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Feature Based Nonrigid Brain MR Image Registration
With Symmetric Alpha Stable Filters

Shu Liao* and Albert C. S. Chung

Abstract—A new feature based nonrigid image registration
method for magnetic resonance (MR) brain images is presented in
this paper. Each image voxel is represented by a rotation invariant
feature vector, which is computed by passing the input image
volumes through a new bank of symmetric alpha stable � �
filters. There are three main contributions presented in this
paper. First, this work is motivated by the fact that the frequency
spectrums of the brain MR images often exhibit non-Gaussian
heavy-tail behavior which cannot be satisfactorily modeled by the
conventional Gabor filters. To this end, we propose the use of
filters to model such behavior and show that the Gabor filter is
a special case of the filter. Second, the maximum response
orientation (MRO) selection criterion is designed to extract rota-
tion invariant features for registration tasks. The MRO selection
criterion also significantly reduces the number of dimensions of
feature vectors and therefore lowers the computation time. Third,
in case the segmentations of the input image volumes are available,
the Fisher’s separation criterion (FSC) is introduced such that
the discriminating power of different feature types can be directly
compared with each other before performing the registration
process. Using FSC, weights can also be assigned automatically to
different voxels in the brain MR images. The weight of each voxel
determined by FSC reflects how distinctive and salient the voxel is.
Using the most distinctive and salient voxels at the initial stage to
drive the registration can reduce the risk of being trapped in the
local optimum during image registration process. The larger the
weight, the more important the voxel. With the extracted feature
vectors and the associated weights, the proposed method registers
the source and the target images in a hierarchical multiresolution
manner. The proposed method has been intensively evaluated on
both simulated and real 3-D datasets obtained from BrainWeb and
Internet Brain Segmentation Repository (IBSR), respectively, and
compared with HAMMER, an extended version of HAMMER
based on local histograms (LHF), FFD, Demons, and the Gabor
filter based registration method. It is shown that the proposed
method achieves the highest registration accuracy among the five
widely used image registration methods.

Index Terms—Fisher’s separation criterion (FSC), heavy-tail be-
havior, maximum response orientation selection criterion, nonrigid
registration, rotation invariance, symmetric alpha stable ( )
filter.
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I. INTRODUCTION

A S NONRIGID image registration plays an important role
in medical image analysis, many novel approaches have

been developed for this application. They can be broadly classi-
fied into three categories: landmark-based, intensity-based, and
feature-based registration methods.

Landmark-based registration methods exploit prior knowl-
edge to establish anatomical correspondences. Anatomical
features are extracted from manually placed landmark points
[1]–[6]. Transformations are then estimated from those
anatomical features. The landmark-based registration methods
are usually computationally efficient. However, to give more
accurate registration results, it requires additional work to
manually place sufficient number of landmark points. Inten-
sity-based registration methods guide the registration with the
goal of optimizing the image intensity similarity between the
source and the target images [7]–[12]. But intensity similarity
does not necessary lead to anatomical similarity. Therefore,
in some cases the registration process may be trapped at local
minima. Feature-based registration methods use feature vectors
as signatures to characterize each voxel in the image volume.
Image registration is considered as a feature matching and opti-
mization problem, and registration accuracy therefore depends
on the extracted features.

HAMMER is a hierarchical feature-based registration algo-
rithm proposed by Shen and Davatzikos [13]. At the initial stage
of registration, it selects a small number of the most salient
voxels as active points to drive the registration process. The
saliency is measured based on the distinctness of the extracted
feature vectors of each voxel. Since voxels with the most distinct
feature vectors are usually located at the salient regions of brain
images such as sulcal roots and gyral crowns, such voxels are
more reliable to drive the registration process in the initial stage.
As the registration procedure proceeds, more and more voxels
are added as active points to refine the registration results. Fi-
nally, all voxels are used as active points. The subvolume defor-
mation model is used in the HAMMER framework [13]. More
precisely, the displacement vectors of other voxels are interpo-
lated from the displacement vectors of the current active points
by using the Gaussian windows which prescribe the influence
of the current active points on the displacement of other voxels
and fade away with distance. The energy function in HAMMER
is implicitly optimized by finding suitable candidate voxels to
be deformed to in the template image through comparing the
feature vectors of two voxels in the template and subject im-
ages. The geometric moment invariants (GMIs) of white matter,
gray matter, and cerebrospinal fluid are adopted as features in
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the HAMMER algorithm. Therefore, it is obvious that one lim-
itation of the HAMMER algorithm is that images to be regis-
tered must be segmented before registration proceeds. Images
for some modalities and some organs are difficult, or impos-
sible to give accurate segmentation. To overcome such shortage,
Shen [14] applied the regular geometric moments of local his-
tograms as features based on the HAMMER framework. Unlike
the GMIs features adopted in the original HAMMER algorithm,
the regular geometric moments of local histograms do not need
to be calculated from the segmented images.

In this paper, we propose a new feature extraction method by
using the filters which are derived based on the dis-
tribution [15] and apply the new method with the HAMMER
framework. In our proposed method, each voxel is character-
ized by the filter responses as its signature. The main con-
tributions of this paper are the following. First, it is observed
that the energy spectrums of brain MR images often exhibit
non-Gaussian heavy-tail behavior which cannot be satisfactorily
modeled by the conventional Gabor filters. As will be shown in
this paper, such behavior is essential for image registration be-
cause voxels, which are located at the tail of the energy spec-
trums, are more likely located at the salient regions of the brain
MR image volumes. To this end, the filter is designed to
model this non-Gaussian heavy-tail behavior. The Gabor filter
is shown to be a special case of the filter. This feature ex-
traction procedure does not need the segmentation of the input
images. Second, as pointed out in [13], rotation invariance is an
important property for the feature-based registration methods.
To ensure that the features extracted by the filters are ro-
tation invariant, we propose the maximum response orienta-
tion (MRO) selection criterion. The MRO criterion not only ex-
tracts rotation invariant features, but also significantly reduces
the computational burdens during the registration process. Fi-
nally, in case quality segmentations of the input image volumes
are available, we propose an evaluation protocol which can di-
rectly compare the discriminating power of different features
prior to perform the actual registration. More specifically, the
registration accuracy can be affected by many factors in the reg-
istration process such as the extracted features, transformation
models, and the similarity measures. In this paper, given the seg-
mentation is available for an input image, we design an evalu-
ation protocol for directly comparing the discriminating power
of different features based on the Fisher’s separation criterion
(FSC). This protocol can avoid the interferences from other fac-
tors such as transformation models but solely focus on the fea-
tures during the feature evaluation process. Therefore it can be a
useful tool to reliably analyze the performance of different fea-
tures used in the registration tasks. Moreover, based on FSC and
the given segmentations, we can automatically assign weights
to each voxel in the image volumes. The larger the weight, the
more important the voxel contributes in the registration tasks.

