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Abstract. In this paper, we present a new and efficient multi-modal 3D-3D 
vascular registration algorithm, which transforms the 3D-3D registration prob-
lem into a multiple 2D-3D vascular registration problem. Along each orthogo-
nal axis, projected 2D image from a segmented binary 3D floating volume is 
compared with maximum intensity projection (MIP) image of the reference 
volume. At the preprocessing stage of the floating image volume, vessels are 
segmented and represented by a number of spheres with centers located at the 
skeleton points of the vessels and radii equal to the distance from the skeleton 
points to their closest boundary. To generate projected images from the binary 
3D volume, instead of using the conventional ray-casting technique, the spheres 
are projected to the three orthogonal projection planes. The discrepancy be-
tween the projected image and the reference MIP image is measured by a rela-
tively simple similarity measure, sum of squared differences (SSD). By visual 
comparison, we found that the performances of our method and the Mutual In-
formation (MI)-based method are visually comparable. Moreover, based on the 
experimental results, our method for 3D-3D vascular registration is more com-
putationally efficient than the MI-based method. 

1   Introduction 

Multi-modal image registration is a key for the integration of the complementary 
image information available in different modalities by aligning the images. Images 
acquired by different medical imaging modalities provide useful complementary 
information. For example, time-of-flight magnetic resonance angiographic (TOF-
MRA) or 3D rotational angiographic (RA) images provide anatomical information; 
phase contrast (PC) MRA images provide flow information in the vessels. As such, 
matching between TOF- and PC-MRA or RA and PC-MRA images can provide flow 
and structural information in an integrated 3D volume, which is very useful for the 
physicians. 

To correctly align two images, we need a similarity measure to determine how 
well an image matches against another image through a hypothesized spatial trans-
formation. Most of the similarity measures can be classified into two categories: fea-
ture-based or intensity-based. In Section 1.1, we will briefly introduce these similarity 
measures, and discuss their advantages and disadvantages. In general, the intensity-
based method is more accurate. On the other hand, the feature-based method is more 
computationally efficient [16]. In this paper, we extend the early version of our work 
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in [3] from 2D-3D to 3D-3D registration, and will also compare our proposed method 
with the Mutual Information (MI)-based registration method [6], [7], which is one of 
the most commonly used intensity-based methods in the medical image analysis field. 

1.1   Previous Works 

Over the past few years, many intensity-based similarity measures have been intro-
duced, for example sum of squared differences (SSD), correlation coefficients (CC), 
correlation ratio (CR) [15] etc. The most popular and widely used one is the informa-
tion-theoretic similarity measure, namely MI [6], [7]. It does not require segmentation 
and only makes use of the assumption of statistical dependence between the two im-
ages, and has been successfully applied to many multi-modality combinations. 

The feature-based registration algorithms extract features such as surfaces, curves 
[13], [24], [25] or skeletons [11], [12], [14] at the preprocessing steps. They are faster 
than intensity-based methods but comparatively less accurate [16]. Also, the extrac-
tion of skeletons, for example, can be sensitive to noise [17]. Therefore, registration 
algorithms using skeletons as the only feature for registration can be sensitive to noise 
as well. On the other hand, the surface or curve extraction and representation can be 
complicated and would also affect the registration accuracy. 

Recently, Chung and et al. [1], [2] used a pair of precisely registered images to 
build the expected joint intensity or class histogram and employed KLD [4], [5] to 
measure the discrepancy between observed and expected joint intensity or class his-
tograms. It makes use of the a priori knowledge of the expected joint intensity or 
class histogram to guide the transformation towards the expected outcome. 

2   Our 3D-3D Vascular Registration Algorithm 

We will provide some background information in the following subsections before 
we introduce our registration algorithm. For the conventional MI-based registration 
method, a joint intensity histogram is built at each iteration during the registration 
process. Within the overlapping region of the floating and reference images, each 
voxel at the floating image is transformed to the coordinate frame of the reference 
image and the corresponding intensity bin of the histogram is incremented.  Genera-
tion of a histogram using the intensity pairs in the overlapping region can be very 
time-consuming, particularly when the size of image volume is large. A large portion 
of the registration computational time can be spent on the building of joint intensity 
histograms. Therefore, we propose to transform the 3D-3D registration problem into 
a multiple 2D-3D registration problem and compare the projection images perpen-
dicular to the three orthogonal axes until the registration process terminates. We first 
generate three MIP images of the reference volume along each of the axes. At each 
iteration, we generate three projected images from the segmented binary floating 
volume to compare with the corresponding MIPs generated before. An algorithm for 
generating binary projected images is described in Section 2.2. In order to generate 
projected images from a binary volume efficiently, some preprocessing of the floating 
volume is needed. 
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2.1   Preprocessing of Floating Volume 

