.06 0.03 0.13 0.13 0.13 0.09 0.07 0.13 0.11 0.08

9
0.41 0.55 0.65 0.69 0.39 0.59 0.60 0.63 0.31 0.68 0.73 0.79 0.27 0.52 0.60 0.60 0.58 0.66 0.63 0.75 0.43 0.58 0.63 0.71 0.30 0.49 0.54 0.66

0.06 0.13 0.13 0.08 0.08 0.11 0.09 0.08 0.10 0.13 0.07 0.05 0.14 0.12 0.12 0.11 0.09 0.10 0.15 0.04 0.14 0.12 0.12 0.10 0.11 0.16 0.18 0.11

Average
0.42 0.63 0.68 0.71 0.43 0.66 0.68 0.71 0.28 0.63 0.67 0.70 0.24 0.52 0.59 0.61 0.64 0.67 0.70 0.75 0.46 0.55 0.67 0.71 0.39 0.55 0.59 0.64

0.03 0.04 0.02 0.02 0.04 0.04 0.04 0.03 0.05 0.05 0.06 0.06 0.02 0.06 0.04 0.04 0.10 0.04 0.03 0.02 0.08 0.10 0.04 0.02 0.05 0.05 0.05 0.04

Fig. 7. Accuracy comparison of the registration results in terms of average
Jaccard Coefficient. The average results obtained before registration, from SyN
SSD method, SyN CC method, and the proposed method are represented by
blue, green, yellow, red bars, respectively.

moving images. Seven brain structures, i.e., gray matter (GM),
white matter (WM), cerebrospinal fluid (CSF), ventricle (Ven),
putamen (Pu), thalamus (Th) and caudate (Cu), are picked as
they are most important brain structures in clinical diagnosis
and commonly studied structures in brain anatomy literatures
[35]–[38]. The Jaccard Coefficient metric [39] was used to
measure the similarity between two registrations of the same
region. For two registered regions A and B, the Jaccard
Coefficient is defined as: P = |A∩B|

|A∪B| , where |.| defines the area
of region under consideration. The segmentation ground truth
was built based on the segmentation labels provided by IBSR.
Table I lists the average structure-wise Jaccard Coefficient
results over the 17 subjects in the each of the 9 sets of
experiments. For better examination of the results, the average
results of the 9 sets of experiments are plotted in Figure 7.
As volume overlap measure does not explicitly account for

Fig. 8. Accuracy comparison of the registration results in terms of average
distance error (DE). The average results obtained before registration, from
SyN SSD method, SyN CC method, and the proposed method are represented
by blue, green, yellow, red bars, respectively.

boundary discrepancies, we also measure the average
distance error DE [29]: DE = 1

P

∑P
p=1 mindist (Srp, Sm).

DE measures the average minimum distance from each refer-
ence surface point Srp to the entire set of points extracted from
the moving surface Sm . We measure the DE values for each of
the 7 brain structures as well as for the entire set of structure
surface as a whole. Table II lists the DE results for each of the
9 sets of experiments and Figure 8 plots the average results of
the 9 sets of experiments. From the results in Table I, II and
Figure 7, 8, we find that the proposed method outperforms the
other two methods for all brain structures consistently.

C. Convergence Property and Computation Time

Apart from registration accuracy, we have also compared
the convergence property of the proposed method with other
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TABLE II

EACH ROW LISTS THE MEAN AND STANDARD DEVIATION VALUES OF THE DISTANCE ERROR OF WM, GM, CSF, VEN, Pu, Th, Cu, AND THE WHOLE

BRAIN OF THE REMAINING 17 3-D NONRIGID IMAGE REGISTRATION EXPERIMENTS BASED ON ONE REFERENCE IMAGE. A, B, C, AND D

REPRESENTING THE RESULTS BEFORE REGISTRATION, USING SYN SSD METHOD, SYN CC METHOD AND OUR PROPOSED METHOD, RESPECTIVELY

Ref WM GM CSF Ven Th Pu Cu WholeBrain

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

1
2.25 1.37 1.33 1.16 2.33 1.47 1.45 1.32 2.41 1.13 1.16 0.96 2.25 1.08 0.91 0.91 1.93 1.67 1.92 1.41 1.65 1.35 1.07 1.03 1.59 1.06 1.11 0.97 1.76 1.01 0.98 0.84