The paper is organized as follows. Section II introduces the
filters and demonstrates the non-Gaussian heavy-tail be-

havior existing in the energy spectrum of the brain MR images.
The MRO selection criterion is proposed in this section for ex-
tracting rotation invariant features. This section also briefly de-
scribes the energy function and deformation model we use in
this paper. Section III gives a protocol for directly comparing

the discriminating power of different features in the registration
task based on the FSC in case the segmentations of input im-
ages are available. Moreover, a training framework is provided
to automatically assign weights to different voxels in the image
based on the FSC. Section IV analyzes the experimental results
and Section V concludes the paper.

II. FEATURE EXTRACTION WITH THE FILTERS

In this section, we introduce the filters which are de-
rived based on the symmetric alpha stable distribution [15]. We
show the existence of the non-Gaussian heavy-tail behavior in
the energy spectrums of the brain MR images, and highlight
the limitations of the Gabor filters in modeling such behavior
(Sections II-A and II-B). With the filters, in Section II-C,
we propose the maximum response orientation selection crite-
rion for choosing rotation invariant features, which are subse-
quently exploited in the hierarchical multi-resolution nonrigid
registration process (Section II-D).

A. Conventional Gabor Filter

The Gabor filter, first proposed by Gabor [16], is a useful
tool for feature extraction and signal decomposition in image
processing, computer vision, and medical image analysis. It has
been applied to medical image registration [17]. The 3-D Gabor
filter is defined as

(1)

where is a normalization factor, is the
center frequency in the 3-D Fourier domain, ,

, and . and
define the orientation in the 3-D frequency domain. charac-
terizes the shape of the Gaussian envelope. The Gabor filter de-
fined in (1) assumes that the Gaussian window is symmetric and
isotropic. In general case, the Gaussian window needs not be
isotropic. However, in this paper, we follow the Gabor filter def-
inition in [17] as defined in (1), which assumes that the Gaussian
kernel is isotropic.

From (1), it is observed that the Gabor filter can be viewed
as a Gaussian kernel modulated by a complex sinusoid in the
frequency domain. The center of the Gaussian kernel is located
at the center frequency , with a specific orientation defined by

and . Therefore, to satisfactorily describe the input image
by using the Gabor filters, the basic assumption is that the
image Fourier spectrums of various frequency bands follow the
Gaussian distributions. Otherwise, important information may
be lost which is contained in the frequency bands lying outside
the coverage of the Gaussian kernel bandwidth. However,
there are many signals in practical applications do not follow
the Gaussian distributions [15]. Using the Gaussian distribu-
tion to model non-Gaussian behaviors can lead to significant
performance degradation [15]. In the next subsection, it will
be demonstrated that the non-Gaussian behavior exists in the
energy spectrums of the brain MR images and we will show
how the filters can be used to model such behavior.
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Fig. 1. (a) T1 MR image slice obtained from the IBSR website; (b) color map of the image obtained by transforming the original image to the Fourier domain,
preserving only the smallest 10% and largest 10% of the energy magnitudes in various frequency bands (lie on the tail), then transform back to the spatial domain.
Here, red color denotes large response values while blue color denotes low response values. (c) Voxels highlighted with green circle are the top 10% (most dominant)
voxels with the largest response values in (b).

B. Filters and the Heavy-Tail Behavior

In this subsection, we analyze the Fourier spectrums of the
brain MR images, demonstrate the existence of the heavy-tail
behavior, and introduce the filters.

Fig. 1(a) is a T1-MR image slice with parameters: TR
, TE , flip angle degrees, field of view

cm obtained from the Internet Brain Segmentation Reposi-
tory (IBSR) project [18]. Its normalized energy magnitude dis-
tributions of various frequency bands are plotted in blue bars
in Fig. 2 from column 1 to column 3. The histograms plotted
in Fig. 2 are computed by using ideal band-pass filters whose
passing bands are determined by the frequency ranges spec-
ified in Fig. 2 which shows the frequency spectrum distribu-
tions of different frequency bands. It is observed that the en-
ergy magnitude distributions of various frequency bands exhibit
non-Gaussian heavy-tail behavior. Such behavior is more ob-
vious in the mid- and high-frequency bands. The red curves on
the first row of Fig. 2 are the best fitted Gaussian models esti-
mated by using the maximum likelihood estimation for various
frequency bands. It is obvious that Gaussian distributions cannot
satisfactorily model the heavy-tail behavior.

To further investigate the property of the heavy-tail behavior,
we first transformed the input image, as shown in Fig. 1(a), to the
Fourier representation. We only maintained the smallest 10%
and the largest 10% (i.e., the tails) of the energy magnitudes
in various frequency bands, and filtered out other frequency
information. Then we transformed the image back to the spa-
tial domain, the corresponding color map is shown in Fig. 1(b).
Therefore, the image shown in Fig. 1(b) only contains the fre-
quency information which lies on the tails of the various fre-
quency bands. The voxels with small response values can be
eliminated as they are not significant during the process of reg-
istration. However, those with large response values play an im-
portant role during registration as they contain rich information.
We highlight the top 10% voxels which have the largest response
values in Fig. 1(b) with green circles in Fig. 1(c). It is found that
most of these voxels are located at the salient regions of the input

image such as sulcal roots and gyral crowns which are impor-
tant for registration process as stated in [13].

The distribution is a useful tool to model the heavy-tail
behavior [15]. Its characteristic function is given as

(2)

where is the location parameter and becomes the mean value
when and the median value when . is
the scale parameter, also called the dispersion, which is similar
to the variance of Gaussian distributions. is the characteristic
exponent, which measures the “thickness” of the tails of the dis-
tribution. The smaller the value of is, the heavier the tails are.
The Gaussian distribution is a special case of the distri-
bution (i.e., when ). Generally, there is no closed form
expression for the probability density function of the dis-
tribution. But it can be satisfactorily approximated by the power
series expansions [15].