Before the registration process, an isotropic volume is built so that the new voxel size 
is equal to the original in-plane voxel size, and the intensities of voxels between slices 
are estimated by using the trilinear interpolation. Vessels are then segmented by using 
the global thresholding method and skeletons are extracted [18] with the modified 

weighted metric < 3,2,1 >. (Some advanced segmentation method can be used. 
But, it is not the focus of this paper.) The skeleton points (within a 7x7x7 window) 
are connected using the depth first search. The main vessel that we are interested is 
usually the largest connected component containing most skeleton points. By using 
the extracted skeleton, the original binary volume can be represented and recon-
structed by the set of spheres with the coordinates of skeleton points as centers and 
their distance transform values (their distances to the closest boundary) as radii [22]. 
Note that a rectangular region of interest containing the main vessels is selected in 
order to shorten the computational time. 

2.2   Generation of Projected Image from a Binary Volume 

In order to mimic the MIP images, the whole projected image is randomly initialized 
to one of the background intensities of the MIP image. The background intensities of 
the MIP image can be easily obtained from the boundary pixels. 

Given the rigid transformation matrix, the center of each sphere of the main vessel 
is projected to each of the three projection planes under orthogonal projective geome-
try. The intensities of all pixels with its distance to the projected center less than the 
corresponding radius are assigned to 255. 

A pair of the projected images generated (a) by projection of spheres and (b) by 
using the ray-casting technique is shown in Fig. 1. The differences of the resulting 
images are negligible. Our method not only produces similar image compared to the 
ray-casting technique, but also it is more efficient. A comparison on computational 
efficiency between the two methods will be presented in Section 3.1. 

 

  

Fig. 1. Projected images from a binary volume generated by (a) projection of spheres (left) and 
(b) the ray-casting technique (right). 

2.3   Sum of Squared Differences as Similarity Measure 

Vessels in both MIP images and projected binary images have high intensity values. 
Sum of squared differences (SSD), which is a simple similarity measure, can be em-
ployed to measure the difference between a 2D MIP image, denoted by U , and the 
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corresponding binary projected image from the segmented floating volume, denoted 
by V . The SSD between the two images is given by 

∑
Φ∈

−=
i

iViUVUSSD 2))()((),(   (1) 

where Φ  represents the image domain. When the two images U  and V  are pre-
cisely aligned, the value of SSD is expected to be minimum. We use the sum of the 
three SSDs for each axis as the similarity measure to guide our registration process. 

It is interesting to point out that, from our experience, the similarity measures: MI 
and KLD also work well in this problem. However, they require extra computations 
such as building joint intensity or class histograms, normalizing the histograms and 
calculating marginal distributions (for MI). Moreover, the bin sizes of the joint inten-
sity histograms may affect the registration result. 

2.4   Outline of Registration Process 

During the registration process, the floating image is the 3D PC-MRA volume while 
the reference image is the 3D TOF-MRA volume, which is fixed in the 3D space. At 
each iteration, three binary projected 2D images, along each orthogonal axes, of the 
segmented PC-MRA volume for the current pose is generated by the method men-

tioned in Section 2.2. The goal is to find the optimal rigid transformation T̂  by mini-
mizing the value of sum of SSDs (see Equation (1)) between the binary projected 
images and their corresponding MIP images,  

)))(,())(,())(,((minargˆ TVUSSDTVUSSDTVUSSDT yzyzxzxzxyxy
T

++=  . (2) 

Powell’s method [10] is used to iteratively search for the minimum value of the 
sum of SSDs along each parameter (in 3D, the rigid transformation has three transla-
tional and three rotational parameters) using Brent’s method [10]. The algorithm halts 
when the percentage change of the sum of SSDs is below a user-specified threshold. 
We set this threshold to 0.001% in our program. The flow chart of our registration 
algorithm is shown in Fig. 2. 

3   Results and Comparisons 

In this section, we show the results of the 3D-3D rigid vascular registration algorithm 
presented in Section 2 and also compare its accuracy and computational efficiency 
with the MI-based method. We used three pairs of TOF- and PC-MRA datasets for 
this experiment to study the performance of the SSD-based method and selected one 
of the three pairs (Case 1) for comparison with the MI-based method. The specifica-
tion of the MRA dataset is listed in Table 1. 
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Fig. 2. A flow chart of our registration algorithm 

Table 1. Specifications of the datasets used for evaluation of our registration algorithm. 

Floating Volume Reference Volume Case 
No. Dimensions 

(H x W x D) 
Voxel Size (mm) Dimensions 

(H x W x D) 
Voxel Size (mm) 

1 512 x 512 x 64 0.390625; 0.390625; 1 512 x 512 x 80 0.390625; 0.390625; 0.75 
2 512 x 512 x 32 0.390625; 0.390625; 0.9 512 x 512 x 60 0.410156; 0.410156; 0.95 
3 512 x 512 x 64 0.390625; 0.390625; 1 512 x 512 x 60 0.390625; 0.390625; 0.95 

3.1   Probing Experiments 

The first pair of the volumes was used in this experiment. The resulting transforma-
tion obtained by using each method was assumed to be their corresponding optimal 
transformations. The probing results of the objective functions are shown in Fig. 3. 
The performances of SSD and MI are comparable when the floating volume was 
shifted between -10mm to 10mm against Tx, Ty, and was rotated between -18º to 18º. 