2.01 1.35 1.42 1.33 2.12 1.44 1.54 1.47 2.11 1.46 1.45 1.23 1.69 1.15 1.16 1.15 1.58 1.57 1.63 1.27 1.33 1.27 1.12 0.95 1.40 1.03 1.11 0.95 1.99 1.31 1.38 1.29

2
2.67 1.77 1.65 1.32 2.77 1.89 1.82 1.49 2.43 1.23 1.08 0.86 2.41 1.51 1.17 1.08 1.65 1.69 1.66 1.24 1.62 2.03 1.02 1.16 1.91 1.34 1.18 1.04 2.18 1.36 1.30 0.98

2.51 1.71 1.84 1.47 2.61 1.80 1.98 1.60 2.25 1.63 1.50 1.14 2.07 1.65 1.82 1.67 1.41 1.68 1.59 1.20 1.28 1.55 1.00 0.97 1.63 1.20 1.14 1.01 2.50 1.67 1.82 1.43

3
3.52 1.79 1.26 1.34 3.70 1.95 1.43 1.52 3.81 1.22 1.05 0.95 2.40 4.01 2.54 2.58 2.93 1.37 1.21 1.17 3.02 1.13 1.41 1.20 3.02 0.99 1.03 0.96 3.04 1.41 0.98 1.01

3.58 2.67 1.91 2.03 3.76 2.77 2.07 2.16 3.23 2.07 2.04 1.83 2.20 4.05 2.68 2.75 2.33 1.34 1.18 1.17 2.24 1.10 1.53 1.00 2.45 1.08 1.22 1.01 3.60 2.58 1.87 1.96

4
2.36 1.54 1.02 1.02 2.43 1.70 1.21 1.14 2.98 3.20 1.17 1.18 2.12 4.85 0.62 0.58 1.74 2.96 1.02 0.94 2.03 2.14 1.03 1.15 1.97 2.36 1.12 1.10 1.87 1.19 0.73 0.73

2.29 2.16 1.36 1.59 2.38 2.35 1.49 1.78 3.10 4.62 2.69 2.75 1.70 2.28 0.81 1.35 1.50 2.72 1.02 0.98 1.56 2.43 1.08 1.17 1.71 2.66 1.40 1.37 2.26 2.13 1.30 1.55

5
2.23 1.25 1.31 1.07 2.26 1.36 1.44 1.23 2.71 1.39 1.31 1.16 1.71 1.52 1.00 0.85 1.45 1.28 1.25 1.05 1.60 1.41 0.91 0.89 1.69 1.06 1.16 1.07 1.72 0.90 0.99 0.76

2.04 1.35 1.55 1.22 2.10 1.44 1.66 1.35 2.80 2.30 1.94 1.88 1.53 1.52 1.43 1.11 1.24 1.13 1.15 1.01 1.24 1.12 0.98 0.87 1.39 0.99 1.01 1.00 1.99 1.28 1.50 1.17

6
2.33 1.68 1.37 1.21 2.37 1.77 1.49 1.35 3.88 2.35 2.33 2.30 2.10 2.09 1.00 0.99 1.44 1.86 1.74 1.39 1.77 1.83 1.45 1.35 1.80 1.18 1.92 2.03 1.81 1.28 1.05 0.89

2.06 1.49 1.55 1.35 2.12 1.57 1.65 1.44 4.16 4.01 3.55 3.69 1.77 1.65 1.45 1.30 1.24 1.39 1.66 1.34 1.43 1.41 1.33 1.42 1.49 1.17 1.58 1.49 2.02 1.47 1.52 1.31

7
2.54 1.59 1.41 1.54 2.69 1.75 1.57 1.72 2.63 1.63 1.26 1.10 2.29 1.47 1.27 1.19 1.91 2.01 1.67 1.25 2.49 1.59 1.62 1.21 2.05 1.88 1.43 1.21 2.00 1.20 1.04 1.17