The red curves on the second row of Fig. 2 are the best fitted
distributions obtained via maximum likelihood estimation.

It is demonstrated that the heavy-tail behaviors are well modeled
as compared with the Gaussian distributions. Table I lists the
average sums of squared errors modeled by the Gaussian and
the distributions for various frequency bands for the 20
normal subject images obtained from the IBSR website.

In order to further illustrate the general existence of the
non-Gaussian heavy-tail behavior in the brain MRI images,
Table II lists the characteristic exponents computed via max-
imum likelihood estimated together with their corresponding
95% confidence intervals, for a set of 20 image volumes of
different subjects obtained from the IBSR website of the low,
mid and high frequency bands.

It is observed from Table II that the real 20 image volumes
obtained from the IBSR website exhibit different degrees of
non-Gaussian heavy-tail behavior in various frequency bands,
ranging from (approximate to the Cauchy distribu-
tion) to (the Gaussian distribution). Therefore, it can
be seen that such non-Gaussian heavy-tail behavior generally
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Fig. 2. Blue bars from column 1 to column 3 are the histograms of the normalized frequency magnitude distribution of low frequency band: 2.00 to 3.17, mid
frequency band: 3.17 to 5.04, and high frequency band: 5.04 to 9.00 (cycles/image) refer to the input image in Fig. 1(a). (a)–(c): The red curves are the best
fitted Gaussian distributions to model the normalized frequency magnitude distribution of different frequency bands obtained via maximum likelihood estimation.
(d)–(f): The red curves are the best fitted ��� distributions to model the normalized frequency magnitude distribution of different frequency bands obtained via
maximum likelihood estimation. (a) Low frequency; (b) mid frequency; (c) high frequency; (d) low frequency; (e) mid frequency; and (f) high frequency.

TABLE I
AVERAGE SUMS OF SQUARED ERRORS OF MODELING THE ENERGY MAGNITUDE

DISTRIBUTION USING THE GAUSSIAN AND THE ��� DISTRIBUTIONS FOR

DIFFERENT FREQUENCY BANDS FOR THE 20 NORMAL SUBJECT IMAGES

OBTAINED FROM THE IBSR WEBSITE

exists in various frequency bands of brain MR images. There-
fore, we are motivated to introduce the filter to extract fea-
tures from brain MR images for registration task. The 3-D
filter is defined as

(3)

where is the zero-mean kernel defined as

(4)

where A and B are defined by (5) and (6), respectively

(5)

(6)

TABLE II
ESTIMATED CHARACTERISTIC EXPONENTS VIA THE MAXIMUM LIKELIHOOD

ESTIMATION AND THEIR CORRESPONDING 95% CONFIDENCE INTERVALS

OF THE 20 IMAGE VOLUMES OBTAINED FROM THE IBSR WEBSITE

OF THE LOW-, MID-, AND HIGH-FREQUENCY BANDS

In (3) and (6), , , and are 3-D frequency components which
are the same with the (1). , ,
and . and define the ori-
entation in the 3-D frequency domain. is
the center frequency. Gabor filter is a special case of the
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Fig. 3. Illustration of the 1-D zero mean ��� kernels with unit dispersion
parameter and different � coefficients in the frequency domain. It is shown that
the heavy-tail behavior has the dual property across the spatial and frequency
domains.

filters, when . It should be noted that based on the defi-
nitions stated in (5) and (6), we assume that the kernel is
isotropic, following the similar assumption in [17] for the con-
ventional Gabor filter case. The location parameter of the
kernel is zero and the same as in the conventional Gabor filter
case [17] because the center of the kernel is determined by the
frequency of the modulated sinusoid to extract features from dif-
ferent frequency bands in the Fourier domain.

It is worth pointing out that the Gaussian kernel used in the
conventional Gabor filter has the dual property across the spa-
tial and Fourier domains. More specifically, after transforming
the Gaussian kernel in the spatial domain to the Fourier domain,
it remains its Gaussian property. Similarly, the heavy-tail prop-
erty of the kernel also has the dual property across the spa-
tial and Fourier domains. For illustration, Fig. 3 shows the zero
mean kernels in the frequency domain with different co-
efficients, which are obtained by applying the Fourier transform
to the 1-D kernel described in

(7)

where is the 1-D zero mean kernel in the spatial
domain, and the dispersion parameter is set to 1 for illustra-
tion. It is observed in Fig. 3 that the heavy-tail behavior of the

kernels has the dual property across the spatial and fre-
quency domains. This dual property is similar to the dual prop-
erty of the Gaussian kernels across the spatial and frequency
domains.

The input image is represented by the filter responses.
More specifically, the input image is convolved with a set of
the filters with various characteristic exponents, center fre-
quencies, and orientations. The magnitudes of the filtered re-
sponses are normalized to the range [0, 1] and adopted as fea-
tures. In this paper, the center frequencies and orientations are
defined as ,

, . ,
, and are the numbers of center frequencies and orien-

tations to be decomposed in the 3-D frequency domain,

is the highest center frequency to be analyzed. In this paper,
(cycles/image), , , and

. The frequency unit cycles/image is a widely used unit to
characterize different frequency bands, which can be found in
[19]–[21]. Six different characteristic exponents are used to cap-
ture the heavy-tailed behavior: , , ,

, , and . The scale parameter is set
for each filter so that each filter has a half peak radial bandwidth
of one octave.

