Compl51

Garbage Collection
& Destructors

Memory Layout of a Running Program

void f()

{

// x, y are local variables
// on the runtime stack
int x = 4;

Word y("Titanic");

// p is another local variable
// on the runtime stack.

// But the array of 100 int
// that p points to

// is on the heap
intx p = new int [100];

(run-time)
stack

i
4

(run-time)
heap

[comp151] 24

[..., local variables,
temporary variables,
passed arguments |

[objects dynamically
allocated by "new"]

[comp151] 25

Memory Usage on Runtime Stack and Heap

e Local variables are constructed (created) when they are defined
in a function/block on the run-time stack.

e When the function/block terminates, the local variables inside
and the CBV arguments will be destructed (and removed) from
the run-time stack.

e Both construction and destruction of variables are done auto-
matically by the compiler by calling the appropriate constructors
and destructors.

e BUT, dynamically allocated memory remains after function /block
terminates, and it is the user’'s responsibility to return it back to
the heap for recycling; otherwise, it will stay until the program
finishes.

[comp151] 26

Garbage and Memory Leak

main()
{
for (int j = 1; j < 10000; j++)
{
int* snoopy = new int [100];
int+ vampire = new int [100];
SNOOpy = vampire; // Now snoopy becomes vampire
// Where is the old snoopy?
}

}

e Garbage is a piece of storage that is part of a program but there
are no more references to it in the program.

e Memory Leak occurs when there is garbage.

Question: What happens if garbages are huge or continuously cre-
ated inside a big loop?!

Example: Before and After p = q

[comp151]

S

O0x8a48

p: | Ox36a4 - Ox8a48 -
BEFORE
Ox8a438

27

delete: To Remove (Garbage [comp151] 28

main() {

Stackx p = new Stack(9); // A dynamically allocated stack object
intx ¢ = new int [100]; // A dynamically allocated array of integers

delete p; // delete an object
delete [] q; // delete an array of objects
p=0; // It is a good practice to set a pointer to NULL
q=0; // when it is not pointing to anything

}

e Explicitly remove a single garbage object by calling delete on a
pointer to the object.

e Explicitly remove an array of garbage objects by calling delete
[| on a pointer to the first object of the array.

e Notice that delete ONLY puts the dynamically allocated mem-
ory back to the heap, and the local variables (p and q above)
stay behind on the run-time stack until the function terminates.

Dangling References and Pointers [comp151] 29

However, careless use of delete may cause dangling references.

main()
{
charx p;
char* g = new char [128|; // Dynamically allocate a char buffer
p = q; // p and q now points to the same char buffer
delete [] q; g = 0; // delete the char buffer
/¥ Now p is a dangling pointer! x/
p[0] = "a’; // Error: possibly segmentation fault
delete [| p; // Error: possibly segmentation fault
}

e A dangling reference is created when memory pointed by a pointer
Is deleted but the user thinks that the address is still valid.

e Dangling references are due to carelessness and pointer aliasing
— an object is pointed to by more than one pointer.

Example: Dangling References [comp151] 30

delete[]1q;q=0;

p: 0Ox8a48 —

p: Ox8a48

\\V
®)
o

q: Ox8a48

[comp151] 31

Other Solutions: Garbage, Dangling References

Garbage and dangling references are due to careless pointer manip-
ulation and pointer aliasing.

e Some languages provide automatic garbage collection facility which
stops a program from running from time to time, checks for
garbages, and puts them back to the heap for recycling.

e Some languages do not have pointers at all!
(It was said that most program bugs are due to pointers.)

Destructors: Introduction [comp151] 32

void Example()

{
Word x("bug", 4);

}

int main() { Example(); }

e On return from Example(), the local Word object “x” of Exam-
ple() is destroyed from the run-time stack of Example(). i.e. the
memory space of (int) x.frequency and (char*) x.str are released.

Quiz: How about the dynamically allocated memory for the string,
“bug” that x.str points to?

Destructors [comp151] 33

C-++ supports a more general mechanism for user-defined destruc-
tion of class objects through destructor member functions.

NWord() { delete [] str; }

e A destructor of a class X is a special member function with the
name X:~X().

e A destructor takes no arguments, and has no return type — thus,
there can only be ONE destructor for a class.

e The destructor of a class is invoked automatically whenever its
object goes out of scope — out of a function/block.

e |f not defined, the compiler will generate a default destructor of
the form X::~X() { } which does nothing.

Example: Destructors [comp151] 34

class Word {
int frequency;
charx str;
public:
Word() : frequency(0), str(0) {};
Word(const charx s, int k =0) { ... }
~Word() { delete [| str; }

¥

int main() {
Word* p = new Word("Titanic");
Word* x = new Word [5];

delete p; // destroy a single object
delete [| x; // destroy an array of objects

Bug: Default Assignment [comp151] 35

void Bug(Word&: x)

{ Word bug("bug", 4);
x = bug;

}

int main()

{
Word movie("Titanic"); // which constructor?
Bug(movie);

}

Quiz: What is movie.str after returning from the call Bug(movie)?