2.18 1.60 1.50 1.84 2.36 1.76 1.64 1.93 2.30 2.06 1.57 1.50 1.91 1.76 1.50 1.48 1.63 1.98 1.63 1.19 1.68 1.29 1.36 1.07 1.75 1.98 1.32 1.14 2.14 1.54 1.45 1.77

8
3.15 1.74 1.81 1.47 3.30 1.90 2.02 1.67 2.83 1.30 0.93 0.81 2.12 1.30 1.34 1.49 2.23 1.55 1.35 0.99 2.33 1.46 1.04 0.85 2.64 1.66 1.21 0.99 2.65 1.34 1.52 1.17

3.02 2.24 2.20 3.36 3.18 2.41 2.37 3.46 2.36 1.55 1.35 1.44 2.03 1.37 1.73 1.73 1.80 1.50 1.23 0.98 1.65 1.30 0.98 0.86 2.07 1.57 1.33 1.21 3.03 2.21 3.26 2.15

9
3.08 1.32 1.29 1.26 3.13 1.38 1.38 1.32 4.01 2.25 1.93 2.00 3.18 0.95 0.89 0.80 1.63 1.71 1.50 1.37 2.10 1.34 1.13 0.98 2.37 1.66 1.41 1.36 2.55 0.96 0.95 0.90

2.90 1.39 1.62 1.77 3.03 1.44 1.72 1.80 3.39 3.22 2.95 2.92 2.92 1.45 1.21 1.13 1.36 1.69 1.40 1.34 1.61 1.31 1.07 0.92 1.79 1.64 1.36 1.29 2.91 1.32 1.57 1.69

Average
2.68 1.56 1.38 1.27 2.77 1.68 1.53 1.42 3.08 1.74 1.36 1.26 2.29 2.09 1.19 1.16 1.88 1.79 1.48 1.20 2.07 1.58 1.19 1.09 2.12 1.46 1.29 1.19 2.17 1.18 1.06 0.94

2.51 1.77 1.66 1.77 2.63 1.89 1.79 1.89 2.86 2.55 2.11 2.04 1.98 1.88 1.53 1.52 1.57 1.67 1.39 1.16 1.56 1.42 1.16 1.03 1.748 1.48 1.27 1.16 2.24 1.72 1.74 1.59
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Fig. 9. Normalized energies with respect to the iteration number using three compared methods. Each curve represents one choice of gradient parameter.
Blue curve: 0.1. Red curve: 0.25. Green curve: 0.5. Black curve: 0.7. Each row shows the results for one metric in all the four levels. (a) SSD
level 1. (b) SSD level 2. (c) SSD level 3. (d) SSD level 4. (e) CC level 1. (f) CC level 2. (g) CC level 3. (h) CC level 4. (i) Proposed level 1.
(j) Proposed level 2. (k) Proposed level 3. (l) Proposed level 4.

methods. For a registration algorithm, the convergence prop-
erty is mainly determined by two factors: one is the opti-
mization strategy and the other is the energy function. We
used the gradient descent method for optimization, which
was implemented in [33]. The method uses a fixed gradient
parameter (i.e., the time step size). We have compared four

choices of gradient parameter (i.e., 0.1, 0.25, 0.5, 0.7) and
conducted experiments to observe the effect of the gradient
time step. Figure 9 shows the variation of energy with respect
to the iteration number for each of the three compared
methods. As the multi-resolution scheme was applied, each
sub-figure shows the convergence property comparison for
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Fig. 10. Normalized energies with respect to the iteration number in one image registration experiment using three compared methods. Each curve represents
one metric: blue curve for SSD, green curve for CC, and red curve for the proposed metric. (a) Level 1. (b) Level 2. (c) Level 3. (d) Level 4.

each of the four levels. The curves of the energy variation
have been normalized with respect to the maximal energy
values in each level. Here the convergence rate is defined
as the speed at which a convergent sequence approaches its
limit. In practice, for an iterative method, typically higher rate
of convergence means fewer iterations are needed to yield a
useful approximation or larger slope of energy variation curve
if not converged yet when reaching the maximal iteration
number (e.g., in our fourth level). It can be observed that
generally the increase of the gradient descent parameter results
in higher convergence rate. However, as it is also pointed out
in [32], very large step size will result in energy oscillation
and possibly trapped in local minima. But very small step size
results in slow convergence. To make compromise between
convergence rate and accuracy, we find 0.5 is the optimal
choice for the three metrics. As in the fourth levels, the
converge energy profiles are the lowest with this choice for
the three metrics.