Moreover, to demonstrate the fitness of using the kernel
to capture the anatomical information of voxels which lie on the
tails (i.e., the smallest 10% and largest 10% of the energy mag-
nitudes) in various frequency bands, Table III lists the average
proportions of the voxels which lie on the tails of the normalized
magnitude distribution in various frequency bands covered by
the Gaussian kernel, the proposed kernel and two possible
alternative kernels: log-normal kernel and t-distribution kernel
in the Fourier domain within the half peak radial passing band
for the 20 image volumes of IBSR. Each in Table III is cal-
culated in the same way as the one in the previous paragraph
(i.e., , , (cy-
cles/image), ). It is observed in Table III that for each
frequency band, using the log-normal kernel, the t-distribution
kernel, and the kernel all have larger coverage proportions
of the voxels which lie on the tails of the normalized magni-
tude distribution of the corresponding frequency band than the
Gaussian kernel within their passing bands. This observation re-
flects that a significant amount of voxels which lie on the tails of
the normalized magnitude distribution of each frequency band
indeed locates outside the passing band of the Gaussian kernel.
As illustrated in Figs. 1 and 2, failure to model the voxels lying
on the tails on each frequency band can lead to significant per-
formance degradation. Therefore, kernels with heavy-tail prop-
erties should be adopted.

It is also reflected by Table III that, comparing to other
two possible alternative kernels with heavy-tail properties:
log-normal kernel and t-distribution kernel, the kernel
consistently has larger coverage proportions than both the
log-normal kernel and the t-distribution kernel. The reported
coverage proportions of the log-normal kernel and the t-distri-
bution kernel are calculated as follows: six values are adopted
for the standard deviation parameter which controls the shape
of the tail of the log-normal kernel, where , ,

, , , and , then the
log-normal kernel with the highest coverage proportion of the
voxels lying on the tail of the normalized magnitude distribu-
tion of each frequency band is selected as the reported coverage
proportion value. Similar for the t-distribution kernel, where six
values are used for the number of degrees of freedom param-
eter which controls the shape of the tail of the t-distribution
kernel, where , , , , , and

and the highest coverage proportions among those six
t-distribution kernels are reported. It is also worth pointing out
that both the t-distribution kernel and the kernel have
larger coverage proportions of the voxels lying on the tails
than the log-normal kernel almost in every frequency band.
This illustrates the importance of the symmetric property of
the kernels.
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TABLE III
AVERAGE PROPORTIONS AND STANDARD DEVIATION (IN PERCENT) OF THE VOXELS WHICH LIE ON THE TAILS OF THE NORMALIZED MAGNITUDE DISTRIBUTION

OF DIFFERENT FREQUENCY BANDS COVERED WITHIN THE PASSING BAND OF VARIOUS KERNELS: GAUSSIAN KERNEL, LOG-NORMAL KERNEL, T-DISTRIBUTION

KERNEL AND THE PROPOSED ��� KERNEL FOR THE 20 IMAGE VOLUMES IN IBSR. � IS CALCULATED BY: � � � ��
�
�� �� � �� �� � � � � ��, WHERE

� � �	���, (CYCLES/IMAGE)

Fig. 4. (a) Image slice obtained from the IBSR website. The green cross point located at the corner of ventricle is the point whose feature vector is compared
with the feature vectors of other points. (b) Resulting difference map. Blue color represents high similarity and red color denotes low similarity. (c). Image slice
obtained from the IBSR website, which is of different subject as compared with the image slice in (a). The diamond point is the voxel whose feature vector is
the most similar to the feature vector of the green cross point in (a). (d) Resulting color-coded difference map obtained by comparing the difference between the
feature vector of the green cross point in (a) and the feature vectors of all points in (c). Blue color denotes high similar and red color denotes low similarity. For
comparison purpose, the corresponding color-coded difference maps generated by using the Gabor + MRO features are also included in (e) and (f), respectively.

C. Maximum Response Orientation Selection Criteria

The definition of filter and the way to use the filter to
extract features from brain MR images have been described in
Section II-B. However, the extracted features up to the current
stage are not rotation invariant (i.e., when the input image
rotates at a specific angle, the elements of the feature vectors
representing each voxel change). As pointed out by [13],
rotation invariance is a desired property for feature based regis-
tration methods. Therefore, we propose the maximum response
orientation selection criterion to choose the rotation invariant
features. Suppose for a given characteristic exponent and
center frequency , according to the formulation described in
Section II-B, there are responses for each voxel with
respect to different orientations. Then the maximum response
for each voxel is defined as

(8)

where denotes the input image and the symbol means con-
volution. Therefore, the value for each voxel is rota-
tion invariant because no matter how the images are rotated, the
maximum response value still remains the same for a particular
direction. Another advantage of the MRO selection criterion

is that the feature dimension is significantly reduced. Without
the MRO selection criterion, each voxel is represented by a

dimension feature vector (six character-
istic exponents, five center frequencies, six directions, and six

directions). After applying the MRO selection criterion, the
feature dimension is reduced to . Therefore,
the computational burden is significantly reduced.

To demonstrate the discriminating ability of the proposed fea-
ture, Fig. 4(a) is a brain MR image slice obtained from the IBSR
website. Fig. 4(b) shows the color-coded difference map of input
image, as shown in Fig. 4(a). The green cross point in Fig. 4(a) is
the point whose extracted feature vector is to be compared with
feature vectors of other points. We adopt the similarity mea-
sure function between two feature vectors and proposed
in HAMMER [13], which is defined as

(9)

where and denote the th element of feature vectors
and , respectively. denotes the dimensions of the feature

vectors and . It is worth reminding that each dimension
of feature vectors has been normalized to the range [0, 1] as
mentioned in Section II-B.
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It is observed from the difference map [Fig. 4(b)] that the
voxel highlighted with green cross in Fig. 4(a) is only similar
to the voxels within a small neighborhood and voxels with sym-
metric locations. All these voxels are with similar anatomical
property (i.e., around the corners of ventricle). Also, for the fea-
ture based image registration methods, it is essential that the
corresponding points across different subjects have similar fea-
ture vectors. Between different subjects, in order to investigate
the differences in feature vectors of the proposed method, we
compare the feature vector of the green cross point in Fig. 4(a)
with the feature vectors of all the points in Fig. 4(c). Fig. 4(a)
and Fig. 4(c) are image slices obtained from the IBSR website of
different subjects. The corresponding difference map is shown
in Fig. 4(d).