The computational times of all the evaluations in the probing experiments pre-
sented in this subsection are summarized as follows. For the SSD-based method, the 
mean and standard deviation are 0.19s and 0.02s respectively while for the MI-based 
method, the mean and standard deviation are 17.79s and 1.41s respectively. 

3.2   A Study on Computational Time of Our Registration Algorithm 

In order to compare the computational efficiency between our method and the ray-
casting method for generating a projected image from binary volume, we generated 
1000 projected images from a binary volume using both methods. The ray-casting 
method takes 1.34 seconds on average whereas our method takes 0.07 seconds on 
average, which is about 20 times faster than the ray-casting method. The computa-
tional times of the whole registration process for SSD-based and the MI-based 
method are listed in Table 2. All experiments done in this paper were run on a 
1.7GHz Pentium IV PC with 768M RAM. Based on the performance of probing 
experiments and the first dataset, it shows that our method can run faster than the MI-
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based method by about 100 times. Note that the MI-based method failed to converge 
in cases 2 and 3. 

Table 2. Comparisons of the computational time (in sec) for the two registration algorithms. 

 Methods Case 1 Case 2 Case 3 

 SSD 36.963 43.192 26.918 

 MI 4705.746 

3.3   A Study On Performance of Our Registration Algorithm 

The results are shown in Fig. 4, which shows the MIPs of the registered MRA vol-
umes using the proposed method. Full MIPs are shown here for the visualization 
purpose only. During the registration, only binary projected images were generated 
and used. Segmented vascular regions of the binary projected image (at final align-
ment using the proposed method) are overlaid on the corresponding DSA images (h) 
and the results are promising. 

4   Discussions and Conclusions 

For the preprocessing of 3D volume, the centerline extraction method proposed by 
Aylward and et al. [26] does not need any segmentation but initial seek points and 
scales of each vascular branch are required. In our algorithm, instead of using the 
thinning algorithm [20] or the centerline extraction algorithm [26], skeletons are 
extracted by using the distance transforms [18], [22]. With the skeleton points and the 
distance transform values, the original volume can be recovered exactly [22], which 
may not be feasible by thinning algorithms or centerline extraction algorithms. Skele-
tons or centerline extraction can be sensitive to noise [17]. Noisy data may give a lot 
of undesired skeleton points which can affect the accuracy of the method proposed by 
Aylward and et al. [26] because they use skeletons only. Our method requires skele-
tonization as well, but it does not use skeletons as the only feature. Instead of using 
skeletons only, our method also makes use of the distance transform values for gener-
ating binary projected images. Thus, the accuracy of our registration algorithm can be 
less sensitive to noise. 

In our projection-based registration method, instead of projecting all vessel voxels, 
we draw filled circles with centers located at the projected skeleton points, as men-
tioned in Section 2.2. The reason is that projecting only vessel voxels may result in 
some blank horizontal or vertical lines in the projected image, which are undesirable 
and can be avoided by using our method. 

To conclude, we have proposed a new and efficient multi-modal 3D-3D vascular 
registration method based on the efficient generation of projected images from a 
binary 3D volume. The discrepancy between the projected images and the reference 
MIP images is measured by the sum of squared differences (SSD) similarity measure. 
Experimental results show that our method is more computationally efficient than the 
MI-based method while the accuracies of the both methods are comparable. 
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Fig. 3. Probing results of MI(left) and SSD(right) values, in which Tx, Ty, Ry, Rz were varied. 
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(a) (b) 

    

  
(c) (d) 

Fig. 4. Results of case 1. (a) MIPs of PC-MRA volume at the initial alignment. (b) Initial image 
alignment, and binary projected images of PC-MRA volume are overlaid to the TOF-MRA 
MIP images. (c) Final image alignment by using the SSD-based method, and binary projected 
images of PC-MRA volume are overlaid to the TOF-MRA MIP images. (d) Final image align-
ment by using the MI-based method, and binary projected images of PC-MRA volume are 
overlaid on the TOF-MRA MIP images. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 5. Results of cases 2 and 3. (a, b) MIPs of PC-MRA volume at initial alignment respec-
tively. (c, d) Initial image alignment, and binary projected images of PC-MRA volume are 
overlaid to the TOF-MRA MIP images respectively. (e, f) Final image alignment by using the 
SSD-based method, and binary projected images of PC-MRA volume are overlaid on the TOF-
MRA MIP images respectively. 
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