Then our main focus in the second factor, that is, the
energy function. We fix the optimization strategy and compare
the convergence property impacted by the similarity metrics.
Figure 10 shows the variation of energy with respect to the
iteration number in one image registration example. In order
to make comparison between different energy function values
taken by different methods, the curves of the energy variation
have been normalized with respect to their initial energy
values. It is observed from Figure 10, in the lower-level stages
(the first three levels), the optimizations for three metrics
converge within the given maximum iteration number. Our
proposed metric provides the highest rate of convergence, as
it requires the least number of iterations to converge. In the
final level, three energy functions do not converge within the
maximum iteration number. We can compare the convergence
rate based on the slope of energy variation curve. It can be
observed that in the early stage of this level (the first 10
iterations), our metric has the fastest convergence rate in terms
of the slope of energy variation. But in the later stage, the
speed becomes slower due to the inherent property of our
metric. Our metric tries to find the correspondences in the
whole image domain. It thus uses a more aggressive way to
find correspondences and locates the region of interest (ROI)
for finding the correspondences quickly because of its long-
range interaction. Comparatively, SSD and CC method find
the correspondences in the local neighborhood region, result-
ing a more conservative way. When energy approaches the
global minima (convergence point), the differences between

different metrics become smaller, as the search regions for all
metrics are now confined in the local region. Therefore the
superiority of our metric is more obvious in the early stage of
optimization.

With regard to the running time, we compared the average
running times relative to that of the proposed method as the
actual running times can be different on different machines
and for different subjects. The average times for one pair of
non-rigid registration experiment are 1 (the proposed method,
on average 2 hours depending on the subjects), 1.5 (SyN
SSD method) and 4 (SyN CC method). The less compu-
tational cost of our method indicates the fast convergence
property possessed by the new energy function as illus-
trated in Figure 10, which also experimentally validates the
conclusion made in Appendix B. In general, the proposed
method needs smaller number of iterations to converge as
compared with SyN methods. Moreover, the utilization of FFT
implementation in our method further shortens the time cost
for each iteration. Therefore, the total running time is relatively
shorter. Comparatively, SyN CC method needs the longest
computational time because it needs to calculate the cross-
correlation coefficient in local neighborhood region of each
voxel which greatly increases the computational time in each
iteration.

IV. CONCLUSION

In this paper, we have proposed a new non-rigid image
registration method which is inspired by the crystal dislocation
theory. Based on the orientation-dependent and long-range
interaction between dislocations in crystals, we develop a new
energy function for the image registration problem. The under-
lying driving force is different to other registration methods
because it is a comprehensive force which is derived based
on the global information of the entire image domain. This
property endows the optimization of this new framework with
a faster rate of convergence. Moreover, the energy term (i.e.,
the similarity metric) has been added into a diffeomorphism
framework to make the transformation diffeomorphic. Through
comparison with other methods, the convergence property
is theoretically proved. Based on the theoretical proof, it is
concluded that the rate of convergence of the proposed method
is faster. This conclusion is also validated through experiments.
In the experiments, apart from the convergence property, the
registration accuracy is also tested with 3D MR brain images
of the IBSR database. It is qualitatively and quantitatively
demonstrated that with the new similarity metric, which is
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derived from the dislocation theory, the registration results are
more accurate.

APPENDIX A

In this appendix, we use the dislocation physics model to
derive the formulation of the new energy function and the
force driving image registration.