For comparison purpose, the difference maps generated
by using the Gabor + MRO features are also included in
Fig. 4(e) and (f) which are corresponding to the intraperson
difference map and the inter-person difference map respectively.
It is observed from Fig. 4(e) that using the Gabor + MRO fea-
tures results in many false similarity matches. Most of the false
similarity matches occur at the region of sulcal roots and gyral
crowns, which are the salient regions corresponding to the voxels
lying on the tail of different frequency bands as illustrated in
Figs. 1 and 2. Therefore, the advantage of using the kernel
is strongly implied. Furthermore, for the intersubject difference
map obtained by Gabor + MRO shown in Fig. 4(f), it is observed
that the Gabor + MRO features cannot effectively distinguish the
differences between the referencing voxel and other voxels. It
partially reflects the stronger discriminating power of the +
MRO features than the Gabor + MRO features.

Based on the resulting difference map [Fig. 4(d)], the fea-
ture vector of the green cross point in Fig. 4(a) is only similar
to a small group of points which have similar anatomical struc-
tures in Fig. 4(c) (i.e., at or around the ventricle corners). The
voxel with the most similar feature vector as compared with the
green cross point in Fig. 4(a) is highlighted with a diamond in
Fig. 4(c). It is shown that the most similar voxel is located at the
same relative position (i.e., the upper left corner of ventricle).
Therefore, the proposed feature not only can discriminate voxels
with different anatomical structures from the same subject, but
also can help establish voxel correspondences between different
subjects.

D. Energy Function and Deformation Model

In this paper, we adopt the energy function used in [14], which
can be expressed as

(10)

where

where and denote the current sets of active
points in the template image and the subject image respectively.

and represent the feature vectors of voxel in the
template and the subject images, respectively. is the dis-
placement field from which the template image deforms to the
subject image. Therefore, we obtain the forward transformation

. denotes the inverse transformation.
is the weight for voxel in the template image. It implies

the importance of voxel during the registration process. Sim-
ilar to [14], is determined by the edge response value by
using the Canny edge detector. is the neighborhood system
of voxel , which is a sphere centered at voxel with a radius .
In this paper, is set by following the same criterion in [14] (i.e.,

in the initial stage of registration, and decreases to
1 voxel at the end of the registration process). is a weight
which can be determined similar to .

The first energy term focuses on the data term similarity in the
template image domain, and the second energy term focuses on
the data term similarity in the subject image domain. The third
energy term focuses on the smoothness constraint on the defor-
mation field, where denotes the Laplacian operator of
the displacement field . The coefficient controls the im-
portance of the smoothness constraint, in this paper, .
Adding the first and second energy terms can guarantee the
symmetric property with respect to the data term. However, the
smoothness term is not inverse consistent. To reduce the compu-
tational time and simplify the formulation, we enforce inverse
consistence for the data term only to the active points during reg-
istration. The detail procedure for enforcing such inverse con-
sistent is described in [13].

We use the subvolume deformation model adopted in [13] and
[14]. The multiresolution scheme is used. More specifically, the
registration is performed in three resolution levels of the orig-
inal image. The highest resolution level is the original image, the
medium resolution level is obtained by downsampling the orig-
inal image by a factor of two, and the lowest resolution level is
obtained by downsampling the medium resolution level image
by a factor of two. The same registration process is performed
at each resolution level, from the lowest resolution level to the
highest resolution level. The registration result at the end of each
resolution level is used as the initial stage to the next resolution
level.

III. FEATURE DISCRIMINATING POWER COMPARISON

AND OPTIONAL TRAINING STEP WITH

FISHER’S SEPARATION CRITERIA

Section II describes the way to use filters for extracting
features from the input images and use the MRO selection crite-
rion to choose rotation invariant features. It is reminded that up
to the current stage, the proposed framework is an unsupervised
process. This means that there is no training step and the frame-
work does not require the segmentations of the input images. In
this section, we introduce the FSC and propose a protocol for di-
rect comparison of the discriminating ability between different
kinds of features if the segmentations of the input images are
available. Furthermore, based on the FSC, if the segmentations
are available, weights can also be assigned to each voxel to de-
note its importance during registration.
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TABLE IV
MEAN VALUES OF THE FISHER’S SEPARATION CRITERIA FUNCTION IN EQUATION (13) FOR DIFFERENT KINDS OF TISSUE PAIRS: GRAY MATTER AND WHITE

MATTER, GRAY MATTER, AND THE CEREBROSPINAL FLUID, WHITE MATTER AND THE CEREBROSPINAL FLUID OF VARIOUS FEATURES OF THE 20 NORMAL

SUBJECT IMAGES OBTAINED FROM THE IBSR WEBSITE

A. Feature Discriminating Power Comparison Based on FSC

It is noted that the proposed method is a feature based reg-
istration method and therefore the performance of the feature
based registration methods are directly related to the types of
features adopted. A problem naturally arises: how different
types of features are compared. One way is to observe the final
registration accuracies by using different kinds of features.
However, comparing features in this way has limitations be-
cause the final registration accuracy is also affected by many
other factors in the registration process such as the similarity
measures and deformation models adopted. Some features may
fit for a specific energy function but some are not. Therefore,
judging the performance of different kinds of features by
merely observing the final registration result may have bias.
In this paper, we propose a protocol to directly compare the
discriminating power of different kinds of features prior to per-
form the actual registration based on the FSC if segmentation of
an input image is available. FSC is also named as the Fisher’s
linear discriminant analysis in the literature.

Let denote the source image, and it is segmented into
classes of tissues. represents the number
of voxels belonging to the th tissue. Let denote the feature
vector of th voxel belonging to the th tissue. Then the mean
feature vector of each class of tissue can
be calculated by

(11)

The principle of FSC [22] is that it aims to project the original
feature space onto a 1-D space. This 1-D space is determined
such that it maximizes the separability between two clusters of
different classes. It measures the relationship between two clus-
ters and evaluates their interclass distance. Based on FSC [22],
such projection can be formulated as a linear transformation ob-
tained by

(12)

where and are the mean feature vectors from two dif-
ferent classes of tissues obtained from (11), is the inverse
of the pooled covariance matrix. is the feature vector of voxel

belonging to either tissue classes 1 or 2. is the projected
value of in the 1-D space. The projection of (12) maximizes
the following Fisher’s criterion [23]

(13)

where and are the variances of the projected feature vec-
tors belonging to tissue classes 1 and 2, respectively. and

are the projected values of the mean feature vectors and
onto the 1-D space obtained by

(14)

(15)

Equation (13) aims to maximize the distance between the mean
feature vector of two classes of tissues (i.e., the numerator)
while minimizing the intraclass variance of two classes (i.e.,
the denominator). The larger the value of in (13), the better
the feature discrimination between two classes of tissues.

