
Comp151

C++:
Data Abstraction & Classes

A Brief History of C++

• Bjarne Stroustrup of AT&T Bell Labs extended C with
Simula-like classes in the early 1980s; the new language
was called “C with Classes”.

• C++, the successor of “C with Classes”, was designed by
Stroustrup in 1986; version 2.0 was introduced in 1989.

• The design of C++ was guided by three key principles:
1. The use of classes should not result in programs executing any

more slowly than programs not using classes.
2. C programs should run as a subset of C++ programs.
3. No run-time inefficiency should be added to the language.

Topics in Today's Lecture

• Data Abstraction

• Classes: Name Equivalence vs. Structural Equivalence

• Classes: Restrictions on Data Members

• Classes: Location of Function declarations/definitions

• Classes: Member Access Control

• Implementation of Class Objects

Data Abstraction

• Questions:
– What is a ‘‘car''?
– What is a ‘‘stack''?

• A data abstraction is a simplified view of an object that
includes only features one is interested in while hiding
away the unnecessary details.

• In programming languages, a data abstraction becomes
an abstract data type (ADT) or a user-defined type.

• In OOP, an ADT is implemented as a class.

Example: Implement a Stack with an Array

1
2
3

.

.

.

.

data

topsize

Example: Implement a Stack with a Linked List

-999

top

-999

top

1 2

(latest item)

Information Hiding

• An abstract specification tells us the behavior of an
object independent of its implementation. i.e. It tells us
what an object does independent of how it works.

• Information hiding is also known as data encapsulation,
or representation independence.

• The principle of information hiding:
Design a program so that the implementation of an
object can be changed without affecting the rest of the
program.
– e.g., changing the implementation of a stack from an array to a

linked list should have no effect on users' programs.

Example: stack_ar.h

class Stack
{
private:

int size; // max size of storage
int* top; // pointer to next available space
int* data; // data storage

public:
Stack(int N); // a constructor
~Stack(); // destructor

// basic operations;
void push(int x); // add another datum
int pop(); // get the most recent datum

// status operations;
int num_elements() const;
bool empty() const;
bool full() const;

}

access
control

member functions
(public interface)

data members

Example: stack_ll.h

class Stack
{
private:

struct node
{
int data;
node* next;
}
node* top; // point to top of the stack
int size; // max size of storage

public:
Stack(int N); // a constructor
~Stack(); // destructor

// basic operations;
void push(int x); // add another datum
int pop(); // get the most recent datum

//status operations;
int num_elements() const;
bool empty() const;
bool full() const;

}

access
control

member functions
(public interface)

data members

• A class definition introduces a new abstract data type.
• C++ class definitions rely on name equivalence, NOT

structure equivalence.
• E.g., the program below does not compile:

#include <iostream.h>
class X { public: int a; };
class Y { public: int a; };
void main()
{

X x; Y y;
x.a = 1;
y.a = 2;
cout << '' x.a = '' << x.a << '', y.a = '' << y.a << endl;
y = x;
cout << '' x.a = '' << x.a << '', y.a = '' << y.a << endl;

}

Class Name: Name Equivalence

Class Name: Name Equivalence

• A class definition introduces a new abstract data type.
• C++ class definitions rely on name equivalence, NOT

structure equivalence.
• On the other hand, this program compiles and works:

#include <iostream.h>
class X { public: int a; };
void main()
{

X x1, x2;
x1.a = 1;
x2.a = 2;
cout << '' x1.a = '' << x1.a << '', x2.a = '' << x2.a << endl;
x2 = x1;
cout << '' x1.a = '' << x1.a << '', x2.a = '' << x2.a << endl;

}

Data Members of a Class

• Data members can be any basic type, or any user-defined types that
have already been “seen” (defined).

• A class name can be used (but only as a pointer) in its own
definition:

class Node { public: int data; Node* next; };

• It can also be used as a forward declaration for class pointers:
class Node; // forward declaration
class Stack
{

int size;
Node* top; // OK: points to an object with forward declaration
Node x; // ERROR: Node not defined!

};

Data Members of a Class
• But, data members can NOT be initialized inside the class definition.

E.g., the program below will not compile.

class X {
public:

int a = 1; // ERROR: can’t initialize member variables this way
};

void main()
{

X x;
cout << '' x.a = '' << x.a << endl;

}

• Instead, initialization should be done with appropriate constructors,
or member functions.

Member Functions of a Class

• Class member functions are the functions declared
inside the body of a class (they can be either public or
private). They can be defined in two ways:

(1) within the class body, in which case, they are
inline functions.

class Stack
{ …

void push(int x) { *top = x; ++top; }
int pop() { - - top; return (*top); }

};

Member Functions of a Class

(2) outside the class body

class Stack
{ …

void push(int x);
int pop();

};
void Stack::push(int x) { *top = x; ++top; }
int Stack::pop() { - - top; return (*top); }

• Question: Can we add data and function declarations to
a class after the end of the class definition?

Member Access Control

• A member of a class can be:

– public : accessible to anybody

– private : accessible only to member functions and friends of the
class → enforces information hiding

– protected : accessible to member functions and friends of the
class, as well as to member functions and friends of its derived
classes (subclasses). We will discuss this in greater detail later
in the course.

* We’ll discuss “friends” later.

Example: Member Access Control

class Stack
{
private:

Node* top;
public:

int size;
…
};

int main()
{

Stack x;
cout << x.size; // OK: size is public
x.push(2); // OK: push() is public
cout << x.top->data; // ERROR: cannot access top

}

How Are Objects Implemented?
• Each class object gets its own

copy of the class data
members.

• But all objects of the same
class share one single copy of
the member functions.

int main()
{

Stack x, y;
x.push(1);
y.push(2);
y.pop();

}

size
top
data

.

.

.

push()

pop()

size
top
data

stack x

stack y

	Comp151
	A Brief History of C++
	Topics in Today's Lecture
	Data Abstraction
	Example: Implement a Stack with an Array
	Example: Implement a Stack with a Linked List
	Information Hiding
	Example: stack_ar.h
	Example: stack_ll.h
	Class Name: Name Equivalence
	Class Name: Name Equivalence
	Data Members of a Class
	Data Members of a Class
	Member Functions of a Class
	Member Functions of a Class
	Member Access Control
	Example: Member Access Control
	How Are Objects Implemented?