When transferring from the dislocation model to the image
registration problem, the δ(γ ) function in Equation 6 is
equivalent to,

δ(γ ) = |�I |δ(z), (A1)

where δ(z) is the one dimensional delta function of z. With
the directions of object boundaries defined in Equations 13
and 14, we now have

δ(γ )τr = �Ir × kδ(z), (A2)

δ(γ )τm = −�Im × kδ(z). (A3)

Using a linear combination of Equations A2 and A3 for the
right-hand side of Equation 6, the constraint equation now
becomes

� × w = �(Ir − Im) × kδ(z). (A4)

In dislocation model, we allow γ (s) to move to minimize
the energy stated in Equation 12, the dynamics equation in the
steepest descent direction is

F = w × τ . (A5)

Moreover, through Equation 9, it can be verified that
w1(x, y, 0) = w2(x, y, 0) = 0. As such, using Equation A5
and w1(x, y, 0) = w2(x, y, 0) = 0, the force driving the
moving curve is

F = w3k ×
(

− �Im

|�Im | × k
)

= −w3
�Im

|�Im | = −w · k
�Im

|�Im | .
(A6)

Then using Equations 9 and A4, from Equation A6, we have

F = 1

4π

∫
�

r × (�(Ir − Im) × k) · k
r3 dx

�Im

|�Im |
= − 1

4π

∫
�

r · �(Ir − Im)

r3 dx
�Im

|�Im | . (A7)

Under this force, the boundary curve in the moving image
will move to find the corresponding boundary in the reference
image by minimizing the total energy, which is

E = 1

8π

∫
�

dx
∫

�

�(Ir − Im) · �(Ir − Im)

r
dx′. (A8)

APPENDIX B

As it is shown in Section II-E, the variational problem of
the image registration can be solved iteratively by applying the
Equation 25. The existence of a solution for v calculated by
Equation 25 can be guaranteed by the integrability condition
established for the diffeomorphic image registration [28]. Here
the property of this solution will be discussed, and the con-
vergence rate of the optimization problem will be presented.

Lemma 1: Suppose that Ir , Im ∈ L2(R2), then F in
Equations 20, 21 and Equations 23, 24 are the Lipschitz-
continuous and the Lipschitz constants C which depend on
Ir , Im [28], [40].

Theorem 1: Suppose that Ir , Im ∈ L2(R2), then for all
v(0) ∈ H , where H is the separable Hilbert space (H =
L2(R2) × L2(R2)), there exists a unique solution of v.

Proof: Inspired by [40], which presents the existence and
uniqueness of solutions for a parabolic system, the existence
and uniqueness of the solution for v is proved as follows.

v is calculated through the updating Equation 25. According
to the Picard-Lindelof Theorem, Equation 25 has a classical
solution:

v(t) = v(0) +
∫ t

0
−F(v(s))ds. (B1)

Assume v1(t) and v2(t) are solutions of Equation B1 for
initial conditions v1(0) and v2(0), respectively.

According to the Lipschitz continuity of F shown in
Lemma 1, with C as the Lipschitz constant of F, we have,

‖F(v1(s)) − F(v2(s))‖H ≤ C ‖v1(s) − v2(s)‖H . (B2)

Then from B1, we have

‖v1(t) − v2(t)‖H ≤ ‖v1(0) − v2(0)‖H

+C
∫ t

0
‖v1(s) − v2(s)‖H ds. (B3)

With the Gronwall-Bellman lemma, it has,

‖v1(t) − v2(t)‖H ≤ eCt ‖v1(0) − v2(0)‖H , (B4)

which yields the uniqueness of the solution if it exists.
Now consider the Banach space defined by

B = {v : sup
t≥0

‖v(t)‖H e−K t < ∞}, (B5)

endowed with the norm ‖v(t)‖B = sup
t≥0

‖v(t)‖H e−K t , where

K is a constant.
Let φ be defined by

φ(v)(t) = v(0) +
∫ t

0
−F(v(s))ds. (B6)

If K > C , then φ(B) ⊂ B , and φ is C
K -Lipschitz since

‖φ(v1) − φ(v2)‖B = sup
t≥0

‖φ(v1)(t) − φ(v2)(t)‖H e−K t

≤ sup
t≥0

∫ t

0
C ‖v1(s) − v2(s)‖H dse−K t

≤ sup
t≥0

C ‖v1 − v2‖B e−K t
∫ t

0
eK sds

≤ sup
t≥0

C

K
‖v1 − v2‖B e−K t(eK t − 1)

≤ C

K
‖v1 − v2‖B .