For different kinds of features, we can use this protocol to
directly compare the discriminating power of different kinds of
features among different kinds of tissues. The most simple fea-
ture is the voxel intensity alone. Therefore, the value of (13)
obtained by using voxel intensity value alone can be served as a
baseline for feature comparison. In this case, the feature vector

of each voxel reduces to a single value (i.e., the intensity
value of ).

We compare seven different kinds of features with each other
by using the proposed protocol: i) the intensity value alone,
ii) the geometric moment invariant (GMIs) features adopted in
HAMMER [13], iii) the local histogram based features used in
(LHF) [14], iv) the Gabor filtered response with the MRO se-
lection criteria (Gabor + MRO), v) the log-normal kernel based
filtered response with MRO (Log-normal + MRO), vi) the t-dis-
tribution kernel base filtered response with MRO (T-distribution
+ MRO), and vii) the proposed features ( + MRO). The av-
erage FSC values of (13) for different kinds of tissue pairs for
those seven types of features of the 20 normal subject images
obtained from the IBSR website are listed in Table IV.

For clarity purpose, the details of the GMIs features adopted
in HAMMER [13] and the LHF features used in [14] are given
as follows.

The GMI features of each tissue class is defined based on the
3-D regular moments in (17)

(16)

where where the order of the 3-D reg-
ular moment is determined by , are the
coordinates of the voxel under consideration. In (17), it is also
assumed that the origin of the coordinate system has already
been shifted to [13]. Therefore, the integration is
defined within a sphere with radius , where determines the
scale of interest. is the membership function
with each tissue (i.e., WM, GM, and CSF).



114 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 1, JANUARY 2010

The GMI features are defined based on the 3-D regular mo-
ments. For example, the GMI features of zero-order and second-
order are defined as

HAMMER [13] uses the GMI features with zero order,
second order, and third order, which results in a 13-D GMI
feature for each tissue class and each scale of an individual
voxel.

The reader should be reminded that HAMMER [13] requires
the segmentation results of input images in order to calculate the
GMI features. In some image modalities, accurate segmentation
results are often difficult, or impossible to obtain. Therefore,
Shen [14] extended HAMMER by using a new type of features,
called the local histogram features (LHF).

LHF [14] adopts the local histogram features which do not
require the segmentation results of input images. For each voxel

of the input image, LHF [14] first defines a local spherical
neighborhood system centered at , with radius . Therefore

defines the scale of interest of the feature vectors. Then, the
intensity histogram within the spherical neighborhood system
is calculated, denoted as . The regular geometric moments
calculated based on is expressed by

(17)

where denotes the order of the regular geometric moment and
denotes the frequency of intensity in histogram .

In LHF [14], takes the value from 0 to 2. Therefore, a 3
1-D feature vector can be calculated from the local histogram
for each voxel . We denote this 3 1-D feature vector sig-
nature for voxel as . It is obvious that is ro-
tation invariant because the local histogram is calculated
from the spherical neighborhood system centered at . In LHF
[14], in order to extract multiscale features from each voxel ,
the regular moment features are extracted in a multiresolution
manner. More precisely, the regular moment features are ex-
tracted in three different resolutions of the input images, with the
first resolution level the original image, the middle resolution
level by downsampling the original image with a factor of two,
the coarsest resolution level by downsampling the middle reso-
lution level image with a factor of two. We denote the regular
moment features extracted from theses three resolution levels as

, and , respectively.
Besides the features extracted from the local histogram of

each voxel , LHF [14] also incorporates the edge informa-
tion of each voxel as the second layer feature to characterize
the anatomical structures. The Canny edge detector is applied
to the input image. The output of the Canny edge detector is a
point-wise boundary map, whose values represent the strength

of boundary. For each voxel , let denote its corresponding
Canny edge detector response value. Similar to the regular mo-
ment features extracted from the local histogram of , the edge
features are also extracted by referring to three different image
resolution levels. We denote them as , and , re-
spectively. Therefore, the final feature signature for each voxel

is expressed by

(18)

It is observed that all the other six kinds of features outper-
form the baseline (i.e., using intensity only as feature) as all the
values obtained from (13) by using different features have sig-
nificant larger values between different kinds of tissues com-
pared with the baseline. Moreover, the GMIs features used in
HAMMER [13] can better discriminate between the classes of
white matter, gray matter and cerebrospinal fluid as compared
with the local histogram features used in LHF [14]. However,
we should bear in mind that the GMIs features require the seg-
mentation results of input images. Features extracted by using
Log-normal + MRO, t-distribution + MRO, and + MRO
are all have better discriminating power than features extracted
by using Gabor + MRO, which strongly implies the importance
of modeling the heavy-tail behavior. Also, comparing to the
other two alternative (i.e., log-normal and t-distribution) kernels
which also have heavy-tail properties and the GMIs features,
the kernel still has the best discriminating power, which
reflects its fitness for capturing the information from the voxels
lying on the tails of different frequency bands for the brain MR
images.

B. Optional Training Step With Segmentation

In Section III-A, a protocol is presented for evaluating the
discriminating power of different kinds of features directly. In
this section, based on FSC [22], [25], we also provide a training
framework which can automatically assign weights to different
voxels. The larger the weight, the more important the voxel is.

We denote the input image as , which is segmented into
classes of tissues, and define a spherical neighborhood for each
reference voxel with radius . All voxels on or inside this
spherical neighborhood will be taken into consideration. For all
the voxels under consideration, let denote
the number of voxels belonging to the th tissue class. de-
notes the feature vector of th voxel belonging to the th tissue
obtained after passing through the filters with the MRO
selection criterion. Then, we first calculate the intraclass mean
and variance by (19) and (20), respectively

(19)

(20)

where .
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Then the interclass mean and variance can be calculated by

(21)

(22)

where and denotes
the Euclidean distance. Finally, the weighting factor for voxel
is obtained by

(23)

It should be noted that if this training step is adopted, the
energy function in (11) needs to be slightly modified in order
to make use of the weight of each voxel calculated from (23).
More precisely, the weighting factors in the first energy
term and in the second energy term now become

(24)

(25)

where and denote the weights obtained
from the edge response value by using the Canny edge detector,

and denote the weights obtained by using
FSC from (23). is a coefficient range from 0 to 1 which reflects
whether we focus more on the edge weights or the FSC weights,
in this paper, . Similar modifications are also applied to

in the first and second energy terms in (11).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the registration performance of
the proposed method on both simulated and real 3-D datasets
obtained from the Simulated Brain Database (BrainWeb)1 and
the Internet Brain Segmentation Repository (IBSR), respec-
tively. The proposed method is also compared with other five
widely used nonrigid image registration methods, including
HAMMER [13], an extended version of HAMMER based on
local histograms as features (LHF) [14], FFD [12], Demons
[11], and Gabor based registration method (Gabor) [17]. FFD
[12] is an intensity based registration method which first su-
perimposes a control point grid with uniform spacing onto the
original image grid. In [12], the normalized mutual information
(NMI) is adopted as the similarity metric and it is optimized via
gradient descent. FFD first estimates the displacement vector
of all the control points by optimizing the NMI metric. Then,
the displacement vectors of other voxels are interpolated from
the displacement vectors of the control points by using the
tri-cubic B-spline basis function. The Demons algorithm [11] is
also an intensity based registration method. Different from FFD
[12], in Demons [11] each voxel can be freely displaced off
the original position. The displacement vector of each voxel is
estimated by the optical flow equation in Demons [11], which is

1http://www.bic.mni.mcgill.ca/brainweb/.

solely based on the voxel intensity information of the template
and subject images. The Gabor base registration method [17]
adopts the Gabor filtered responses of the original image as
features. In [17], only the filtered responses with the maximum
output magnitude for each voxel are adopted as features to
represent the input images. In all the experiments, the control
point spacing of FFD was set to 2.5 mm, as suggested in [26].
The maximum number of iterations for Demons was set to
100. The variance of the Gaussian kernel used to smooth the
displacement field of Demons in each iteration was 1. The
elementary demon forces were computed according to the
optical flow as defined in [11]. The implementations of FFD
and Demons were obtained from the Insight Segmentation and
Registration Toolkit (ITK).2 For the Gabor filter based method,
the center frequencies and number of orientations were the
same with the filters. For the HAMMER algorithm, the
maximum number of iterations was set to 50. Three resolution
levels were used to drive the registration [13]. The radii of
the spherical subvolumes used to calculate the GMIs features
in the low level resolution, the middle level resolution, and
the high level resolution were set to 3, 3, and 7, respectively,
by following the same line as described in [13]. For the LHF
based method, the registration process was performed on three
resolution levels [14], the radii of the spherical neighborhood
used to calculate the local histogram features in each resolution
level were decreased from 8 to 1 voxels [14]. The LHF [14]
method is implemented by ourselves.

A. Experiments With Simulated Images

We have evaluated the proposed method on simulated 3-D
images obtained from BrainWeb. Twenty image volumes from
different subjects were used. One of the image volumes was
served as the template image, and the others were used as the
subject images. The size of each image volume is

pixels. From the BrainWeb, all voxels have already been
segmented and labeled with one of the three tissue classes which
are white matter, gray matter, and cerebrospinal fluid. Fig. 5
shows sample slices with the same cross section of the 20 image
volumes.

It is observed in Fig. 5 that brains in these 20 image vol-
umes have significant structural differences, especially in
the regions of ventricle and cortex. In order to compare the
proposed method with HAMMER [13] and LHF [14], each
image volume was preprocessed to remove skull because skull
stripping is a required step for HAMMER [13], [14]. We used
the software Brain Suite version 2 obtained from USC3 to
accomplish the skull removing process. The proposed method
(without training) and other five approaches (FFD, Demons,
Gabor, HAMMER, and LHF) were used to independently
warp the subject images to the template image. To visualize
the registration accuracy of the proposed method (without
training), the average brain images were reconstructed from the
warped subject images as shown in Fig. 6 of various methods.
For comparison, the template image is also included on the first
and second rows, first column of Fig. 6.

2http://www.itk.org/.
3http://www.brainsuite.usc.edu/.
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Fig. 5. Sample slices with the same cross section of the 20 image volumes obtained from BrainWeb.

Fig. 6. Reconstructed average brain images of the proposed method, LHF [14], HAMMER [13], Gabor filter based method [17], Demons [11], and FFD [12] for
the simulated datasets. The template images are also provided for reference. Regions with most significant differences are highlighted with green circles. Note that
the skulls have been removed in the preprocessing step. (a) Template. (b) Our method. (c) LHF. (d) HAMMER. (e) Gabor. (f) Demons. (g) FFD.

It is revealed from Fig. 6 that, as compared to LHF,
HAMMER, FFD, Gabor, and Demons, the average brain im-

ages reconstructed from the warped subject images using the
proposed method are more similar to the template image shown
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TABLE V
MEAN VALUES OF � AND SDS OF THE TISSUES OF GM, WM, AND CSF WITH DIFFERENT METHODS ON THE BRAINWEB DATABASE. �� DENOTES BEFORE

REGISTRATION, ��� (WOT) DENOTES USING ��� FILTERS WITHOUT TRAINING, ��� (WT) DENOTES USING ��� FILTERS WITH TRAINING. THE HIGHEST

VALUES OF � ARE BOLDED FOR EACH TISSUE

on the first column, first and second rows of Fig. 6, which
can be evident from the highly similar ventricular and cortical
regions. The sharpness of the average brain images obtained by
using the method in [14] (extension of HAMMER, using local
histogram based features) is comparable with those obtained
by HAMMER [13]. The average brain images obtained by
using the proposed method are sharper than those obtained
by HAMMER, as more structural details are preserved. The
average brains obtained via the Gabor filter based methods
[17], Demons [11] and FFD [12] are also shown in Fig. 6. It is
shown from the figure that the average brains reconstructed by
using the proposed method are sharper and can preserve more
structural details than those methods. Therefore, Fig. 6 partially
implies the registration accuracy of the proposed method. It
echoes the results measured by the proposed feature evaluation
protocol described in Section III-A.