It can be deduced that φ is a contraction. With the Banach’s
fixed point theorem, there exists a unique v, s.t. φ(v) = v,
which is the generalized solution for v.
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Theorem 2: Based on the Theorem 1, the convergence
rate of the optimization problem is related with the Lipschitz
constant C of F.

Proof: According to the Banach’s fixed point theorem, let
(X, d) be a non-empty complete metric space. Let φ : X → X
be a contraction mapping on X , i.e., there is a nonnegative
real number q < 1 such that, d(φ(x), φ(y)) ≤ qd(x, y), for
all x, y in X . Then the map φ admits one and only one fixed
point x∗.

Through the derivation in Theorem 1,

‖φ(v1) − φ(v2)‖B ≤ C

K
‖v1 − v2‖B, (B7)

in which case, q = C
K .

Next we will prove that q is actually related to the con-
vergence rate. As the fixed point can be found as follows:
start with an arbitrary x0, the iterative sequence xn = φ(xn−1)
converges and its limit is x∗. The speed of convergence can
be calculated by:

d(x∗, xn) ≤ qn

1 − q
d(x1, x0), (B8)

equivalently

d(x∗, xn+1) ≤ qd(xn, x∗). (B9)

Through the definition of convergence, we get from B9 that
q is the convergence rate. The smaller the q, the faster the
convergence. Then in the registration framework, q = C

K and
K is not concerned with the algorithm itself. Therefore, the
convergence rate of the registration algorithm is proportional
to C .

Theorem 3: The registration framework with the proposed
similarity metric can converge faster than the SSD metric.

Proof: Define I r = Ir (x + hr) and I m(hi ) = Im(x + hi )
with hi (i = 1, 2) ∈ H.

For SSD metric, with the Equation 20,

Fm = 2Lv − 2(I r − I m(h)) |Dh| �I m(h). (B10)

Then

Fm(h1) − Fm(h2)

= 2Lv1 − 2Lv2 − 2(I r − I m(h1)) |Dh1|�I m(h1)

+2(I r − I m(h2)) |Dh2|�I m(h2)

= 2Lv1 − 2Lv2 − 2[(I r − I m(h1))

−(I r − I m(h2))] |Dh1| �I m(h1)

+2(I r − I m(h2))(|Dh2|�I m(h2) − |Dh1| �I m(h1)).

(B11)

We introduce some notations for functions defined on �:
‖ f ‖C0 = sup

x∈�
| f (x)|, | f |C1 = sup

x∈�
|� f (x)|, ‖ f ‖C1 =

‖ f ‖C0 + | f |C1 , and the following Lipschitz norms:

‖ f ‖C0,1 = ‖ f ‖C0 + sup
x,y∈�

| f (x) − f (y)|
|x − y| ,

‖ f ‖C1,1 = ‖ f ‖C1 + sup
x,y∈�

|� f (x) − � f (y)|
|x − y| .

Therefore, from Equation B11, we have,

‖Fm(h1) − Fm(h2)‖L2 ≤ 2L ‖v1 − v2‖L2

+2
∥∥I m

∥∥
C1

∥∥I m
∥∥

C0,1 ‖h1 − h2‖L2

+2
∥∥I m

∥∥
C0

∥∥I m
∥∥

C1,1 ‖h1 − h2‖L2

+2
∥∥I m

∥∥
C1,1

∥∥I r
∥∥

L∞ ‖h1 − h2‖L2 .