To precisely analyze the registration accuracy of the proposed
method, we have adopted the registration evaluation criterion
proposed in [26]. This evaluation criterion is based on the pro-
portions of tissue overlaps of gray matter (GM), white matter
(WM), and the cerebrospinal fluid (CSF). The more the tis-
sues overlapping between the template the warped subject im-
ages, the better the registration accuracy. The evaluation mea-
sure function is defined as

(26)

where and denote the regions of a specific type of tissues
in template and warped subject image, respectively. Besides the
HAMMER algorithm [13] and its extension [14] based on LHF,
we have also compared the proposed method with three widely
used nonrigid registration methods such as FFD [12], Demons
[11] and Gabor filter based method [17]. In order to test the
relative importance of the kernel, the Gabor filter based
method with the MRO criteria is also included for comparison.

Table V lists the registration accuracies of seven approaches
based on the evaluation function defined in (26).

It is observed that the proposed method has the highest reg-
istration accuracy among all the other five methods. Also, the
registration accuracy of Gabor + MRO is improved as compared
with the conventional Gabor filter based approach [17], which
illustrates the importance of the rotation invariant property in
feature based nonrigid image registration methods and the con-
tributions of MRO. The untrained kernel + MRO outper-
forms the Gabor kernel + MRO approach. It implies the contri-
bution and superiority of the kernel. Such results and the
results provided by the FSC evaluation protocol in Table IV are
matched. If the training framework proposed in Section III-B
is adopted, the registration accuracy can be further improved.
Moreover, the results listed in Table V are consistent with the

findings obtained from the feature evaluation protocol, as pro-
posed in Section III-A.

B. Experiments With Real Images

As shown in Section IV-A, the proposed method achieves
the highest registration accuracy among the five compared
methods on the simulated datasets obtained from BrainWeb.
In this section, we evaluate the proposed method on real 3-D
images obtained from the IBSR website. Twenty skull stripped
real T1-weighted normal subjects were selected from the IBSR
website in order to fairly compare the proposed method with
HAMMER [13] and LHF [14], as skull stripping is a required
preprocessing step for HAMMER [13] and LHF [14]. The
20 selected image volumes have been manually segmented
into three classes of tissues: white matter (WM), gray matter
(GM), and cerebrospinal fluid (CSF) as provided by the IBSR
website. Each image volume has resolution of
approximately. Fig. 7 shows the image slices of the 20 image
volumes with the same cross section.

Similar to Section IV-A, one of the image volumes was used
as the template, others were served as the subject images. The
proposed method then independently warped the subject im-
ages to the template image. In order to visualize the registra-
tion accuracy of the proposed method, the average brain im-
ages were reconstructed from the warped subject images, as
shown in Fig. 8. The template image is also provided on the
first column of Fig. 8 for reference. It is observed that the pro-
posed method visually outperforms all the other five methods as
mirrored by the more salient sharpness of the reconstructed av-
erage brain images, which matches the findings obtained from
the proposed feature evaluation protocol given in Section III-A.
It is also shown that the reconstructed images are very similar to
the template image, especially reflected by the ventricular and
cortical regions.

The measure function, as stated in (26), was used to statisti-
cally measure the registration accuracy. Table VI lists the results
obtained via different approaches. The control point spacing for
the FFD method was set to 2.5 mm. The parameter settings for
Demons [11], Gabor filter based method were the same with
the parameter settings used in Section IV-A. From the table, it
is shown that the proposed method maintains the highest regis-
tration accuracy among the other five methods and the Gabor +
MRO approach. The registration accuracy and robustness of the
proposed method are strongly implied.

V. CONCLUSION

First, it is demonstrated in this paper that the energy
spectrums of brain MR images often exhibit non-Gaussian
heavy-tail behavior. This behavior cannot be satisfactorily
modeled by the conventional Gabor filters. Such behavior
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Fig. 7. Sample slices with the same cross section of the 20 image volumes obtained from IBSR.

Fig. 8. Reconstructed average brain images of the proposed method, LHF [14], HAMMER [13], Gabor filter based method [17], Demons [11], and FFD [12]
for the IBSR real datasets. The template images are also provided for reference. Regions with most significant differences are highlighted with green circles. (a)
Template. (b) Our method. (c) LHF. (d) HAMMER. (e) Gabor. (f) Demons. (g) FFD.

TABLE VI
MEAN VALUES OF � AND SDS OF THE GM, WM, AND CSF WITH DIFFERENT METHODS ON THE IBSR DATABASE. �� DENOTES BEFORE REGISTRATION,
��� (WOT) DENOTES USING ��� FILTERS WITHOUT TRAINING, ��� (WT) DENOTES USING ��� FILTERS WITH TRAINING. HIGHEST VALUES OF �

ARE BOLDED FOR EACH TISSUE
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should be modeled because most of the voxels which lie on the
tails of the energy spectrums are located at the salient regions
of the brain MR images such as sulcal roots and gyral crowns.
Therefore, the filter is introduced to effectively model
the image energy spectrums and subsequently extract features
from the brain MR images. Second, to extract rotation invariant
features, the MRO selection criterion has been designed in this
work. Given a specific center frequency, the MRO selection
criterion only takes the maximum response value of a particular
orientation as features. The selected features are orientation
invariant because no matter how the images are rotated, the
maximum response value remains unchanged in a particular
orientation. Third, based on the FSC, a new feature evaluation
protocol is proposed if the input image segmentations are
available. This protocol can help directly compare different
types of features without biasing toward other factors in the
registration process such as transformation models and energy
functions. The proposed protocol provides a mean to evaluate
different types of features prior to perform the actual regis-
tration process. It is experimentally shown that the proposed
feature gives the best discriminating power as compared with
the GMIs features used in HAMMER [13] as well as the local
histogram based features used in the HAMMER’s extension
(LHF) [14]. We have also proposed a new training framework
to assign suitable weights to different voxels. The larger the
weight, the more important the voxel during the registration
process. Finally, with the extracted features and the estimated
weights, the proposed method conducts registration in a hierar-
chical and multiresolution manner similar to HAMMER [13].
The proposed method has been evaluated by performing non-
rigid registration experiments on both simulated and real 3-D
datasets obtained from BrainWeb and IBSR respectively. The
experimental results reveal that the proposed method achieves
the highest registration accuracies on both datasets among the
five methods including HAMMER, FFD, Demons, LHF, and
the Gabor filter based registration method.
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