(B12)

According to the Lemma 2.2 in [28], with a constant M,

‖v1 − v2‖L2 ≤ M ‖h1 − h2‖L2 . (B13)

Then we can get:

‖Fm(h1) − Fm(h2)‖L2 ≤ CSS Dm ‖h1 − h2‖L2 , (B14)

with the Lipschitz constant CSS Dm for Fm ,

CSS Dm = 2L M + 2
∥∥I m

∥∥
C1

∥∥I m
∥∥

C0,1

+2
∥∥I m

∥∥
C0

∥∥I m
∥∥

C1,1 + 2
∥∥I m

∥∥
C1,1

∥∥I r
∥∥

L∞ . (B15)

Applying the above procedure to the Equation 21, it can
deduce the Lipschitz constant for Fr as follows,

CSS Dr = 2L M + 2
∥∥I r

∥∥
C1

∥∥I r
∥∥

C0,1

+2
∥∥I r

∥∥
C0

∥∥I r
∥∥

C1,1 + 2
∥∥I r

∥∥
C1,1

∥∥I m
∥∥

L∞ . (B16)

For the dislocation energy based similarity metric, with the
Equation 23,

Fm = 2Lv − 1

4π

∫
�

r · (�I r − �I m(h))

r3 dx |Dh| �I m(h)∣∣�I m(h)
∣∣

= 2Lv −
[

1

4π
(�I r − �I m(h)) |Dh| �I m(h)∣∣�I m(h)

∣∣
]

∗ �1

r
.

(B17)

Then

Fm(h1) − Fm(h2)

= 2Lv1 − 2Lv2

− 1

4π

[(
�I r − �I m(h1)

) |Dh1| �I m(h1)∣∣�I m(h1)
∣∣

−(�I r − �I m(h2)) |Dh2| �I m(h2)∣∣�I m(h2)
∣∣
]

∗ �1

r
. (B18)

‖Fm(h1) − Fm(h2)‖L2

≤ 2L ‖v1 − v2‖L2

+ 1

4π

∥∥∥∥∥
[(

|Dh1| �I m(h1)∣∣�I m(h1)
∣∣ − |Dh2| �I m(h2)∣∣�I m(h2)

∣∣
)

�I r

−
(

|Dh1|
∣∣�I m(h1)

∣∣ − |Dh2|
∣∣∣∣�I m(h2)

∣∣∣∣
)]

∗ �1

r

∥∥∥∥
L2

.

(B19)

Using the Young’s inequality:
‖ f ∗ g‖r ≤ ‖ f ‖p ‖g‖q , (B20)
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where 1
p + 1

q = 1
r + 1, and with the Lipschitz norms:

‖ f ‖C2,2 = ‖ f ‖C2 + sup
x,y∈�

∣∣∣ � f (x)
|� f (x)| − � f (y)

|� f (y)|
∣∣∣

|x − y| ,

‖ f ‖C2 = sup
x∈�

∣∣∣∣ � f (x)

|� f (x)|
∣∣∣∣.

We can obtain that,

‖Fm(h1) − Fm(h2)‖L2

≤ 2L ‖v1 − v2‖L2 + 1

4π

( ∥∥I r
∥∥

C1

∥∥I m
∥∥

C2,2 ‖h1 − h2‖L2

+ ∥∥I m
∥∥

C1,1 ‖h1 − h2‖L2

) ∣∣∣∣�1

r

∣∣∣∣
L1

.

(B21)

It leads to:

‖Fm(h1) − Fm(h2)‖L2 ≤ CDism ‖h1 − h2‖L2, (B22)

with

CDism = 2L M+ 1

4π

(∥∥I r
∥∥

C1

∥∥I m
∥∥

C2,2 +∥∥I m
∥∥

C1,1

) ∣∣∣∣�1

r

∣∣∣∣
L1

.

(B23)

Similarly, the following can be obtained,

CDisr = 2L M+ 1

4π

(∥∥I m
∥∥

C1

∥∥I r
∥∥

C2,2 +∥∥I r
∥∥

C1,1

) ∣∣∣∣�1

r

∣∣∣∣
L1

.

(B24)

Comparing with CSS Dm and CSS Dr , it can be deduced that
CDism < CSS Dm and CDisr < CSS Dr . With the conclusion of
Theorem 2, it can be concluded that the registration framework
with the crystal dislocation energy can converge faster than
that with SSD metric.
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